張向陽等
[摘要] 目的 觀察胃癌組織中微小RNA-181a(miR-181a)與其靶基因共濟失調(diào)-毛細血管擴張突變基因(ATM)的表達與異常情況,初步研究其意義。 方法 收集2009年4月~2011年12月廣州市第一人民醫(yī)院外科手術切除的胃癌組織標本9例,同時選取其癌旁非癌組織標本作為對照,分析胃癌組織中miR-181a與ATM蛋白表達的相關性。提取其蛋白質(zhì)及總RNA,采用實時熒光定量PCR(qRT-PCR)檢測標本的miR-181a,Western blot檢測ATM蛋白。比較胃癌組織及癌旁非癌組織中miR-181a、ATM蛋白表達量。 結(jié)果 miR-181a在胃癌組織中的表達量為(1.981±1.800),miR-181a在鄰近非癌組織中的表達量為(0.394±0.093);灰度值檢測:癌組織ATM蛋白為(0.2539±0.0046);非癌組織為(0.5525±0.0660),癌及非癌組織中miR-181a、ATM蛋白表達量比較,差異均有高度統(tǒng)計學意義(P < 0.01);miR-181a與ATM蛋白表達呈負相關(r=-0.539,P < 0.01)。 結(jié)論 miR-181a在胃癌組織中表達明顯增高,ATM蛋白表達明顯下降;究其原因可能是通過基因沉默機制miR-181a降低ATM蛋白表達量,從而在胃癌的發(fā)生及發(fā)展中起促進作用。
[關鍵詞] 共濟失調(diào)-毛細血管擴張突變基因;胃癌;微小RNA;miR-181a
[中圖分類號] R735.2 [文獻標識碼] A [文章編號] 1673-7210(2015)05(c)-0024-05
[Abstract] Objective To investigate the expression and significance of microRNA (miRNA)-181a (miR-181a) and its target gene ATM in gastric carcinoma tissues. Methods Tissues of gastric carcinoma and adjacent non-tumorous were collected respectively from 9 patients given surgical operation in Guangzhou First People's Hospital from April 2009 to December 2011. The total RNA and protein were extracted routinely, the miR-181a was detected by Real-time quantitative PCR, ATM protein was detected by Western blot. The expression of miR-181a and ATM protein between gastric carcinoma and adjacent non-tumorous were compared, and the correlation between miR-181a and ATM protein levels in gastric carcinoma was analyzed. Results In gastric carcinoma tissues, the expression of miR-181a and ATM protein were (1.981±1.800), (0.2539±0.0046) respectively, whereas in the adjacent non-tumorous tissues, the expression of miR-181a and ATM protein were (0.394±0.093), (0.5525±0.0660) respectively. The differences between the expression of miR-181a and ATM protein in these two tissues were statistically significant (P < 0.01). There was a negative correlation between miR-181a and ATM protein levels (r=-0.539, P < 0.01). Conclusion The expression of miR-181a is significantly up-regulated in gastric carcinoma tissues, whereas the ATM protein is markedly decreased. miR-181a may inhibit ATM expression by post-transcriptional gene silencing to restrain gastric carcinoma occurrence and progress.
[Key words] ATM; Gastric cancer, micro-RNA; miR-181a
微小RNA(microRNA)是一類非編碼小分子 RNA,存在于真核生物中,長度約為22個核苷酸,有高度的進化保守性,以堿基互補配對原則與靶基因mRNA結(jié)合,從而引起靶基因mRNA的降解或抑制靶基因mRNA的翻譯,進而在轉(zhuǎn)錄后完成對基因表達的調(diào)控,在多種腫瘤的發(fā)生發(fā)展過程中作為一類潛在的癌基因或抑癌基因發(fā)揮作用[1-2]。作為miR-181家族新成員,miR-181a是近期才發(fā)現(xiàn)的一個micro-RNA,它在胸腺細胞中表達上調(diào),而在人白血病K562細胞及神經(jīng)膠質(zhì)瘤中表達下調(diào),在許多疾病中,如慢性淋巴細胞性白血病、非小細胞肺癌和惡性膠質(zhì)瘤等諸多疾病的研究方面較多且較為深入,但在胃癌研究方面的報道甚少。共濟失調(diào)-毛細血管擴張癥突變基因(Ataxia-telangiectasia mutated gene,ATM)被認為是一種抑癌基因[3-5],ATM的基因突變增加癌癥患者的易感風險,最初的研究在乳腺癌和胃癌[4,6-7]和ATM蛋白能抑制人類乳腺上皮細胞的惡性轉(zhuǎn)化[8]。ATM和P53都是參與細胞周期檢查點調(diào)節(jié)的癌癥易感基因[9-10],在DNA損傷反應時,這個350 kD的蛋白激酶在G1、S、G2期至關重要[7,11]。此基因產(chǎn)物被認為參與并加強了P53在基因轉(zhuǎn)錄、調(diào)亡和DNA損傷修復方面的功能[4,12]。ATM功能缺失損害其維持DNA穩(wěn)定性的功能,從而導致癌變,這可能由于ATM基因突變,啟動子甲基化,激酶失活造成[5-6,8]。磷酸化的ATM(活性形式)在胃癌組織中的表達下調(diào)[5],而大多數(shù)人的正常組織(包括胃)包含ATM的非磷酸化形式[13]。盡管目前研究觀察到在胃癌組織中有ATM基因的表達下降,但其隱含的深層次的作用機制仍不明了。本研究觀察了miR-181a與ATM蛋白在胃癌組織中的表達情況,為研究miR-181a與其靶基因ATM存在的深層次的調(diào)控關系提供了充分的實驗依據(jù)。
1 對象與方法
1.1 對象
選取2009年4月1日~2011年12月1日廣州市第一人民醫(yī)院外科手術切除的胃癌標本9例,同時選取其癌旁非癌組織標本作為對照。通過病理專家確定所選胃癌標本均為中晚期胃癌,且入選患者術前均未行放、化療等治療。配對的癌旁非癌組織取其距胃癌癌灶邊緣5 cm以上,術后經(jīng)液氮速凍保存在-80℃冰箱。本研究經(jīng)廣州市第一人民醫(yī)院醫(yī)學倫理委員會通過,所有患者知情同意并簽署知情同意書。
1.2 靶基因的預測
運用3個生物信息學預測軟件,預測miR-181a的靶基因。MiRanda、PicTar及TargetScan。
1.3 引物設計及合成
在miRNA Base數(shù)據(jù)庫和GeneBank數(shù)據(jù)庫中基因序列的查找,引物設計采用Primer express 2.0軟件。內(nèi)參照U6及miR-181a由丹麥生物工程公司Exiqon設計、合成。
1.4 檢測miR-181a
采用實時熒光定量聚合酶鏈反應(qRT-PCR)技術。用Trizol提取總RNA,95 μL RNase-free ddH2O加總RNA 5 μL(總RNA可稀釋20倍),應用紫外分光光度計,選擇RNA為測定參數(shù),稀釋倍數(shù)設為20倍,調(diào)零校正用比色皿中加100 μL RNase-free ddH2O,稀釋后的總RNA在比色皿中實施定量檢測,樣本OD260/OD280的比值可同時檢測。若OD260/OD280=1.9~2.1則提示純度很好;OD260/OD280<1.9則提示DNA有污染;若OD260/OD280>2.1提示有部分標本降解。總RNA完整性的檢測:用凝膠成像系統(tǒng)觀察總RNA的28、18 s和5 s 3個條帶,總RNA抽提較完整則3個條帶完整。第一鏈互補DNA(cDNA)的合成:qRT-PCR采用MJ Research系列qRT-PCR儀,Opticon Monitor 2為操作系統(tǒng),按照miRNA逆轉(zhuǎn)錄試劑盒(EXIQON公司)的操作說明,qRT-PCR試劑購自EXIQON公司(丹麥),采用標準曲線法。根據(jù)反應體系中得到的Ct值,分別計算出9例胃癌組織和配對的癌旁非癌組織中的miRNAs的相對拷貝數(shù)(2-ΔΔCt),相對值=癌組織的校正值/非癌組織的校正值,校正值=目的基因定量結(jié)果/內(nèi)參U6定量結(jié)果。
1.5 ATM蛋白檢測
應用免疫印跡(Western blot)方檢測法ATM蛋白,具體方法:稱取100 mg組織標本,放置于高壓滅菌后的研缽上,液氮研磨成組織勻漿,后加1 mL蛋白提取液,經(jīng)超聲破碎5 min,4 ℃,12 000 r/min離心10 min,收集總蛋白。測定蛋白濃度:取總蛋白50 μg,加凝膠上樣緩沖液,100℃加熱5 min使蛋白完全變性。分離蛋白并原位電轉(zhuǎn)印至PVDF膜,5%脫脂奶粉封閉處理該膜后,分別與ATM一抗及二抗[Rabbit Anti-Mouse IgG (H+L),稀釋倍數(shù):1∶4000]和GAPDH優(yōu)質(zhì)內(nèi)參(HRP標記)孵育。最后顯影。
1.6 統(tǒng)計學方法
采用SPSS 13.0統(tǒng)計學軟件進行數(shù)據(jù)分析,計量資料數(shù)據(jù)用均數(shù)±標準差(x±s)表示,兩組間比較采用t檢驗;采用Spearman相關系數(shù)進行相關性分析,以P < 0.05為差異有統(tǒng)計學意義。
2 結(jié)果
在胃癌組織中miR-181a的表達量為(1.981±1.800),在鄰近非癌組織中miR-181a的表達量為(0.394±0.093)(圖1);ATM蛋白在癌組織中的灰度值為(0.2539±0.0046),癌旁非癌組織灰度值為(0.5525±0.066)(圖2)。miR-181a、ATM蛋白在癌及非癌組織中的表達量比較,差異均有高度統(tǒng)計學意義(均P < 0.01)(圖3)。miR-181a與靶基因ATM蛋白的表達呈負相關(r=-0.539,P﹤0.01)(圖4) 。
3 討論
近年來越來越多的實驗研究表明,miRNA在人類多種惡性腫瘤性疾病中多有異常表達[14-16]。然而對胃癌組織中miRNA的異常表達及作用機制,目前還不甚清楚。為更深入了解在腫瘤性疾病發(fā)病中miRNA發(fā)揮的作用,尋找腫瘤特異性較高的miRNA及它們對應的靶基因,學者們進行了大量的卓有成效的工作,可為惡性腫瘤的治療提供新的方法[14,17]。
本研究組前期實驗中通過應用miRNA的基因芯片技術及實時熒光定量聚合酶鏈反應技術,已經(jīng)發(fā)現(xiàn)了許多在胃癌組織中表達異常的miRNA,miR-181a為其中之一。此前已有兩項研究報道在胃癌組織顯中miR-181a的高表達[18-19],然而在胃癌發(fā)病中miR-181a的作用仍未闡明。有研究顯示miR-181a在以下疾病中是下調(diào)的:人類原發(fā)性膠質(zhì)母細胞瘤[1,20]、慢淋白血病[21]、急髓白血病[22-23]、非小細胞肺癌[24]和口腔鱗狀細胞癌[25],同時認為miR-181a充當癌癥抑制基因,可與K-ras[25]、BCL-2[26-27]、PLAG1[22]結(jié)合,而發(fā)揮其抑癌效應。在乳腺癌[28]、肝細胞癌[2]、多發(fā)性骨髓瘤[29]、甲狀腺乳頭狀癌[30]中發(fā)現(xiàn)miR-181a高表達,同時作為致癌,與靶基因如OPN[31]、CDX2、GATA6、NLK[2]、RASSF1A、TIMP3[32]、PCAF[29]、THRB[30]和uPA[33]結(jié)合而發(fā)揮作用。在胃癌組織中,與其配對的癌旁非癌組織比較,miR-181a表達顯著上調(diào),提示在胃癌發(fā)病過程中miR-181a可能作為一個重要的癌基因而參與其中。之前本研究在人胃癌細胞株SGC-7901細胞中,用miR-181a Inhibitor(抑制質(zhì)粒)和陰性對照質(zhì)粒,進行了沉默表達miR-181a的研究。通過進行細胞凋亡、細胞增殖、克隆形成、流式細胞、細胞遷移和侵襲等實驗研究,結(jié)果提示沉默miR-181a的表達可顯著抑制SGC-7901細胞的增殖活性,也可明顯抑制SGC-7901細胞的遷移及侵襲能力,同時可促進SGC-7901細胞的凋亡,但與細胞周期無關。鑒于miR-181a在胃癌組織及胃癌細胞株(SGC-7901細胞)中表達均有上調(diào),本研究推斷miR-181a表達的下調(diào)可抑制胃癌細胞的惡性表型。
ATM基因被廣泛認為是一種與P53相提并論的重要的抑癌基因[3-5],ATM的基因突變增加癌癥患者的易感風險。此基因產(chǎn)物被認為參與并加強了P53在基因轉(zhuǎn)錄、調(diào)亡和DNA損傷修復方面的功能[4,12]。ATM功能缺失損害其維持DNA穩(wěn)定性的功能,從而導致癌變,這可能由于ATM基因突變、啟動子甲基化,激酶失活造成[5-6,8]。磷酸化的ATM(活性形式)在胃癌組織中的表達下調(diào)[5],而大多數(shù)人的正常組織(包括胃)包含ATM的非磷酸化形式[13]。盡管目前在胃癌組織中ATM基因的研究較多,但其下調(diào)的機制仍無統(tǒng)一的共識,而通過本研究發(fā)現(xiàn)了miR-181的表達上調(diào),并在轉(zhuǎn)錄后水平抑制ATM基因的表達可能是其作用機制之一。
本研究發(fā)現(xiàn)miR-181a在胃癌組織中的表達上調(diào),而ATM基因在胃癌組織中表達下調(diào)。miR-181a在胃癌組織中的表達和ATM基因的表達呈負相關,miR-181a通過對ATM基因的負性調(diào)控,使其對胃癌細胞增殖和轉(zhuǎn)移潛能產(chǎn)生影響?;谶@些結(jié)論,結(jié)合是個研究組前期的研究成果,聯(lián)系了miR-181a與胃癌增殖及轉(zhuǎn)移潛在的相關性及ATM基因與miR-181a表達水平之間的負性相關。本研究認為:在胃癌發(fā)病復雜的過程中,先有miR-181a的高表達(相當于癌基因激活)引起了ATM蛋白的表達下調(diào)(相當于抑癌基因失活),從而影響了胃癌細胞功能變化,如遷移、侵襲、增殖和凋亡等(基因沉默),從某種程度上導致了胃癌的發(fā)生及發(fā)展,由此推斷出在胃癌發(fā)病過程中miR-181a起致癌基因作用,其和靶基因ATM基因的鑒定,對了解胃癌發(fā)生及發(fā)展的分子機制有很大的幫助,從而為人類治療胃癌提供一個理想的靶標。
[參考文獻]
[1] Ciafre SA,Galardi S,Mangiola A,et al. Extensive modulation of a set of microRNAs in primary glioblastoma [J]. Biochem Biophys Res Commun,2005,334(4):1351-1358.
[2] Ji J,Yamashita T,Budhu A,et al. Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells [J]. Hepatology,2009,50(2):472-480.
[3] Smith GC,D'Adda dFF,Lakin ND,et al. Cleavage and inactivation of ATM during apoptosis [J]. Mol Cell Biol,1999, 19(9):6076-6084.
[4] Herzog KH,Chong MJ,Kapsetaki M,et al. Requirement for Atm in ionizing radiation-induced cell death in the developingcentral nervous system [J]. Science,1998,280(5366):1089-1091.
[5] Kang B,Guo RF,Tan XH,et al. Expression status of ataxia-telangiectasia-mutated gene correlated with prognosisin advanced gastric cancer [J]. Mutat Res,2008,638(1-2):17-25.
[6] Thompson D,Duedal S,Kirner J,et al. Cancer risks and mortality in heterozygous ATM mutation carriers [J]. J Natl Cancer Inst,2005,97(11):813-822.
[7] Derheimer FA,Kastan MB. Multiple roles of ATM in monitoring and maintaining DNA integrity [J]. FEBS Lett,2010, 584(17):3675-3681.
[8] Mandriota SJ,Buser R,Lesne L,et al. Ataxia telangiectasia mutated (ATM)inhibition transforms human mammary glandepithelial cells [J]. J Biol Chem,2010,285(17):13092-13106.
[9] Meyn MS. Ataxia-telangiectasia and cellular responses to DNA damage [J]. Cancer Res,1995,55(24):5991-6001.
[10] Morgan SE,Kastan MB. p53 and ATM:cell cycle,cell death,and cancer [J]. Adv Cancer Res,1997,71:1-25.
[11] Lavin MF,Kozlov S. ATM activation and DNA damage response [J]. Cell Cycle,2007,6(8):931-942.
[12] Canman CE,Lim DS,Cimprich KA,et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53 [J]. Science,1998,281(5383):1677-1679.
[13] Livak KJ,Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method [J]. Methods,2001,25(4):402-408.
[14] Volinia S,Calin GA,Liu CG,et al. A microRNA expression signature of human solid tumors defines cancer genetargets [J]. Proc Natl Acad Sci U S A,2006,103(7):2257-2261.
[15] He L,Thomson JM,Hemann MT,et al. A microRNA polycistron as a potential human oncogene [J]. Nature,2005, 435(7043):828-833.
[16] O'Donnell KA,Wentzel EA,Zeller KI,et al. c-Myc-regulated microRNAs modulate E2F1 expression [J]. Nature,2005,435(7043):839-843.
[17] Lu J,Getz G,Miska EA,et al. MicroRNA expression profiles classify human cancers [J]. Nature,2005,435(7043):834-838.
[18] Yao Y,Suo AL,Li ZF,et al. MicroRNA profiling of human gastric cancer [J]. Mol Med Report,2009,2(6):963-970.
19] Ueda T,Volinia S,Okumura H,et al. Relation between microRNA expression and progression and prognosis of gastriccancer:a microRNA expression analysis [J]. Lancet Oncol,2010,11(2):136-146.
[20] Shi L,Cheng Z,Zhang J,et al. hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human gliomacells [J]. Brain Res,2008,1236:185-193.
[21] Pallasch CP,Patz M,Park YJ,et al. miRNA deregulation by epigenetic silencing disrupts suppression of the oncogene PLAG1 in chronic lymphocytic leukemia [J]. Blood,2009,114(15):3255-3264.
[22] Marcucci G,Radmacher MD,Maharry K,et al. MicroRNA expression in cytogenetically normal acute myeloid leukemia [J]. N Engl J Med,2008,358(18):1919-1928.
[23] Schwind S,Maharry K,Radmacher MD,et al. Prognostic significance of expression of a single microRNA,miR-181a,incytogenetically normal acute myeloid leukemia:a cancer and leukemia group B study [J]. J Clin Oncol,2010,28(36):5257-5264.
[24] Gao W,Yu Y,Cao H,et al. Deregulated expression of miR-21,miR-143 and miR-181a in non small cell lung cancer is related to clinicopathologic characteristics or patient prognosis [J]. Biomed Pharmacother,2010,64(6):399-408.
[25] Shin KH,Bae SD,Hong HS,et al. miR-181a shows tumor suppressive effect against oral squamous cell carcinomacells by downregulating K-ras [J]. Biochem Biophys Res Commun,2011,404(4):896-902.
[26] Zhu W,Shan X,Wang T,et al. miR-181b modulates multidrug resistance by targeting BCL2 in human cancer celllines [J]. Int J Cancer,2010,127(11):2520-2529.
[27] Neilson JR,Zheng GX,Burge CB,et al. Dynamic regulation of miRNA expression in ordered stages of cellular development [J]. Genes Dev,2007,21(5):578-589.
[28] Wang Y,Yu Y,Tsuyada A,et al. Transforming growth factor-beta regulates the sphere-initiating stem cell-likefeature in breast cancer through miRNA-181 and ATM [J]. Oncogene,2011,30(12):1470-1480.
[29] Pichiorri F,Suh SS,Ladetto M,et al. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis [J]. Proc Natl Acad Sci USA,2008,105(35):12885-12890.
[30] Jazdzewski K,Boguslawska J,Jendrzejewski J,et al. Thyroid hormone receptor beta (THRB) is a major target gene for microRNAsderegulated in papillary thyroid carcinoma (PTC) [J]. J Clin Endocrinol Metab,2011,96(3):E546-E553.
[31] Bhattacharya SD,Garrison J,Guo H,et al. Micro-RNA-181a regulates osteopontin-dependent metastatic function inhepatocellular cancer cell lines [J]. Surgery,2010,148(2):291-297.
[32] Meng F,Glaser SS,F(xiàn)rancis H,et al. Functional analysis of microRNAs in human hepatocellular cancer stem cells [J]. J Cell Mol Med,2012,16(1):160-173.
[33] Noh H,Hong S,Dong Z,et al. Impaired MicroRNA processing facilitates breast cancer cell invasion by upregulating urokinase-type plasminogen activator expression [J]. Genes Cancer,2011,2(2):140-150.
(收稿日期:2015-02-22 本文編輯:任 念)