徐鑒城++++++段永娟++++++孫儀++++++楊洋++++++胡曉
[摘要] 目的 優(yōu)化利用單細胞聚團擬胚體(Spin-EB)培養(yǎng)誘導(dǎo)人多能干細胞造血分化的方式。 方法 采用AggreWellTM 800及V-96孔板兩種培養(yǎng)板形成Spin-EB,在骨形成蛋白-4(BMP-4)、血管內(nèi)皮生長因子(VEGF)及堿性成纖維生長因子(bFGF)組合培養(yǎng)基中誘導(dǎo)造血分化,通過流式細胞術(shù)檢測不同分化條件下CD34+細胞的比例;選取CD34+細胞比例高的擬胚體(EB)形成方式,并通過造血集落形成實驗及紅細胞分化培養(yǎng)實驗,驗證EB來源的CD34+細胞的造血集落形成和紅系分化能力。 結(jié)果 流式分析結(jié)果顯示,在AggreWellTM800培養(yǎng)板中培養(yǎng)所得的EB,其CD34+造血干祖細胞比例為22.6%,V-96孔板按照形成EB的細胞數(shù)目,CD34+造血干祖細胞比例分別為:3000個細胞/孔為10.8%、6000個細胞/孔為1.28%、9000個細胞/孔為1.23%。胚胎干細胞(ESC)來源的CD34+細胞形成的集落與臍帶血CD34+造血干祖細胞形成的集落形態(tài)相似,并且在紅系分化培養(yǎng)體系中分化為CD71+ CD235a+的紅細胞。 結(jié)論 V-96孔板組EB形成和CD34+分化效率與用于EB形成的細胞數(shù)有相關(guān)性,3000個細胞/孔條件相對最優(yōu)。采用AggreWellTM800培養(yǎng)板形成EB及EB的造血分化效率均高于各組V-96孔板分化效率。
[關(guān)鍵詞] 胚胎干細胞;擬胚體;造血分化
[中圖分類號] R329 [文獻標識碼] A [文章編號] 1673-7210(2015)06(a)-0009-05
Techniques optimizations of Spin-embroid body approach for hematopoietic differentiation of human pluripotent stem cell
XU Jiancheng DUAN Yongjuan SUN Yi YANG Yang HU Xiao
State Key Laboratory of Experimental Hematology, Institute of Hematology Blood Diseases Hospital of Chinese Academy of Medical Sciences, Tianjin 300020, China
[Abstract] Objective To optimize hematopoietic differentiation of human pluripotent stem cells via spin-embryoid body (Spin-EB). Methods AggreWellTM800 and V-96 well culture plate were used to form Spin-EB, which was successively induced to hematopoietic differentiation in culture medium contained BMP-4, VEGF and bFGF. Flow cytometry was used to analyze the proportion of CD34+ hematopoietic stem/progenitor cells under the two different culture conditions. The higher test was seleted to verify its colony forming ability and erythroid differentiation ability via colony forming unit assay and erythroid differentiation culture system. Results The flow cytometry results showed that the proportion of CD34+ hematopoieic stem/progenitor cells from AggreWellTM800 test was 22.6%, while the V-96 well test divided into three tests according to the number of ESC, the corresponding proportion were: 3000 cells/well was 10.8%, 6000 cells/well was 1.28%, 9000 cells/well was 1.23%. The morphology of the colony forming unit from CD34+ cells originated from embryonic stem cell (ESC) was as similar as the umbilical cord blood CD34+ cells. Simultaneously, CD34+ cells originated from ESC could differentiate into CD71+CD235a+ erythrocytes in erythroid differentiati-on culture system. Conclusion The forming ability of EB and the hematopoietic differentiation efficiency of CD34+ cells is related to the number of ESC seeded in V-96 well culture plate, among which the 3000 cells/well test is relatively prestigeous. Furthermore, compared with the three tests of V-96 well, EB from AggreWellTM800 test has a better EB forming ability and higher hematopoietic differentiation efficiency of CD34+ cells.
[Key words] Embryonic stem cells; Spin-EB; Hematopoietic differentiation
造血干細胞移植是治療許多血液系統(tǒng)疾病的最有效的方法,但由于造血干細胞來源有限,在臨床治療應(yīng)用中受到了極大的限制[1-3]。利用多能干細胞體外誘導(dǎo)造血分化獲得造血干細胞是解決這一難題的方法之一[4-5]。胚胎干細胞(ESC)是指從早期未分化的胚胎內(nèi)細胞團中獲得的一類多能干細胞。在體外培養(yǎng)過程中,具有無限增殖、自我更新和多向分化等特性。在體外能夠分化為除胎盤以外的幾乎全部成體組織細胞類型[6-8],因而成為研究從多能干細胞獲得包括造血干細胞在內(nèi)的組織細胞的重要工具[9-10]。
在誘導(dǎo)多能干細胞分化的多種技術(shù)之中,利用擬胚體形成(embryoid body,EB)是一類重要的方法[11-12]。與傳統(tǒng)的基質(zhì)細胞共培養(yǎng)誘導(dǎo)分化相比[13-14],EB形成誘導(dǎo)分化具有多種優(yōu)勢。包括易于擴大培養(yǎng)規(guī)模,可明確培養(yǎng)基成分易于培養(yǎng)的標準化,采用單細胞離心聚團形成的EB[單細胞聚團擬胚體(Spin-EB)]還具有可控細胞數(shù)目并進行外源基因?qū)氲炔僮鞯膬?yōu)勢,逐漸成為這一方法的技術(shù)主導(dǎo)。在實際應(yīng)用中,這一技術(shù)受多種因素的影響,包括EB形成的培養(yǎng)介質(zhì),細胞因子組合及EB形成細胞數(shù)量及分化時間等。因此,本研究旨在比較商業(yè)化的AggreWellTM800培養(yǎng)板及普通V-96孔培養(yǎng)皿,以及不同的細胞數(shù)量對于多能干細胞形成的EB效率及進一步造血分化效率的影響,優(yōu)化多能干細胞造血分化條件,為實現(xiàn)規(guī)?;瘶藴驶@得優(yōu)質(zhì)的造血干祖細胞提供技術(shù)基礎(chǔ)。
1 材料與方法
1.1 試劑與儀器
H1ES和IPS細胞系由中科院廣州生命健康研究所潘光錦實驗室惠贈。mTeSR1培養(yǎng)基、Dispase消化液、Accutase消化液、AggreWellTM800培養(yǎng)板、H4435、H4436(Stem Cell公司),StemlineⅡ培養(yǎng)基(Sigma公司),雙抗(Gibco公司),ROCK抑制劑(Y27632)(R&D公司),骨形成蛋白-4(BMP4)、血管內(nèi)皮生長因子(VEGF)和堿性成纖維生長因子(bFGF)(Peprotech公司),流式抗體鼠抗人CD34-APC、鼠抗人CD71-PE、鼠抗人CD235a-APC(eBiosciences公司),V-96孔板和低吸附24孔板(康寧公司)。倒置顯微鏡(Nikon TS100)(日本尼康公司),流式細胞分析所用的儀器為CantoⅡ(美國BD公司),臺式離心機(centrifuge5810R)(Eppendorf公司)。
1.2 AggreWellTM800中擬胚體的形成
將P60至81代用mTeSR1無基質(zhì)細胞培養(yǎng)的H1ESC集落用Accutase消化液消化為單細胞,計數(shù),按每個AggreWellTM800培養(yǎng)板孔中加入1×106個細胞,加入EB形成培養(yǎng)基,EB形成培養(yǎng)基為加入50 ng/mL的BMP4、VEGF和Y27632的StemlineⅡ。按產(chǎn)品使用操作手冊,將AggreWellTM800培養(yǎng)板低速離心700 r/min,5 min,放入20%CO2,5%O2低氧培養(yǎng)箱中培養(yǎng)。48 h后將形成的EB轉(zhuǎn)移至低吸附24孔板中進行形態(tài)觀察,EB計數(shù)和誘導(dǎo)造血分化。
1.3 V-96孔板中擬胚體的形成
ESC的培養(yǎng)及細胞處理同上。細胞計數(shù)后,重懸于EB形成培養(yǎng)基,分三組在V-96孔板中加入細胞。第1組每個孔中加入3000個細胞,第2組每個孔中加入6000個細胞,第3組每個孔加入9000個細胞,低速離心700 r/min,5 min,放入20%CO2,5%O2低氧培養(yǎng)箱中培養(yǎng)。48 h后將形成的EB轉(zhuǎn)移至低吸附24孔板中進行形態(tài)觀察,EB計數(shù)和誘導(dǎo)造血分化。
1.4 Spin-EB的造血分化誘導(dǎo)
將兩種培養(yǎng)介質(zhì)形成的Spin-EB重懸于造血分化培養(yǎng)基,加入低吸附24孔板中。造血分化培養(yǎng)基為加入50 ng/mL的BMP4和VEGF,20 ng/mL的bFGF的StemlineⅡ。放入20%CO2,5%O2低氧培養(yǎng)箱中培養(yǎng)。連續(xù)培養(yǎng)5 d,并于第3天補充新鮮造血分化培養(yǎng)基。
1.5 造血分化Spin-EB CD34+檢測
將上述條件形成的Spin-EB經(jīng)造血分化培養(yǎng)后收集,加入胰蛋白酶消化為單細胞。將適量單個細胞懸浮溶于100 μL PBS中,加入鼠抗人單克隆抗體:anti-CD34-APC。室溫避光孵育15 min,2 mL PBS洗1次,400 μL PBS重懸細胞,BD CantoⅡ流式細胞儀檢測CD34+細胞的比例,用FlowJo 7.6軟件分析流式檢測結(jié)果。
1.6 集落形成實驗
將造血分化誘導(dǎo)后的EB消化為單個細胞,計數(shù)2×104~5×104個接種于H4435培養(yǎng)基中,培養(yǎng)14 d,觀察造血集落形態(tài)。
1.7 紅系分化實驗
將造血分化誘導(dǎo)后的EB消化為單個細胞,取3×105個細胞進行紅系誘導(dǎo)分化。具體培養(yǎng)方法參見文獻[15-17]。
2 結(jié)果
2.1 兩種培養(yǎng)方式下形成的Spin-EB數(shù)量與形態(tài)比較
將在AggreWellTM800及V-96孔板上形成的EB分別收集后計數(shù)并在光學(xué)顯微鏡下進行形態(tài)觀察。AggreWellTM800培養(yǎng)板每一培養(yǎng)孔中有300個EB形成小室,形成的EB效率>90%,且形成的EB大小均勻,形態(tài)較為均一(圖1A)。在V-96孔板中按照每孔加入3000、6000、9000個細胞(V-3000、V-6000、V-9000),EB大小受加入的細胞數(shù)影響,且大小和形態(tài)上不均勻,EB形成效率分別為63%,31%和89%(圖1B~E)。
2.2 Spin-EB誘導(dǎo)造血分化后CD34+細胞的比例
將上述兩種培養(yǎng)介質(zhì)中形成的Spin-EB轉(zhuǎn)入低吸附24孔板,并加入誘導(dǎo)造血分化的細胞因子組合,誘導(dǎo)分化培養(yǎng)5 d后,光學(xué)顯微鏡下觀察分化EB的形態(tài)特征并收集EB消化為單細胞后流式分析CD34+細胞比例。結(jié)果顯示,AggreWellTM800培養(yǎng)板中形成的Spin-EB中誘導(dǎo)造血分化后EB呈分化良好的三維囊狀空泡,CD34+細胞的比例為22.6%(圖2A);V-96孔板形成的Spin-EB中,除3000個細胞/孔的EB中有部分分化良好的三維囊狀空泡形態(tài),6000、9000細胞/孔的EB均呈現(xiàn)為分化不良的實心結(jié)構(gòu)。CD34+分析,3000個細胞/孔為10.8%、6000個細胞/孔為1.28%、9000個細胞/孔為1.23%(圖2B~D)。
2.3 Spin-EB來源CD34+造血集落形成和紅系分化能力
為證明上述Spin-EB來源的CD34+細胞具有造血分化能力,將造血分化誘導(dǎo)第5天的EB消化為單細胞后分別加入造血集落形成半固體培養(yǎng)基,以及紅細胞分化誘導(dǎo)培養(yǎng)基。圖3A所示,以臍帶血UCB-CD34+造血集落作為對照,Spin-EB來源的CD34+細胞所形成的BFU-E,CFU-G和CFU-G三種集落的形態(tài)與UCB形成的此三種集落相似;紅系誘導(dǎo)分化培養(yǎng)10 d后收集細胞經(jīng)流式細胞儀分析發(fā)現(xiàn),細胞培養(yǎng)中有26%的細胞表達紅細胞標志抗原CD71和CD235a,說明Spin-EB來源的CD34+具有形成造血集落和向紅系分化的能力。見圖3。
3 討論
ESC能夠無限增殖和多向分化的能力多年來一直都是生物醫(yī)學(xué)研究的重點,其中ESC在體外誘導(dǎo)分化為成熟類型細胞更是重中之重。通過誘導(dǎo)其向造血細胞分化,是有效解決臨床治療中造血干細胞短缺的有效方法之一。通過研究其向特定細胞分化的過程可以幫助建立疾病模型,用于研究疾病的發(fā)病機制,可以幫助開發(fā)治療方案,也可以研究生物體在發(fā)育過程中基因的表達調(diào)控等復(fù)雜的生理過程[18-20]。EB的形成是ESC進行體外誘導(dǎo)分化的關(guān)鍵步驟之一,懸滴法和基質(zhì)細胞共培養(yǎng)法是形成EB的常規(guī)方法,但這兩種方法都十分不利于進行外源基因轉(zhuǎn)染等分子生物學(xué)方面的操作,難以進行分子水平上的研究。本研究采用將ESC消化為單細胞進行EB培養(yǎng)的方法,此培養(yǎng)方法不僅培養(yǎng)基成分明確,而且能準確地掌握細胞數(shù),同時也方便進行分子生物學(xué)方面的操作。
AggreWellTM800培養(yǎng)板是StemCell公司生產(chǎn)的可用于單細胞法培養(yǎng)EB的培養(yǎng)板,本研究中采用的是AggreWellTM800型,每個培養(yǎng)孔有300個小孔。在每個孔中加入1×106個ESC時,每個小孔中大約有3000個細胞;V-96孔板是一種普通的可用于酶聯(lián)免疫研究的培養(yǎng)板,其與AggreWell培養(yǎng)板相比具有相似的空間形態(tài),因此在用V-96孔板進行EB培養(yǎng)時,從每孔3000個細胞為起始,同時設(shè)置6000和9000個細胞組。從形態(tài)上看AggreWellTM800培養(yǎng)板中形成的EB,經(jīng)過在低吸附24孔板中再培養(yǎng)5 d后,不僅數(shù)量多而且發(fā)育更為成熟,經(jīng)過同樣的培養(yǎng),V-96孔板中3000個細胞形成的EB在大小上與AggreWellTM800培養(yǎng)板中形成的EB最為相似,但是沒有形成明顯的囊狀EB,9000個細胞形成的EB雖然形成率較高,但是分化效率較低。流式細胞儀分析結(jié)果顯示,AggreWellTM800培養(yǎng)板形成的EB CD34+細胞的比例達到了22.6%,V-96孔板中3000個細胞組形成的EB CD34+細胞的比例是V-96孔板中形成的EB中最高的,比例為10.8%。根據(jù)流式結(jié)果選擇AggreWellTM800培養(yǎng)板中形成的EB進行造血集落形成和紅系誘導(dǎo)分化實驗,其BFU-E,CFU-G和CFU-GM三種集落的形態(tài)與對照組UCB形成的集落形態(tài)相似;經(jīng)紅系誘導(dǎo)分化,有26.1%的細胞表達紅細胞標志抗原CD71和CD235a。同時,在AggreWellTM800培養(yǎng)板中用IPS細胞進行試驗,經(jīng)過相同的培養(yǎng)時間,IPS形成的EB CD34+細胞陽性率為38.2%。
綜上所述,利用商品化的AggreWellTM800培養(yǎng)板可以較高效率地形成EB并誘導(dǎo)造血分化,但是AggreWellTM800培養(yǎng)板的缺點在于價格比較昂貴,不利于進行大規(guī)模實驗,相比之下V-96孔板雖然在EB形成效率和分化上不及AggreWellTM800培養(yǎng)板組,但是V-96孔板價格十分便宜,尤其適合大規(guī)模實驗,因此V-96孔板中形成EB的體系也十分值得進一步優(yōu)化。
[參考文獻]
[1] Hequet O. Hematopoietic stem and progenitor cell harvesting:technical advances and clinical utility [J]. J Blood Med,2015,6:55-67.
[2] Mazini L,Matar N,Bouhya S,et al. Umbilical cord blood banking for transplantation in morocco: problems and opportunities [J]. J Stem Cell Regen Med,2015,10(2):28-37.
[3] Tamari R,Castro-Malaspina H.Transplant for MDS: challenges and emer-ging strategies [J]. Best Pract Res Clin Heamatol,2015,28(1):43-54.
[4] Liu S,Xu Y,Zhou Z,et al. Progress and challenges in generating function hematopoietic stem/progenitor cells from human pluripotent stem cells [J]. Cytotherapy,2015,17(4):344-358.
[5] Daley GQ. Deriving blood stem cells from pluripotent stem cells for research and therapy [J]. Best Pract Clin Haematol,2014,27(3-4):293-297.
[6] Thomson JA,Itskovitz-Eldor,Shapiro SS,et al. Embryonic Stem Cell Line Derived from Human Blastocytst [J]. Science,1998,282(5391):1145-1147.
[7] Ware CB,Nelson AM,Mecham B,et al. Derivation of naive human embryonic stem cells [J]. Proc Natl Acad Sci,2012, 111(12):4484-4489.
[8] Van Orman JR,Si-Tayeb K,Duncan SA,et al. Induction of cardiomyogenesis in human embryonic stem cells by human embryonic stem cell-derived Definitive endoderm [J]. Stem Cells Dev,2012,21(6):987-994.
[9] Tesarova L, Stejskal S, Koutna I. Driven hematopoietic differentiation of embryonic stem cells: epigenetic perspectives [J]. Curr Pharm Des,2014,20(11):1674-1686.
[10] Forte L, Berardi AC. Stem cell technologies based on hemangioblast technology focusing on human blood cells [J]. Recent Pat Drug Deliv Formul,2013,7(1):4-8.
[11] Kurosawa H. Methods for inducing embryoid body formation:in vitro differentiation system of embryonic stem cells [J]. J Biosci Bioeng,2007,103(5):389-398.
[12] Weitzer G. Embryonic stem cell-derived embryoid bodies: an in vitro model of eutherian pregastrulation development and early gastrulation [J]. Handb Exp Pharmacol,2006,(174):21-51.
[13] 張緒超,陳惠芹,黃紹良,等.含人AGM區(qū)基質(zhì)細胞培養(yǎng)體系定向誘導(dǎo)胚胎干細胞為造血干細胞的實驗研究[J].中國病理生理雜志,2007,23(9):1747-1751.
[14] Lee KY,F(xiàn)onq BS,Tsang KS,et al. Fetal stromal niches enhance human Embryonic stem cell-derived hematopoietic differentiation and glob-in switch [J]. Stem Cells Dev,2011,20(1):31-38.
[15] Hu J,Liu J,Xue F,et al. Isolation and functional characterization of human erythroblasts at distinct stages:implications for understanding of normal and disorder erythropoiesis in vivo [J]. Blood,2013,121(16):3246-3252.
[16] Grover A,Mancini E,Moore S,et al. Erythropoietin guides multipotent hematopoietic progenitor cells toward an erythroid fate [J]. J Exp Med,2014,211(2):181-188.
[17] Smith BW,Rozelle SS,Leung A,et al. The aryl hydrocarbon receptor directs hematopoietic progenitor cell expansion and differentiation [J]. Blood,2013,122(3):376-385.
[18] 沈干,汪錚,叢笑倩,等.組織工程中的新型種子細胞——胚胎干細胞[J].國外醫(yī)學(xué):生物醫(yī)學(xué)工程分冊,2001,24(3):97-101.
[19] Zavazava N. Progress toward establishing embryonic stem or induced pluripotent stem cell-based clinical translation [J]. Curr Opin Organ Transplant,2014,19(6):598-602.
[20] Vallier L, Pedersen RA. Human embryonic stem cells:an in vitro model to study mechanisms controlling pluripotency in early mammalian development [J]. Stem Cell Rev,2005, 1(2):119-130.
(收稿日期:2015-02-25 本文編輯:蘇 暢)