孔 明,尹洪斌,晁建穎,張毅敏*(.環(huán)境保護(hù)部南京環(huán)境科學(xué)研究所,江蘇 南京 0048;.中國科學(xué)院南京地理與湖泊研究所,湖泊與環(huán)境國家重點實驗室,江蘇 南京 0008)
凹凸棒黏土覆蓋對沉積物磷賦存形態(tài)的影響
孔明1,尹洪斌2,晁建穎1,張毅敏1*(1.環(huán)境保護(hù)部南京環(huán)境科學(xué)研究所,江蘇 南京 210048;2.中國科學(xué)院南京地理與湖泊研究所,湖泊與環(huán)境國家重點實驗室,江蘇 南京 210008)
通過實驗室模擬實驗,研究了800℃熱處理凹凸棒黏土覆蓋對沉積物中磷的賦存形態(tài)影響,采用連續(xù)化學(xué)提取法和31P核磁共振(31P NMR)分析了覆蓋過程中磷的形態(tài)變化,并借助掃描電鏡能譜儀(SEM-EDS)對磷的形態(tài)轉(zhuǎn)化機(jī)理進(jìn)行初步探討.結(jié)果表明,熱處理凹凸棒黏土覆蓋使沉積物表層中的活性磷平均含量從308.6mg/kg降低到241.1mg/kg,鈣磷的平均含量從204.9mg/kg 增加到257.3mg/kg.31P NMR分析發(fā)現(xiàn),黏土覆蓋使有機(jī)磷中的 DNA-P、焦磷酸鹽和單脂磷的含量分別減少47.0%、36.8%和 31.3%.掃描電鏡能譜分析發(fā)現(xiàn),沉積物表層附著的白色絮狀物質(zhì)主要為鈣結(jié)合態(tài)磷.以上分析初步表明,磷形態(tài)轉(zhuǎn)化機(jī)制是由于材料中具有較高的活性鈣含量,競爭吸附沉積物中的活性磷,材料覆蓋沉積物表層后改變了沉積物界面環(huán)境,促進(jìn)了表層沉積物的活性磷向鈣結(jié)合態(tài)磷(Ca-P)轉(zhuǎn)化.
凹凸棒黏土;覆蓋;沉積物;磷形態(tài)
湖泊富營養(yǎng)化是當(dāng)今世界面臨的較為嚴(yán)重的水環(huán)境問題之一,磷是引起湖泊水體富營養(yǎng)化的關(guān)鍵營養(yǎng)元素[1].底泥作為湖泊系統(tǒng)的一個重要組成部分,是外源磷輸入的重要蓄積庫,在溫度、pH值、氧化還原條件、底棲生物以及擾動等環(huán)境因素的影響下,沉積物中的磷素又會重新參與到沉積物-水界面的循環(huán)當(dāng)中,導(dǎo)致上覆水磷素的增加,從而造成水體的內(nèi)源性富營養(yǎng)化污染[2].因此,控制底泥中活性磷的釋放對于地表水體的富營養(yǎng)化防治十分必要.
湖泊內(nèi)源磷污染的控制技術(shù)主要分底泥污染異位控制技術(shù)和原位控制技術(shù)[3-4],其中,活性覆蓋技術(shù)被認(rèn)為是一種有效方法.該方法的原理是通過投加材料于沉積物表層,降低沉積物磷活性,達(dá)到原位控制湖泊內(nèi)源磷釋放的目的[5-7].目前,原位鈍化技術(shù)的材料包括鋁鹽[8]、鐵鹽[9]、Phoslock(鑭改性膨潤土)[10-11]、各種工業(yè)副產(chǎn)物[12-13]和一些給水處理廠廢棄泥[14]等.然而鋁鹽、鐵鹽和Phoslock等修復(fù)劑治理湖泊內(nèi)源磷污染所需成本很高,進(jìn)而會限制其在原位鈍化技術(shù)的推廣和應(yīng)用,工業(yè)副產(chǎn)物及給水處理廠廢棄泥存在重金屬風(fēng)險[15].天然凹凸棒黏土是一種硅鋁酸鹽礦物,有特殊的纖維狀晶體形態(tài),內(nèi)部多孔道,比表面積大,具有良好的吸附性能[16].此類天然黏土礦物由于是在自然界中長期的風(fēng)化等地質(zhì)作用下形成,具有環(huán)境友好、廉價易得等優(yōu)勢,在湖泊污染修復(fù)中的應(yīng)用和開發(fā)已倍受研究者關(guān)注[17-18].富鈣凹凸棒黏土是一類富含鈣質(zhì)雜質(zhì)的凹凸棒黏土.研究發(fā)現(xiàn),凹凸棒黏土在 700℃以上熱處理后表現(xiàn)出高效的磷吸附能力[6,19].
目前,國內(nèi)外對湖泊底泥覆蓋技術(shù)的研究主要集中于對沉積物磷的控制效果[20-22],而對覆蓋機(jī)制及覆蓋對沉積物磷賦存形態(tài)的影響研究甚少.然而,覆蓋對沉積物磷釋放的抑制效果與湖泊沉積物中磷的活性、遷移能力以及磷在沉積物中的賦存形態(tài)關(guān)系較大[23].材料覆蓋沉積物表層后,將會在沉積物表層形成一個新的界面,必然會改變原有的界面環(huán)境,且覆蓋材料中的 Fe、Al和Ca等成分,也會對沉積物中磷形態(tài)的造成影響.因此,本文以 800℃熱處理富鈣凹凸棒黏土為覆蓋材料,采用連續(xù)化學(xué)提取以及31P核磁共振(31P NMR)研究覆蓋對表層沉積物磷賦存形態(tài)的影響,以期為湖泊底泥污染物內(nèi)源磷的釋放控制提供理論與技術(shù)支撐.
1.1樣品采集和處理
本研究中的凹凸棒黏土取自江蘇盱眙,原狀塊狀黏土礦物經(jīng)粉碎、造粒(0.2~0.5mm),采用箱式馬弗爐(SX2-4-10型)對樣品進(jìn)行 800℃高溫?zé)崽幚?2h,并自然冷卻至室溫,干燥器中保存,即得覆蓋材料.沉積物樣品于2014年1月,在巢湖南淝河湖口(31.701321°,117.362080°),采用柱狀采泥器采集柱狀樣平行樣.并用橡膠塞將柱狀樣上下兩端塞緊保存帶回實驗室.
1.2覆蓋模擬實驗
將采集的沉積物柱狀樣品在一個容積為600L的塑料方箱內(nèi)培養(yǎng).實驗開始前,采用虹吸法將柱狀樣品上覆水抽出,Yin等[6]研究發(fā)現(xiàn),黏土材料用量與表層4cm沉積物干重比例(w/w)在1:10~1:5范圍內(nèi)對沉積物中磷具有較好的固定效果,因此,本研究將凹凸棒黏土材料用量與表層4cm比例(w/w)設(shè)定為 1:10.同樣采用虹吸法將2000mL的上覆水虹吸入覆蓋層上部.然后將柱狀樣品置于實驗裝置內(nèi),采用循環(huán)水浴泵在25℃條件下恒溫培養(yǎng),每天定時向裝置內(nèi)充氮?dú)?1h,并加蓋密封.對照組設(shè)兩個平行樣,覆蓋組設(shè)3個平行樣.整個培養(yǎng)時間為 40d,覆蓋實驗期間共分3次(覆蓋4d,10d,和40d)取樣和分析.
1.3樣品分析方法
取0~4cm的沉積物柱狀樣按照0.5cm的間隔切割分層,分取沉積物濕樣進(jìn)行含水率分析,沉積物的含水率利用烘干法來測定,具體是將沉積物濕樣裝于坩堝內(nèi),放置于烘箱中,在 105℃下烘24h 至沉積物恒重,含水率即為烘干前后干濕沉積物質(zhì)量之差與烘干前濕沉積物質(zhì)量之比值,以百分比記.沉積物鮮樣經(jīng)風(fēng)干、研磨,過100目尼龍篩后,裝入樣品袋封口密封,用于其他理化指標(biāo)分析.采用 Psenner的磷連續(xù)提取法[24-25],將磷形態(tài)分為弱吸附態(tài)磷(LP)、鐵/鋁結(jié)合態(tài)磷(Fe/Al-P)、有機(jī)磷(OP)、鈣磷(Ca-P)和殘渣態(tài)磷(Res-P),其中以弱吸附態(tài)磷、鐵/鋁結(jié)合態(tài)磷和有機(jī)磷的總和定義為活性磷[6].連續(xù)提取劑及生物有效磷用鉬藍(lán)比色分光光度法測定.有機(jī)磷采用0.25mol/L NaOH+50mmol/L EDTA進(jìn)行提取,提取液在28℃下旋轉(zhuǎn)蒸發(fā)濃縮10倍后,用液相31P NMR(瑞士Bruker Advance III 400M NMR)分析.有機(jī)質(zhì)含量以沉積物干樣在550℃下灼燒5h的燒失量(Loss on ignition,LOI,%)表示[26],所有分析均做3次重復(fù).
2.1沉積物基本理化性質(zhì)變化
圖1為實驗進(jìn)行40d的覆蓋處理組和對照組的沉積物含水率及有機(jī)質(zhì)含量的垂向分布.由圖1可以看出,覆蓋處理組與對照組的沉積物含水率均具有較顯著的剖面變化.在 0~1cm的深度,覆蓋處理組沉積物含水率要高于對照組,這與凹凸棒黏土材料的粒徑大(0.2~0.5mm),孔隙度較高有關(guān).在1~4cm的深度,覆蓋組的含水率低于對照組,這可能由于材料覆蓋對沉積物有輕微壓實作用,另一方面,沉積物表層覆蓋材料黏度較大,使水與沉積物之間的交換減弱,較長時間阻隔作用使沉積物中的含水率下降.沉積物的燒失重(LOI)表示在105℃下烘干的沉積物樣品在550℃高溫下所分解揮發(fā)有機(jī)物的含量,一般被用來表征沉積物中有機(jī)質(zhì)的含量.在0~2cm的深度范圍,覆蓋處理組有機(jī)質(zhì)含量明顯低于對照組,這可能由于大粒徑凹凸棒黏土覆蓋沉積物表面后,增加了界面處的溶解氧含量[27],使表層沉積物的有機(jī)質(zhì)好氧分解.
圖1 沉積物含水率和燒失量Fig.1 Water content and LOI of the sediment
2.2界面沉積物磷形態(tài)變化
巢湖表層沉積物中活性磷(弱吸附態(tài)磷、鐵/鋁結(jié)合態(tài)磷和有機(jī)磷三者之和)含量很高,占總磷的 45.6%~52.1%.弱吸附態(tài)磷是一種生物可利用態(tài)磷,是沉積物中最具活性、變化范圍較大的一類磷形態(tài);鐵/鋁結(jié)合態(tài)磷對環(huán)境中 pH值及氧化還原電位較為敏感;有機(jī)磷(Org-P)是湖泊沉積物中磷中具有一定活性的磷形態(tài)[28].沉積物活性磷的含量能真正反映沉積物的內(nèi)源釋放潛力大小.覆蓋處理組與未處理組的表層沉積物(0~4cm)磷形態(tài)的垂向變化如圖 2所示,總體上,未作處理的底泥中的活性磷含量隨著底泥深度的增加而降低,鈣磷含量呈先升高后降低的趨勢,在 1.5cm深度達(dá)到最大值,且隨深度的增加,活性磷含量在垂向的分布差異性減小,鈣磷差異性變大.覆蓋處理組的沉積物在 0~2cm深度范圍內(nèi)磷的形態(tài)出現(xiàn)顯著變化,主要表現(xiàn)為活性磷的含量降低,鈣磷的含量增加.從覆蓋處理時間上看,活性磷含量處于動態(tài)變化,覆蓋初期(4d后),0~2cm深度沉積物中的活性磷含量顯著降低,平均含量從308.6mg/kg 降低為241.1mg/kg,覆蓋10d后,活性磷進(jìn)一步降低10.8%,覆蓋后期(40d后),活性磷的含量基本處于穩(wěn)定,與覆蓋10d相比較未出現(xiàn)較大變化.與活性磷相反,鈣磷的含量呈增加的趨勢,覆蓋4d后,鈣磷含量增加20.1%,覆蓋10d后,0~2cm深度沉積物中鈣磷的平均含量從 204.9mg/kg增加為257.3mg/kg,覆蓋40d后的鈣磷含量與覆蓋10d相比變化較小,鈣磷的轉(zhuǎn)化基本處于穩(wěn)定.
圖2 沉積物磷形態(tài)分級Fig.2 Results of phosphorus fraction in sediment
2.3界面沉積物有機(jī)磷形態(tài)變化
沉積物表層(0~2cm)的有機(jī)磷形態(tài)變化如圖3及表1所示,NaOH+EDTA提取液中總磷(TP)含量為 200.87mg/kg,其中以正磷酸鹽含量為主,占總磷的 68.7%;有機(jī)磷提取態(tài)共提取單脂、DNA-P、焦磷酸鹽和多聚磷酸鹽四種,含量分別為 36.33,20.45,5.12,0.85mg/kg.覆蓋組與對照組相比,有機(jī)磷含量降低,其中,多聚磷酸鹽未檢出,DNA-P、焦磷酸鹽和單脂磷,分別減少 47.0%,36.8%,和 31.3%.沉積物有機(jī)磷形態(tài)中的磷酸單脂和 DNA-P的穩(wěn)定性較強(qiáng),焦磷酸鹽穩(wěn)定性較弱,能夠積極參與磷的生物地球化學(xué)循環(huán)[29-30].研究表明,沉積物中有機(jī)磷的穩(wěn)定性除了與本身結(jié)構(gòu)有關(guān)外,還與水-沉積物界面環(huán)境,如氧化還原電位、pH值和溫度等因素有關(guān),沉積物中的有機(jī)質(zhì)礦化分解后,有機(jī)結(jié)合態(tài)磷轉(zhuǎn)變?yōu)榭扇軕B(tài)無機(jī)磷,溶解態(tài)磷一部分與材料中的Fe、Al和Ca等陽離子結(jié)合,發(fā)生沉淀或者被沉淀物顆粒吸附[31].此外,Yin等[32]研究發(fā)現(xiàn),富鈣黏土覆蓋于沉積物表面后會引起界面環(huán)境(DO、Eh和pH值)的改變. 因此,富鈣凹凸棒黏土覆蓋沉積物引起有機(jī)磷含量及形態(tài)的改變,可能由于黏土覆蓋沉積物表層后改變了水-沉積物界面環(huán)境,同時熱處理富鈣凹凸棒具有較高的陽離子交換容量(CEC)、比表面積以及較高的活性鈣含量[6],其中的鈣質(zhì)成分易爭奪磷的吸附位點,使沉積物中的活性有機(jī)磷轉(zhuǎn)化為穩(wěn)定性更高的鈣磷,其轉(zhuǎn)化動力機(jī)制還有待進(jìn)一步驗證.
圖3 表層沉積物有機(jī)磷31P NMR分析結(jié)果Fig.3 The results of 31P NMR analysis of organic phosphorus in sediment
表1 NaOH-EDTA 提取物中各種有機(jī)磷的含量(mg/kg)Table 1 Amounts of the identified P compound groups in NaOH-EDTA extracts from sediment
2.4磷轉(zhuǎn)化機(jī)制
凹凸棒黏土覆蓋表層沉積物后使得沉積物表層的磷形態(tài)發(fā)生了轉(zhuǎn)化,主要體現(xiàn)在活性磷含量減少,鈣磷含量增加.活性磷的降低主要由于凹凸棒黏土具有較強(qiáng)的吸附性和堿性(pH值>9)[33],研究發(fā)現(xiàn)當(dāng)pH值升高時,沉積物體系中的OH-可與無定形Fe-Al膠合體中的磷酸根發(fā)生交換,使與Fe3+結(jié)合的磷酸鹽釋放[34],又迅速的被凹凸棒黏土吸附并固定于礦物晶格中,與此相似,有機(jī)磷礦化分解釋放的磷同樣被凹凸棒黏土固定.對40d后的覆蓋組和對照組的表層沉積物(0~2cm)樣品進(jìn)行掃描電鏡能譜(SEM-EDS)分析,圖(a)和(b)為未處理組,圖(c)和(d)為覆蓋處理組,掃面電鏡圖譜顯示,覆蓋處理組相比對照組,沉積物表層附著許多白色絮狀物質(zhì). EDS能譜分析發(fā)現(xiàn),未處理組的沉積物主要元素組成為Si、Al、Mg和Fe,覆蓋處理組的沉積物中主要元素有Si、Ca、Al、Mg和Fe,覆蓋組相比對照組增加了Ca的含量.熱處理凹凸棒對水體中的磷具有較強(qiáng)的吸附能力,且主要是通過化學(xué)沉淀作用,以鈣磷結(jié)合態(tài)(Ca-P)形式固磷[19].結(jié)合掃描電鏡能譜初步分析表明,磷的轉(zhuǎn)化機(jī)制是由于黏土覆蓋沉積物表層使得凹凸棒中的鈣質(zhì)成分與沉積物中的磷結(jié)合反應(yīng),形成了穩(wěn)定的鈣結(jié)合態(tài)(Ca-P)沉淀.然而,鈣結(jié)合態(tài)磷形成的過程比較復(fù)雜,且以多種形式磷酸鈣形式存在,如磷酸氫鈣(DCPA),磷酸八鈣(OCP),無定形磷酸鈣(ACP)和磷酸鈣(TCP)等[35],因此,覆蓋層黏土與沉積物中的磷以何種沉淀形態(tài)存在有待進(jìn)一步研究.
圖4 界面沉積物掃描電鏡能譜Fig.4 SEM images and EDS analysis of the surface sediment from the control (a,b) and the capped treatment (c,d)
3.1熱處理凹凸棒黏土覆蓋對表層沉積物(0~4cm)的含水率和有機(jī)質(zhì)影響顯著,主要體現(xiàn)為,表層沉積物在0~1cm的深度,覆蓋處理組表層沉積物含水率要高于對照組,在1~4cm的深度,覆蓋處理組的含水率低于對照組,在0~2cm的深度范圍,覆蓋處理組有機(jī)質(zhì)含量明顯低于對照組.
3.2熱處理凹凸棒黏土材料覆蓋到沉積物表面后,使沉積物中磷的形態(tài)發(fā)生變化,活性磷的含量較少,鈣磷含量增加.31P NMR分析發(fā)現(xiàn),黏土覆蓋使有機(jī)磷中的DNA-P、焦磷酸鹽和單脂磷的含量顯著降低.
3.3磷形態(tài)轉(zhuǎn)化機(jī)制是由于熱處理凹凸棒黏土中的較高的活性鈣含量,爭奪磷的吸附位點,材料覆蓋沉積物表層改變了界面環(huán)境,促進(jìn)了表層沉積物的活性磷向穩(wěn)定的鈣結(jié)合態(tài)磷(Ca-P)轉(zhuǎn)化,活性磷向鈣磷轉(zhuǎn)化有效抑制了活性磷的釋放,這對于降低湖泊內(nèi)源磷釋放險具有較好的效果.
[1] S?ndergaard M,Jensen J P,Jeppesen E. Role of sediment and internal loading of phosphorus in shallow lakes [J]. Hydrobiologia,2003,506(1-3):135-145.
[2] Cantwell M G,Burgess R M. Variability of parameters measured during the resuspension of sediments with a particle entrainment simulator [J]. Chemosphere,2004,56(1):51-58.
[3] Huang T L,Xu J L,Cai D J. Efficiency of active barriers attaching biofilm as sediment capping to eliminate the internal nitrogen in Eutrophic lake and canal [J]. Journal of Environmental Sciences,2011,23(5):738-743.
[4] Lin J W,Zhan Y H,Zhu Z L. Evaluation of sediment capping with active barrier systems (Abs) using calcite/zeolite mixtures to simultaneously manage phosphorus and ammonium release [J]. Science of the Total Environment,2011,409(3):638-646.
[5] Wang C H,Qi Y,Pei Y S. Laboratory investigation of phosphorus immobilization in lake sediments using water treatment residuals [J]. Chemical Engineering Journal,2012,209:379-385.
[6] Yin H B,Kong M,F(xiàn)an C X. Batch investigations on P immobilization from wastewaters and sediment using natural calcium rich sepiolite as a reactive material [J]. Water Research,2013,47(13):4247-4258.
[7] Sun S J,Huang S L,Smith P . Experimental investigation of phosphorus release from Haihe river sediments capped by natural zeolites and its modified ones [J]. Springer,2009,3:1096-1101.
[8] Reitzel K,Hansen J,Andersen F ?,et al. Lake restoration by dosing aluminum relative to mobile phosphorus in the sediment [J]. Environmental Science and Technology,2005,39(11):4134-4140.
[9] Smolders A J P,Lamers L P M,Moonen M,et al. Controlling phosphate release from phosphate-enriched sediments by adding various iron compounds [J]. Biogeochemistry,2001,54(2):219-228.
[10] Haghseresht F,Wang S B,Do D D. A novel Lanthanum-modified bentonite,Phoslock,for phosphate removal from wastewaters [J]. Applied Clay Science,2009,46(4):369-375.
[11] Ross G,Haghseresht F,Cloete T E. The effect of pH and anoxia on the performance of Phoslock?,a phosphorus binding clay [J]. Harmful Algae,2008,7(4):545-550.
[12] Spears B M,Meis S,Anderson A,et al. Comparison of phosphorus (P) removal properties of materials proposed for the control of sediment P release in UK lakes [J]. Science of theTotal Environment,2013,442:103-110.
[13] Johansson L,Gustafsson J P. Phosphate removal using blast furnace slags and opoka-mechanisms [J]. Water Research,2000,34(1):259-265.
[14] Wang C H,Gao S J,Pei Y S,et al. Use of drinking water treatment residuals to control the internal phosphorus loading from lake sediments: Laboratory scale investigation [J]. Chemical Engineering Journal,2013,225:93-99.
[15] Babatunde A,Zhao Y Q. Constructive approaches toward water treatment works sludge management: An international review of beneficial reuses [J]. Critical Reviews in Environmental Science and Technology,2007,37(2):129-164.
[16] Gan F Q,Zhou J M,Wang H Y,et al. Removal of phosphate from aqueous solution by thermally treated natural palygorskite [J]. Water Research,2009,43(11):2907-2915.
[17] Chen L F,Liang H W,Lu Y,et al. Synthesis of an attapulgite clay@ carbon nanocomposite adsorbent by a hydrothermal carbonization process and their application in the removal of toxic metal ions from water [J]. Langmuir,2011,27(14):8998-9004.
[18] Xie A,Luo S,Chao Y Y. Preparation of titanium dioxide/ attapulgite composites and their application in treating reactive black KN-B wastewater [J]. Environment Protection Engineering,2014,40(1):
[19] 孔明,尹洪斌,吳雨琛,等.熱處理對天然富鈣黏土礦物除磷能力的影響 [J]. 環(huán)境科學(xué)學(xué)報,2013,33(12):3211-3218.
[20] 陳蕾,鄭西來,劉杰.改性凹凸棒土覆蓋抑制底泥磷釋放的影響和效果 [J]. 環(huán)境科學(xué)學(xué)報,2011,31(9):1962-1967.
[21] 林建偉,朱志良,趙建夫,等.天然沸石和方解石復(fù)合覆蓋技術(shù)抑制底泥磷釋放的影響因素研究 [J]. 環(huán)境科學(xué),2007,28(2):397-402.
[22] Berg U,Neumann T,Donnert D,et al. Sediment capping in eutrophic lakes-Efficiency of undisturbed calcite barriers to immobilize phosphorus [J]. Applied Geochemistry,2004,19(11):1759-1771.
[23] 劉敏,侯立軍.長江河口潮灘表層沉積物對磷酸鹽的吸附特征[J]. 地理學(xué)報,2002,57(4):397-406.
[24] Rydin E. Potentially Mobile Phosphorus in lake erken sediment [J]. Water Research,2000,34(7):2037-2042.
[25] Ruban V,López-Sánchez J F,Pardo P,et al. Selection and evaluation of sequential extraction procedures for the determination of phosphorus forms in lake sediment [J]. Journal of Environmental Monitoring,1999,1(1):51-56.
[26] 張雷,古小治,王兆德,等.水絲蚓(Tubificid Worms)擾動對磷在湖泊沉積物-水界面遷移的影響 [J]. 湖泊科學(xué),2010,22(5):666-674.
[27] Vopel K,Gibbs M,Hickey C W,et al. Modification of sediment-water solute exchange by sediment-capping materials:Effects on O2and pH [J]. Marine and Freshwater Research,2009,59(12):1101-1110.
[28] Jin X D,He Y L,Kirumba G,et al. Phosphorus fractions and phosphate sorption-release characteristics of the sediment in the Yangtze river estuary reservoir [J]. Ecological Engineering,2013,55:62-66.
[29] Turner B L,Mahieu N,Condron L M. Phosphorus-31nuclear magnetic resonance spectral assignments of phosphorus compounds in soil Naoh-Edta extracts [J]. Soil Science Society of America Journal,2003,67(2):497-510.
[30] Hatcher P G,Breger I A,Earl W L. Nuclear magnetic resonance studies of ancient buried wood—I. Observations on the origin of coal to the brown coal stage [J]. Organic Geochemistry,1981,3(1):49-55.
[31] 王緒偉,王心源,封毅,等.巢湖沉積物總磷含量及無機(jī)磷形態(tài)的研究 [J]. 水土保持學(xué)報,2008,(4):56-59.
[32] Yin H B,Kong M. Reduction of sediment internal P-loading from eutrophic lakes using thermally modified calcium-rich attapulgite-based thin-layer cap [J]. Journal of Environmental Management,2015,151:178-185.
[33] Yin H B,Kong M. Simultaneous removal of ammonium and phosphate from eutrophic waters using natural Calcium-rich Attapulgite-based versatile adsorbent [J]. Desalination,2014,351:128-137.
[34] Kim L H,Choi E,Stenstrom M K. Sediment characteristics,phosphorus types and phosphorus release rates between river and lake sediments [J]. Chemosphere,2003,50(1):53-61.
[35] 汪慧貞,王紹貴.以磷酸鈣鹽形式從污水廠回收磷研究 [J]. 中國給水排水,2006,22(9):93-96.
Influence of attapulgite clay capping on phosphorus forms in the sediment.
KONG Ming1,YIN Hong-bin2,CHAO Jian-ying1,ZHANG Yi-min1*(1.Nanjing Institute of Environmental Science,Ministry of Environmental Protection,Nanjing 210042,China;2.State Key Laboratory of Lake Science and Environment,Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences,Nanjing 210008,China).
China Environmental Science,2015,35(7):2192~2199
Influence of sediment capping on phosphorus speciations using 800℃-heated natural calcium-rich attapulgite were researched,sequential chemical extraction and31P nuclear magnetic resonance (31P NMR) were used to analyze the changes of phosphorus speciations during sediment capping period,and mechanism of phosphorus forms transformation were analyzed by Scanning Electron Microscope (SEM-EDS). The results indicated that active phosphorus content was reduced from 308.6mg/kg to 241.1mg/kg,and calcium phosphorus content was increased from 204.9mg/kg to 257.3mg/kg. Results from31P NMR analysis showed that DNA-P,pyrophosphate and single lipid content were decreased by 47.0%,36.8% and 31.3%,respectively. Results of SEM-EDS analysis indicated that the white flocculent deposits on the surface of sediment were mainly calcium phosphate. The above analysis preliminary showed that mechanisms of phosphorus forms transformation were due to the high content of active calcium in the material and the changes of surface sediment environment after sediment capping,which promoted phosphorus speciations transformed from active phosphorus to calcium phosphorus.
attapulgite;capping;sediment;phosphorus speciations
X132
A
1000-6923(2015)07-2192-08
2014-12-10
國家水體污染控制與治理科技重大專項(2012ZX07103-005,2014ZX07101011);江蘇省環(huán)保重點研究課題(2013038)
* 責(zé)任作者,研究員,zym@nies.org
孔明(1987-),男,山東棗莊人,碩士,主要從事湖泊底泥污染控制及湖泊生態(tài)修復(fù)方向.發(fā)表論文6篇.