王依慰++++++李偉彥
[摘要] RelA/P65是核因子κB(NF-κB)的一個(gè)亞單位,其翻譯后修飾能夠精細(xì)地調(diào)控NF-κB的轉(zhuǎn)錄活動(dòng)。沉默信息調(diào)節(jié)因子1(SIRT1)是一種重要的煙酰胺腺嘌呤二核苷酸(NAD+)依賴性去乙?;?,可以去乙?;疪elA/P65。SIRT1直接降低NF-κB亞單位P65/RelA乙酰化水平,抑制NF-κB信號(hào)激活,參與調(diào)節(jié)炎癥、腫瘤、代謝以及免疫應(yīng)答等重要的生命活動(dòng)。同時(shí),NF-κB也可以抑制SIRT1的表達(dá),二者互相拮抗,協(xié)同維持機(jī)體內(nèi)環(huán)境穩(wěn)定。
[關(guān)鍵詞] NF-κB;RelA/P65;SIRT1;去乙酰化;炎癥
[中圖分類號(hào)] R26 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-7210(2015)06(a)-0056-06
Effect of SIRT1 deacetylase for NF-κB function
WANG Yiwei LI Weiyan▲
Department of Anesthesiology, Nanjing General Hospital of Nanjing Military Command, Jiangsu Province, Nanjing 210000, China
[Abstract] RelA/p65 is subunit of NF-κB. It has been shown post-translational modifications of RelA/p65, such as acetylation can tightly control its transcriptional activity. SIRT1, a nicotinamide adenosine dinucleotide-dependent histone deacetylase, inhibits the expression of specific NF-κB dependent genes by deacetylating RelA/p65. A growing amount of evidence indicates SIRT1 influences inflammation, cancer, metabolic health and immune response by directly deacetylating targets like NF-κB p65. There is mounting evidence showing that the NF-κB signaling can also inhibit the function of SIRT1-dependent pathways. Through the antagonistic regulation between SIRT1 and NF-κB signaling, the internal environment maintains homeostasis.
[Key words] NF-κB; RelA/P65; SIRT1; Deacetylation; Inflammation
經(jīng)典的核因子κB(NF-κB)是由P50和RelA/P65形成的P50-P50和P60-P60同源二聚體或P50-P65異源二聚體。在體內(nèi),發(fā)揮主要生理作用的是P50-P65異源二聚體。在多數(shù)情況下,NF-κB在胞漿內(nèi)與其抑制蛋白結(jié)合形成無活性的復(fù)合物。當(dāng)細(xì)胞受到刺激時(shí),NF-κB抑制蛋白與復(fù)合物脫離結(jié)合,NF-κB活化并轉(zhuǎn)位進(jìn)入細(xì)胞核,從而調(diào)控靶基因的轉(zhuǎn)錄激活。研究者發(fā)現(xiàn)NF-κB異二聚體必須經(jīng)過一些翻譯后修飾(post-translational modification,PTM)才可以達(dá)到調(diào)控靶基因轉(zhuǎn)錄的作用[1]??赡嫘缘囊阴;?去乙?;褪荖F-κB一種重要的翻譯后修飾,可以調(diào)控多種生理活動(dòng),包括染色質(zhì)聚集以及基因轉(zhuǎn)錄[2]。NF-κB/P65可以通過組蛋白乙酰轉(zhuǎn)移酶(histone acetyltransferases,HAT)以及組蛋白去乙?;福╤istone deacetylase,HDAC)來精確調(diào)控NF-κB轉(zhuǎn)錄激活[3]。
在芽殖酵母體內(nèi)發(fā)現(xiàn)的沉默信息調(diào)節(jié)因子2(silent informationregulator 2,Sir2)的同源基因統(tǒng)稱為Sir2相關(guān)酶類(Sirtuins)。Sirtuins是一種含有高度保守的去乙?;Y(jié)構(gòu)域并且高度依賴NAD+的酶類[4]。人類Sirtuin家族中公認(rèn)的成員有7個(gè),即SIRT1~SIRT7。研究發(fā)現(xiàn)SIRT1可以與許多轉(zhuǎn)錄調(diào)節(jié)因子,例如P53、NF-κB、叉頭框(forhead box,F(xiàn)OX)蛋白家族O等結(jié)合,參與細(xì)胞應(yīng)激,細(xì)胞分化以及細(xì)胞凋亡的過程[5]。研究表明SIRT1可以通過直接去乙酰化P65/RelA亞基上第310位賴氨酸來抑制NF-κB的基因轉(zhuǎn)錄。
1 NF-κB信號(hào)通路的乙酰化-去乙?;揎?/p>
大部分RelA/P65的乙酰化發(fā)生在細(xì)胞核中。在乙酰化過程中,發(fā)揮主要作用的HATs是p300/CBP[6]。目前發(fā)現(xiàn)RelA/P65有七個(gè)賴氨酸乙?;稽c(diǎn),不同位點(diǎn)的賴氨酸(lysine,Lys)的乙?;瘜?duì)NF-κB有不同的影響[7]。乙?;疞ys221可以增強(qiáng)NF-κB與DNA上κB增強(qiáng)子的親和力。而乙?;疞ys122和Lys123反而會(huì)抑制NF-κB與DNA上κB增強(qiáng)子結(jié)合,促進(jìn)NF-κB與NF-κB抑制物α同分異構(gòu)體(inhibitor of NF-κB,α isoform,IκBα)結(jié)合,抑制NF-κB的轉(zhuǎn)錄激活[8]。乙酰化Lys218則抑制NF-κB與IκBa結(jié)合,從而延長(zhǎng)NF-κB活性時(shí)間。相反,HDAC3的去乙?;饔么龠M(jìn)NF-κB與IκBa結(jié)合,使NF-κB從細(xì)胞核中移位回到細(xì)胞質(zhì)中[9]。研究表明乙酰化Lys310抑制Lys314和Lys315甲基化,使P65/RelA不能被泛素化和降解,從而加強(qiáng)P65/RelA轉(zhuǎn)錄活性[10]。相反用去乙?;窼IRT1去乙?;疞ys310將會(huì)終止NF-κB依賴性基因表達(dá)[11]。這些研究結(jié)果說明對(duì)P65/RelA特定位點(diǎn)的乙?;揎椏梢哉{(diào)節(jié)NF-κB依賴性基因表達(dá),不同位點(diǎn)對(duì)NF-κB轉(zhuǎn)錄活性及基因表達(dá)有不同的影響。endprint
越來越多的證據(jù)證明,P65/RelA的乙?;且环N重要的調(diào)節(jié)機(jī)制,許多不同的輔助因子可以通過乙?;蛘呷ヒ阴;疨65/RelA來調(diào)控NF-κB轉(zhuǎn)錄激活。例如轉(zhuǎn)錄抑制因子死亡域相關(guān)蛋白(death domain-associated protein,Daxx)可以與P65/RelA結(jié)合,干擾P65/RelA乙?;铚﨨F-κB轉(zhuǎn)錄激活[12]。相反,轉(zhuǎn)錄激活物(signal transducers and activators of transcription 3,STAT3)促進(jìn)P300/CBP乙?;疨65/RelA亞基[13],保持NF-κB的活性。
2 SIRT1去乙?;疦F-κB機(jī)制
SIRT1結(jié)構(gòu)保守,其去乙?;附Y(jié)構(gòu)域由250個(gè)氨基酸殘基構(gòu)成。SIRT1脫去組蛋白(主要是組蛋白H3、H4)賴氨酸尾部的乙?;鵞14]。脫去了乙?;哪繕?biāo)蛋白與DNA的靜電吸引力大大增加,促使染色質(zhì)結(jié)構(gòu)趨于緊密,阻止DNA序列與轉(zhuǎn)錄因子和轉(zhuǎn)錄復(fù)合物的結(jié)合,從而抑制基因的轉(zhuǎn)錄[15]。
2004年,Yeung等[16]率先提出,在炎性反應(yīng)中,SIRT1直接去乙?;疦F-κB的P65/RelA亞單位,降低其乙酰化水平,從而抑制下游因子的轉(zhuǎn)錄功能。之后的大多數(shù)研究均表明SIRT1是直接作用于P65/RelA并降低Lys310的乙?;?,抑制其轉(zhuǎn)錄活性,下調(diào)下游基因的表達(dá)[17]。利用Luciferase報(bào)告基因系統(tǒng)檢測(cè)出細(xì)胞內(nèi)SIRT1的過度表達(dá)會(huì)抑制NF-κB的轉(zhuǎn)錄活性,這一實(shí)驗(yàn)結(jié)果驗(yàn)證了Yeung等[18]的觀點(diǎn)。同時(shí)也有實(shí)驗(yàn)證明敲除SIRT1可導(dǎo)致NF-κB過度乙酰化[19]。這都提示SIRT1是催化NF-κB去乙酰化的關(guān)鍵酶。
P65/RelA不同位點(diǎn)的賴氨酸乙?;?,會(huì)對(duì)靶基因產(chǎn)生不同的作用。研究者統(tǒng)一的觀點(diǎn)是乙酰化Lys221、Lys218、Lys310后可促進(jìn)NF-κB的轉(zhuǎn)錄激活。大部分研究者認(rèn)為SIRT1只能去乙?;疞ys310一個(gè)位點(diǎn),而不會(huì)作用于其他賴氨酸位點(diǎn)。但是最近有研究者對(duì)此觀點(diǎn)提出了疑問。研究者在軟骨細(xì)胞中加入SIRT1激活劑白藜蘆醇,接著采用凝膠遷移滯后實(shí)驗(yàn)來檢測(cè)NF-κB與DNA結(jié)合活性,結(jié)果發(fā)現(xiàn)其DNA結(jié)合活性明顯降低,同時(shí)發(fā)現(xiàn)P65/RelA在核內(nèi)的聚集也受到抑制[20]。這說明,SIRT1很可能不僅去乙?;疞ys310位點(diǎn),還可能使Lys221、Lys218位點(diǎn)去乙酰化。
有研究指出,SIRT1去乙酰化P65/RelA亞基的機(jī)制是直接抑制了乙酰轉(zhuǎn)移酶P300/CBP的活性[21]。具體機(jī)制是SIRT1誘導(dǎo)P300蛋白中Lys1020和Lys1024被SUMO化修飾[22]。小泛素相關(guān)修飾物(small ubiquitin-related modifier,SUMO)化修飾是指SUMO共價(jià)結(jié)合于靶蛋白的賴氨酸殘基上。這個(gè)過程類似但又不同于泛素化,而且與泛素介導(dǎo)蛋白質(zhì)的降解不同。SUMO可與多種蛋白質(zhì)結(jié)合發(fā)揮相應(yīng)的功能[23]。當(dāng)P300上的這2個(gè)賴氨酸殘基SUMO化修飾后[24],P300的乙酰轉(zhuǎn)移酶活性被抑制。有趣的是,我們還發(fā)現(xiàn)SIRT1也是SUMO化的底物[25]。SIRT1的Lys734可以發(fā)生SUMO化修飾,導(dǎo)致SIRT1的去乙?;富钚栽黾?倍[26]。這說明SITR1與SUMO化之間有依賴性的相互促進(jìn)作用,其中具體的機(jī)制還有待研究。
3 NF-κB和SIRT1之間的相互拮抗關(guān)系
SIRT1可以通過去乙?;饔靡种芅F-κB信號(hào)激活,那么NF-κB是否也可以抑制SIRT1的功能呢?
有很多證據(jù)證明,NF-κB信號(hào)可以抑制SIRT1通路的作用[27]。微小RNA-34a(miR-34a)可以與SIRT1的3端不翻譯區(qū)結(jié)合,抑制SIRT1的表達(dá)[28]。最近證明NF-κB復(fù)合物可以與miR-34a啟動(dòng)子區(qū)域結(jié)合,促進(jìn)miR-34a的表達(dá)[29]。其他研究也證實(shí)了NF-κB信號(hào)可以促進(jìn)miR-34a的表達(dá)[30]。那么NF-κB很有可能通過誘導(dǎo)miR-34a來抑制SIRT1通路。
胞內(nèi)活性氧簇(ROS)可以激活NF-κB信號(hào)[31]。特別在病理情況下,ROS可以與氧化應(yīng)激協(xié)同,激活NF-κB[32]。而NF-κB信號(hào)反過來也可以促進(jìn)氧化應(yīng)激和炎性反應(yīng)進(jìn)程[33]。研究發(fā)現(xiàn)ROS可以氧化SIRT1的半胱氨酸殘基[34],使其降解,從而抑制SIRT1激活[35]。所以NF-κB信號(hào)系統(tǒng)誘導(dǎo)的氧化應(yīng)激和炎性反應(yīng)能夠協(xié)同下調(diào)SIRT1的表達(dá)和活性[36]。又有研究發(fā)現(xiàn)NF-κB信號(hào)系統(tǒng)誘導(dǎo)的氧化應(yīng)激同時(shí)還可降低細(xì)胞內(nèi)NAD+的水平[37]。而NAD+正是SIRT1作用的關(guān)鍵底物,由此NF-κB就可以抑制SIRT1介導(dǎo)的信號(hào)傳導(dǎo)[38]??紤]到NF-κB和SIRT1信號(hào)系統(tǒng)有互相拮抗的特點(diǎn),所以推測(cè)它們可以協(xié)同控制生理代謝以及炎癥反應(yīng),從而維持內(nèi)環(huán)境穩(wěn)定。
4 SIRT1去乙?;疦F-κB的生理意義
SIRT1直接去乙酰化P65/RelA,抑制NF-κB信號(hào)激活,調(diào)節(jié)炎性反應(yīng)、能量代謝、神經(jīng)損傷、腫瘤發(fā)生等生理病理過程。
4.1 SIRT1去乙?;疦F-κB與炎性反應(yīng)
SIRT1在體內(nèi)體外都有抗炎作用[39]。過度表達(dá)SIRT1或者用激活劑激活SIRT1可以抑制炎性反應(yīng),而SIRT1的缺失可以加強(qiáng)炎性反應(yīng)[40]。在炎癥過程中,炎癥刺激可通過絲裂原活化蛋白激酶(MAPK)信號(hào)通路磷酸化P300,并激活其組蛋白乙酰轉(zhuǎn)移酶活性,催化NF-κB乙?;?,增加NF-κB與κB序列的結(jié)合能力,啟動(dòng)NF-κB介導(dǎo)的促炎基因的轉(zhuǎn)錄[41]。而SIRT1則參與催化NF-κB的去乙?;?,限制NF-κB的過度激活,從而減輕炎性反應(yīng)。轉(zhuǎn)基因動(dòng)物實(shí)驗(yàn)與細(xì)胞培養(yǎng)實(shí)驗(yàn)的結(jié)果相一致。在剔除SIRT1的小鼠RAW264.7巨噬細(xì)胞中,脂多糖(lipopolysaccharide,LPS)誘導(dǎo) NF-κB激活及多種促炎細(xì)胞因子的表達(dá)均顯著增高[42]。骨髓敲除SIRT1的大鼠對(duì)局部或者系統(tǒng)性的內(nèi)毒素均高度敏感[43]。減少SIRT1的表達(dá)會(huì)導(dǎo)致脂肪組織中炎癥的產(chǎn)生和巨噬細(xì)胞的堆積。研究還發(fā)現(xiàn)脂肪組織中敲除SIRT1后,會(huì)刺激NF-κB活化以及高度乙?;M蛋白中的H3K9,進(jìn)而促進(jìn)炎癥基因的活化[44]。在患有COPD的患者的肺臟細(xì)胞內(nèi)SIRT1蛋白含量明顯降低,同時(shí)伴有NF-κB蛋白乙?;皆龈?,而依賴NF-κB的促炎細(xì)胞因子也相應(yīng)增加[45]。用SIRT1抑制劑Sirtinol處理后,增強(qiáng)了促炎因子釋放。用SIRT1激活劑白藜蘆醇處理后,促炎因子釋放減少[46]。SIRT1的小分子激活劑STACs可以促進(jìn)細(xì)胞內(nèi)P65/RelA的去乙?;?,抑制腫瘤壞死因子-α(TNF-α)介導(dǎo)的NF-κB轉(zhuǎn)錄激活并且減少內(nèi)毒素刺激下TNF-α的分泌。在內(nèi)毒素誘導(dǎo)的急性炎癥模型中,STAC SRTCX1003減少炎癥前因子TNF-α和白介素-12(IL-12)的產(chǎn)生[47]。因此,我們得出結(jié)論:SIRT1對(duì)NF-κB的去乙?;揎椏梢詼p少下游炎性因子基因的表達(dá),從而減輕炎性反應(yīng)。endprint
4.2 SIRT1去乙酰化NF-κB與能量代謝
在胰腺、脂肪組織和肝臟中,SIRT1是一種重要的炎癥調(diào)節(jié)因子[48]。SIRT1可以促進(jìn)胰島素分泌和胰腺β細(xì)胞生存,降低脂肪儲(chǔ)存,促進(jìn)脂肪動(dòng)員,誘導(dǎo)肝組織中的糖異生[49]。適度過量表達(dá)SIRT1可以保護(hù)大鼠免受高脂肪飲食所導(dǎo)致的肝臟脂肪變性,這種保護(hù)的機(jī)制是下調(diào)NF-κB活性和減輕炎性反應(yīng)[50]。研究發(fā)現(xiàn)給予大鼠白藜蘆醇,上調(diào)SIRT1表達(dá)水平,可避免大鼠由于過量飲食而患上肥胖癥和葡萄糖不耐受,并能夠動(dòng)態(tài)調(diào)節(jié)能量和代謝的平衡[51]。許多代謝性疾病,例如肥胖癥、2型糖尿病以及心血管疾病都包含NF-κB的活化以及慢性炎癥過程[52]。既然SIRT1是NF-κB信號(hào)系統(tǒng)有效的抑制劑,那么SIRT1調(diào)節(jié)代謝的主要機(jī)制是否包括NF-κB的去乙?;揎??這一點(diǎn)值得我們進(jìn)一步研究。
4.3 SIRT1去乙酰化NF-κB與神經(jīng)損傷恢復(fù)
小膠質(zhì)細(xì)胞中NF-κB信號(hào)系統(tǒng)參與了淀粉β樣蛋白介導(dǎo)的神經(jīng)元死亡[53],這種神經(jīng)元死亡正是阿爾茨海默病的主要發(fā)病機(jī)制。用淀粉β樣蛋白刺激小膠質(zhì)細(xì)胞可以增強(qiáng)P65/RelA亞基的310位賴氨酸乙?;?。而過度表達(dá)SIRT1或者用白藜蘆素活化SIRT1都可以顯著拮抗了這種乙?;饔肹54],發(fā)揮了明顯的神經(jīng)保護(hù)作用[55]。這些結(jié)果說明SIRT1在阿爾茨海默病治療中有強(qiáng)大的潛能。研究還發(fā)現(xiàn)這種神經(jīng)保護(hù)作用還體現(xiàn)在脊髓損傷后,SIRT1可以通過去乙?;饔糜赗elA/P65,介導(dǎo)抗炎,抗凋亡,減少創(chuàng)傷后神經(jīng)系統(tǒng)的炎性反應(yīng)[56]。
4.4 SIRT1去乙?;疦F-κB 與腫瘤發(fā)生
長(zhǎng)久以來,學(xué)者們認(rèn)為SIRT1是一種腫瘤促進(jìn)因子[57-58]。但是隨著研究的深入,人們發(fā)現(xiàn)在很多情況下,SIRT1并非都是促進(jìn)腫瘤的發(fā)生發(fā)展,有時(shí)候甚至?xí)鸬揭种菩宰饔肹59]。
研究表明,炎癥和癌癥的發(fā)生共享某些相同的促炎反應(yīng)因子,例如NF-κB[60]。NF-κB在這些炎癥誘導(dǎo)的癌癥發(fā)展過程中起到重要的誘導(dǎo)作用。在慢性肝炎模型中,TNF-α刺激體內(nèi)分泌并活化NF-κB/P65,誘導(dǎo)大鼠產(chǎn)生肝細(xì)胞性肝癌。利用基因特異性shRNA敲除乳腺癌細(xì)胞內(nèi)的IKKε,抑制NF-κB活性,則可以抑制癌細(xì)胞的增殖[61]。由于SIRT1通過去乙?;疨65/RelA亞基抑制NF-κB激活,我們可以推測(cè)SIRT1對(duì)癌癥是否也有一定的抑制作用。實(shí)驗(yàn)表明腫瘤抑制物menin蛋白就是通過招募SIRT1,進(jìn)而抑制NF-κB轉(zhuǎn)錄激活來治療肝細(xì)胞性肝癌[62]。
SIRT1在腫瘤發(fā)生中究竟起到的是促進(jìn)作用還是抑制作用?SIRT1去乙?;疦F-κB的作用與腫瘤到底是什么關(guān)系?具體的機(jī)制還需要深入研究。
5 總結(jié)
越來越多的證據(jù)表明,SIRT1去乙?;荖F-κB的一種重要的翻譯后修飾方式,使機(jī)體更加精確調(diào)節(jié)NF-κB的轉(zhuǎn)錄激活,有助于加強(qiáng)NF-κB對(duì)靶基因的特異性調(diào)控。SIRT1與NF-κB之間也不是孤立的單向關(guān)系,SIRT1對(duì)NF-κB的修飾作用可能會(huì)導(dǎo)致自身翻譯后修飾。SIRT1去乙酰化NF-κB的生理功能比較復(fù)雜,參與炎癥、氧化應(yīng)激、神經(jīng)保護(hù)、能量代謝等過程。目前對(duì)其功能雖有一定的了解,但仍然有很多問題尚未得到解決。例如SIRT1到底去乙?;疪elA/P65那些位點(diǎn)并受何種因素調(diào)節(jié)?當(dāng)機(jī)體受到不同的刺激時(shí),SIRT1對(duì)NF-κB轉(zhuǎn)錄調(diào)節(jié)究竟是怎樣達(dá)到平衡的。因此我們需要更加深入的研究,了解這種修飾方式對(duì)于機(jī)體的保護(hù)意義,為開發(fā)以此為靶點(diǎn)的抗炎、抗癌等藥物提供更準(zhǔn)確的理論基礎(chǔ)和新的線索。
[參考文獻(xiàn)]
[1] 李毅斌,蔡軍偉,劉靖華.RelA/P65/RelA 的翻譯后修飾及其對(duì)NF-κB 轉(zhuǎn)錄活性的影響[J].中國(guó)生物化學(xué)與分子生物學(xué)報(bào),2012,28(11):977-983.
[2] Kauppinen TM,Gan L,Swanson RA. Poly(ADP-ribose)polymerase-1-induced NAD+ depletion promotes nuclear factor-κB transcriptional activity by preventing p65 de-acetylation [J]. Biochim Biophys Acta,2013,1833(8):1985-1991.
[3] Ghizzoni M,Haisma H J,Maarsingh H,et al. Histone acetyltransferases are crucial regulators in NF-κB mediated inflammation [J]. Drug Discov Today,2011,16(11):504-511.
[4] 時(shí)小燕,杜麗敏.Sirtuin 家族成員及其生物學(xué)特性[J].國(guó)際藥學(xué)研究雜志,2011,38(5):349-355.
[5] Ayissi VB,Ebrahimi A,Schluesenner H. Epigenetic effects of natural polyphenols:a focus on SIRT1-mediated mechanisms [J]. Mol Nutr Food Res,2014,58(1):22-32.
[6] Li H,Wittwer T,Weber A,et al. Regulation of NF-κB activity by competition between RelA acetylation and ubiquitination [J]. Oncogene,2011,31(5):611-623.
[7] 王玲,單保恩,劉麗宏.核轉(zhuǎn)錄因子 NF-κB/RelA的磷酸化,乙?;图谆揎椗c活性調(diào)控[J].生命的化學(xué),2012,32(4):5.endprint
[8] Liu X,Wang L,Zhao K,et al. The structural basis of protein acetylation by the p300/CBP transcriptional coactivator [J]. Nature,2008,451(7180):846-850.
[9] Campbell KJ,Perkins ND. Post-translational modification of RelA(p65)NF-kappa B [J]. Biochem Soc Trans,2004,32(6):1087-1089.
[10] Yang XD,Tajkhorshid E,Chen LF. Functional interplay between acetylation and methylation of the RelA subunit of NF-κB [J]. Mol Cell Biol,2010,30(9):2170-2180.
[11] Chen L,Mu Y,Greene WC. Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-κB [J]. EMBO J,2002,21(23):6539-6548.
[12] Netsawang J,Panaampon J,Khunchai S,et al. Dengue virus disrupts Daxx and NF-κB interaction to induce CD137-mediated apoptosis [J]. Biochem Biophys Res Commun,2014,450(4):1485-1491.
[13] Jain S,Wei J,Mitrani LR,et al. Auto-acetylation stabilizes p300 in cardiac myocytes during acute oxidative stress,promoting STAT3 accumulation and cell survival [J]. Breast Cancer Res Treat,2012,135(1):103-114.
[14] Alamdari N,Aversa Z,Castillero E,et al. Acetylation and deacetylation-novel factors in muscle wasting [J]. Metabolism,2013,62(1):1-11.
[15] 張霞,巨紅妹,李雅杰.沉默信息調(diào)節(jié)因子2與基因轉(zhuǎn)錄調(diào)控[J].中國(guó)寄生蟲學(xué)與寄生蟲病雜志,2012,29(6):465-468.
[16] Yeung F,Hoberg JE,Ramsey CS,et al. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase [J]. EMBO J,2004,23(12):2369-2380.
[17] 杜月光,柴可夫,錢俊文,等.SIRT1通過降低NF-κB p65乙?;瘻p輕高糖應(yīng)激引起的大鼠腎小球系膜細(xì)胞損傷[J].中國(guó)病理生理雜志,2014,30(4):18.
[18] Lee SI,Min KS,Bae WJ,et al. Role of SIRT1 in heat stress-and lipopolysaccharide-induced immune and defense gene expression in human dental pulp cells [J]. J Endod,2011,37(11):1525-1530.
[19] Yu J,Auwerx J. Protein deacetylation by SIRT1:an emerging key post-translational modification in metabolic regulation [J]. Pharm Res,2010,62(1):35-41.
[20] Lei M,Wang J,Xiao D,et al. Resveratrol inhibits interleukin 1β-mediated inducible nitric oxide synthase expression in articular chondrocytes by activating SIRT1 and thereby suppressing nuclear factor-κB activity [J]. Eur J Pharmacol,2012,674(2-3):73-79.
[21] 曲柳,仇麗鴻.SIRT1抑制炎癥反應(yīng)的研究進(jìn)展[J].中國(guó)實(shí)用口腔科雜志,2013,6(9):26.
[22] 楊文嘉,王冬來,朱衛(wèi)國(guó).去乙?;?SIRT1 的表達(dá)及活性調(diào)控機(jī)制[J].遺傳,2010,32(10):1003-1008.
[23] Droescher M,Chaugule VK,Pichler A. SUMO rules:regulatory concepts and their implication in neurologic functions [J]. Neur Med,2013,15(4):639-660.
[24] Girdwood D,Bumpass D,Vaughan OA,et al. P300 transcriptional repression is mediated by SUMO modification [J]. Mol Cell,2003,11(4):1043-1054.endprint
[25] Sun L,Li H,Chen J,et al. A SUMOylation-dependent pathway regulates SIRT1 transcription and lung cancer metastasis [J]. J Natl Cancer Inst,2013,105(12):887-898.
[26] Yang Y,F(xiàn)u W,Chen J,et al. SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress [J]. Nature cell biology,2007,9(11):1253-1262.
[27] Kauppinen A,Suuronen T,Ojala J,et al. Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders [J]. Cellular Signalling,2013,25(10):1939-1948.
[28] Yamakuchi M,F(xiàn)erlito M,Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis [J]. Proc Natl Acad Sci USA,2008,105(36):13421-13426.
[29] Li J,Wang K,Chen X,et al. Transcriptional activation of microRNA-34a by NF-kappa B in human esophageal cancer cells [J]. BMC Mol Biol,2012,13(1):4.
[30] Zhang HS,Chen XY,Wu TC,et al. MiR-34a is involved in Tat-induced HIV-1 long terminal repeat(LTR)transactivation through the SIRT1/NFκB pathway [J]. FEBS Letters,2012,586(23):4203-4207.
[31] Lambeth JD. Nox enzymes,ROS,and chronic disease:an example of antagonistic pleiotropy [J]. Free Radic Biol Med,2007,43(3):332-347.
[32] Anrather J,Racchumi G,Iadecola C. NF-κB regulates phagocytic NADPH oxidase by inducing the expression of gp91phox [J]. J Biol Chem,2006,281(9):5657-5667.
[33] Manea A,Manea SA,Gafencu AV,et al. Regulation of NADPH oxidase subunit p22(phox)by NF-κB in human aortic smooth muscle cells [J]. Arch Physiol Biochem,2007,113(4-5):163-172.
[34] Salminen A,Kaarniranta K,Kauppinen A. Crosstalk between oxidative stress and SIRT1:impact on the aging process [J]. Int J Mol Sci,2013,14(2):3834-3859.
[35] Di Emidio G,F(xiàn)alone S,Vitti M,et al. SIRT1 signalling protects mouse oocytes against oxidative stress and is deregulated during aging [J]. Human Reproduction,2014, 29(9):2006-2017.
[36] Caito S,Rajendrasozhan S,Cook S,et al. SIRT1 is a redox-sensitive deacetylase that is post-translationally modified by oxidants and carbonyl stress [J]. FASEB J,2010,24(9):3145-3159.
[37] Castri P,Lee Y,Ponzio T,et al. Poly(ADP-ribose)polymerase-1 and its cleavage products differentially modulate cellular protection through NF-κB-dependent signaling [J]. Biochim Biophys Acta,2014,1843(3):640-651.
[38] Katto J,Engel N,Abbas W,et al. Transcription factor NFkappaB regulates the expression of the histone deacetylase SIRT1 [J]. Clin Epigenetics,2013,5(1):11.endprint
[39] Xie J,Zhang X,Zhang L. Negative regulation of inflammation by SIRT1 [J]. Pharmacol Res,2013,67(1):60-67.
[40] Yoshizaki T,Schenk S,Imamura T,et al. SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity [J]. Am J Physiol Endocrinol Metab,2010,298(3):E419-E428.
[41] 張曉明,林玲,艾青,等.Sirtuin 1:抗炎治療新靶點(diǎn)[J].生命的化學(xué),2014,34(2):24.
[42] Yoshizaki T,Milne JC,Imamura T,et al. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes [J]. Mol Cell Biol,2009,29(5):1363-1374.
[43] Schug TT,Xu Q,Gao H,et al. Myeloid deletion of SIRT1 induces inflammatory signaling in response to environmental stress [J]. Mol Cell Biol,2010,30(19):4712-4721.
[44] Gillum MP,Kotas ME,Erion DM,et al. SIRT1 regulates adipose tissue inflammation [J]. Diabetes,2011,60(12):3235-3245.
[45] Rajendrasozhan S,Yang SR,Kinnula VL,et al. SIRT1,an antiinflammatory and antiaging protein,is decreased in lungs of patients with chronic obstructive pulmonary disease [J]. Am J Respir Criti Care Med,2008,177(8):861-870.
[46] Liu TF,Yoza BK,El Gazzar M,et al. NAD+-dependent SIRT1 deacetylase participates in epigenetic reprogramming during endotoxin tolerance [J]. J Biol Chem,2011, 286(11):9856-9864.
[47] Yang H,Zhang W,Pan H,et al. SIRT1 activators suppress inflammatory responses through promotion of p65 deacetylation and inhibition of NF-κB activity [J]. PloS one,2012, 7(9):e46364.
[48] Chang HC,Guarente L. SIRT1 and other sirtuins in meta-bolism [J]. Trends Endocrinol Metab,2014,25(3):138-145.
[49] Moynihan KA,Grimm AA,Plueger MM,et al. Increased dosage of mammalian Sir2 in pancreatic β cells enhances glucose-stimulated insulin secretion in mice [J]. Cell Metabolism,2005,2(2):105-117.
[50] Colak Y,Yesil A,Mutlu HH,et al. A potential treatment of non-alcoholic fatty liver disease with SIRT1 activators [J]. J Gastrointestin Liver Dis,2014,23(3):311-319.
[51] Lagouge M,Argmann C,Gerhart-Hines Z,et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α [J]. Cell,2006,127(6):1109-1122.
[52] 代潔,張曉明,林玲,等.能量敏感的 AMPK—SIRT1 通路與炎癥調(diào)控[J].生命科學(xué),2014,26(4):362-368.
[53] Chen J,Zhou Y,Mueller-Steiner S,et al. SIRT1 protects against microglia-dependent amyloid-β toxicity through inhibiting NF-κB signaling [J]. J Biol Chem,2005,280(48):40364-40374.
[54] Cao L,Liu C,Wang F,et al. SIRT1 negatively regulates amyloid-beta-induced inflammation via the NF-κB pathway [J]. Braz J Med Biol Res,2013,46(8):659-669.endprint
[55] 司沛沛,張策,楊小榮.沉默信息調(diào)節(jié)因子1在神經(jīng)退行性疾病中的作用[J].生理科學(xué)進(jìn)展,2013,44(2):125-128.
[56] Kang J,Jiang MH,Min HJ,et al. IKK-β-mediated myeloid cell activation exacerbates inflammation and inhibits recovery after spinal cord injury [J]. Eur J Immunol,2011,41(5):1266-1277.
[57] Lovaas JD,Zhu L,Chiao CY,et al. SIRT1 enhances matrix metalloproteinase-2 expression and tumor cell invasion in prostate cancer cells [J]. Prostate,2013,73(5):522-530.
[58] Yuan H,Su L,Chen WY. The emerging and diverse roles of sirtuins in cancer:a clinical perspective [J]. Onco Targets Ther,2013,(6):1399-1416.
[59] Knight JR,Milner J. SIRT1,metabolism and cancer [J]. Curr Opin Oncol,2012,24(1):68-75.
[60] Pikarsky E,Porat RM,Stein I,et al. NF-κB functions as a tumour promoter in inflammation-associated cancer [J]. Nature,2004,431(7007):461-466.
[61] Qin B,Cheng K. Silencing of the IKKepsilon gene by siRNA inhibits invasiveness and growth of breast cancer cells [J]. Breast Cancer Res,2010,12(5):R74.
[62] Gang D,Hongwei H,Hedai L,et al. The tumor suppressor protein menin inhibits NF-κB-mediated transactivation through recruitment of Sirt1 in hepatocellular carcinoma [J]. Mol Biol Rep,2013,40(3):2461-2466.
(收稿日期:2015-01-28 本文編輯:張瑜杰)endprint