亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Representations of the Drazin inverse involving idem potents in a ring

        2015-07-25 06:04:54
        關(guān)鍵詞:數(shù)學(xué)系界線東南大學(xué)

        (Department of Mathematics,Southeast University,Nanjing 211189,China)

        Representations of the Drazin inverse involving idem potents in a ring

        Zhu Huihui Chen Jianlong

        (Department of Mathematics,Southeast University,Nanjing 211189,China)

        An element a of a ring R is called Drazin invertible if there exists b∈R such that ab=ba,bab=b,and a-a2b is nilpotent.The element b above is unique if it exists and is denoted as aD.The equivalent conditionsof the Drazin inverse involving idempotents in R are established.As applications,some formulae for the Drazin inverse of the difference and the product of idempotents in a ring are given.Hence,a number of results of bounded linear operators in Banach spaces are extended to the ring case.

        idempotent;Drazin inverse;spectral idempotent

        L et R be an associative ring w ith unity 1.The symbols R-1,RDand Rnildenote the sets of invertible,Drazin invertible and nilpotent elements of R,respectively.The commutant of an element a∈R is defined as comm(a)={x∈R:xa=ax}.Recall that an element a∈R is said to have a Drazin inverse[1]if there is b∈R such that b∈comm(a),bab=b,a-a2b∈Rnil.The element b∈R above is unique if it exists and is denoted by aD.In this case,we call aπ=1-aaDthe spectral idempotent of a.The nilpotency index of a-a2b is called the Drazin index of a,denoted by ind(a).By RDwemean the setof all Drazin invertible elements in R.It is well known that a∈RDimplies that a2∈RDand(a2)D=(aD)2.

        Groβand Trenkler[2]considered the invertibility of pq for general matrix projectors p,q.Koliha and Rakocevic[3]studied the invertibility of the sum p+q and described the relationship between the invertibility of p-q and p+q for idempotents p and q in a ring.Later,Koliha and Rakocevic[4]obtained the equivalent conditions for the invertibility of p-q in a ring.

        Many authors considered Drazin invertibility in different sets.For example,Deng[5]considered the Drazin inverse of the difference and the product of projections in Hilbert spaces.Deng and Wei[6]presented the formulae for the Drazin inverse involving idempotent bounded linear operators in Banach spaces.More results on the Drazin inverse of the difference and the product of idempotents can be found in Refs.[7- 9].

        In this paper,we present the formulae for the Drazin inverse of the difference and the product of idempotents in a ring.Moreover,the equivalent relationships of Drazin inverse involving idempotents are established.Hence,the results in Refs.[5- 6]are extended to a general ring case.Note that dimensional analysis and spectral decompositions cannot be used in a ring case.The results in this paper are proved by a purely algebraic method.

        1 Some Lemmas

        In what follows,p,q always mean any two idempotents in a ring R.We first state several known results in the form of lemmas.

        Lemm a 1[10]Let S={p-q,1-pq,p-pq,p-qp,p-pqp,1-qp,q-pq,q-qp,p+q-pq}.If one of the elements in the set S is Drazin invertible,then all elements in S are Drazin invertible.

        Lemma 2[10]The following statements are equivalent:

        1)pq∈RD;

        2)1-p-q∈RD;

        3)(1-p)(1-q)∈RD.

        Lemm a 3[11](Cline’s formula) Let a,b∈RD.Then(ba)D=b((ab)D)2a.

        Lemm a 4[1]Let a,b∈RDw ith ab=ba.Then(ab)D=bDaD=aDbD.

        Lemma 5[12]Let a,b∈R.If 1-ab∈RDwith ind(1-ab)=k,then 1-ba∈RDw ith ind(1-ba)=k and

        2 M ain Results

        In this section,we present some formulae on the Drazin inverse of the difference and the product of idempotents of ring R.

        Definition 1 Let p-q∈RD.Define F,G and H as F=p(p-q)D,G=(p-q)Dp,and H=(p-q)D(p-q).

        Theorem 1 Let p-q∈RD.Then F,G and H above are idempotents and

        1)F=(p-q)D(1-q);

        2)G=(1-q)(p-q)D.

        Proof Since p,q are idempotents,we obtain p(pq)2=(p-q)2p=p-pqp.Note that a∈RDand ab=ba imply aDb=baDby Theorem 1 of Ref.[1].It follows that p∈comm((p-q)D)2.Hence,we have

        Next,we prove that F is idempotent.From p(p-q)D=(p-q)D(1-q),we have

        Sim ilarly,G2=G=(1-q)(p-q)D.It is clear that H is idempotent and

        Sim ilarly,we obtain more relationships among F,G and H.

        Corollary 1 Let p-q∈RD.Then

        1)q(p-q)D=(p-q)D(1-p);

        2)(p-q)Dq=(1-p)(p-q)D;

        3)qH=Hq;

        4)G(1-q)=(1-q)F.

        Proof 1)and 2)can be obtained by a sim ilar way of Theorem 1.

        3)Since H=(p-q)D(p-q),we have

        4)By Theorem 1,we have

        Proposition 1 Let p-q∈RD.Then

        1)Fp=pG=pH=Hp;

        2)qHq=qH=Hq=HqH.

        Proof 1)It is clear that Fp=pG,we only need to show pG=pH and pH=Hp.

        According to Theorem 1,we obtain

        Hence,1)holds.

        2)Note that qH=Hq in 3)of Corollary 1.We obtain that qHq=(Hq)q=Hq.Since H is idempotent,HqH=H2q=Hq.

        Thus,qHq=qH=Hq=HqH.

        The follow ing theorems,themain results of this paper,give the formulae of the Drazin inverses of the difference and the product of idempotents in a ring R.

        Theorem 2 Let p-q∈RD.Then

        1)(1-pqp)D=[(p-q)D]2p+1-p;

        2)(p-pqp)D=[(p-q)D]2p=p[(p-q)D]2;

        3)(p-pq)D=p[(p-q)D]3;

        4)(p-qp)D=[(p-q)D]3p;

        5)If ind(p-q)=k,then

        Proof 1)As 1-pqp=(p-q)2p+1-p,[(pq)2]D=[(p-q)D]2and(p-q)2p(1-p)=(1-p)(pq)2p=0;then(1-pqp)D=[(p-q)D]2p+1-p by Corollary 1 of Ref.[1].

        2)Observing that p-pqp=p(p-q)2=(p-q)2p,we obtain(p-pqp)D=[(p-q)D]2p=p[(p-q)D]2from Lemma 4.

        3)Let x=p[(p-q)D]3.We prove that x is the Drazin inverse of p-pq by show ing the follow ing conditions hold.

        ①From p(p-q)2=(p-q)2p=(p-pq)p,it follows that

        ②Note that(p-pq)x=p(p-q)D.We have

        ③Since(p-pq)x=p(p-q)D,we obtain that

        According to pH=Hp and qH=Hq,it follows that p(p-q)(p-q)π=(p-q)πp(p-q).By induction,one can obtain[p(p-q)]m=p(p-q)2m-1.Take m≥ind(p-q),then[p(p-q)(p-q)π]m=p(p-q)2m-1(p-q)π=0.This implies that(p-pq)-(p-pq)2x is nilpotent.

        Therefore,(p-pq)D=p[(p-q)D]3.

        4)Use a similar proof of 3).

        5)It follows from Lemma 1 that 1-pq∈RD.Lemma 5 guarantees that

        Substituting Eq.(2)into Eq.(1),we have

        Theorem 3 Let 1-p-q∈RD.Then

        1)(pqp)D=[(1-p-q)D]2p=p[(1-p-q)D]2;

        2)(pq)D=[(1-p-q)D]4pq.

        Proof 1)By pqp=p(1-p-q)2=(1-p-q)2p and Lemma 4,it follows that(pqp)D=[(1-p-q)D]2p=p[(1-p-q)D]2.

        2)From pq=ppq and Lemma 3,we have(pq)D=p[(pqp)D]2pq=[(pqp)D]2pq.According to Eq.(1),we obtain(pq)D=[(pqp)D]2pq=[(1-p-q)D]4pq.

        Deng[5]and Li[13]considered the following result for projections in Hilbert spaces,C*-algebras,respectively.Indeed,they still hold for idempotents in a ring.

        Theorem 4 Let pq∈RD.Then

        1)(pq)D=(pqp)D-p[(1-q)(1-p)]D;

        2)(pq)Dpq=(pqp)Dpq.

        Proof 1)By 4)of Theorem 2,we have(p-qp)D=[(p-q)D]3p and(q-pq)D=[(q-p)D]3q=-[(pq)D]3q.

        Hence,

        We replace p by 1-p in Eq.(3)to obtain

        Multiplying Eq.(4)by p on the left yields

        Note that p(pq)D=p(pq)(pq)D(pq)D=(pq)Dand Theorem 3.We have

        2)By Lemma 3,we have

        The proof is completed.

        Theorem 5 Let1-pq∈RD.Then p-q∈RDand

        Proof By 5)of Theorem 2,we have

        Substituting p and q by 1-p and 1-q,respectively,in Eq.(6),we obtain

        Multiplying Eq.(6)by p-pq on the right yields

        Multiplying Eq.(7)by pq-p on the right yields

        From(8)and(9),one can obtain

        The proof is complete.

        Let p,q be two idempotents in a Banach algebra.Then,p+q∈RDif and only if p-q∈RD.However,in general,this need not be true in a ring.For example,let R=Z and p=q=1.Then p-q=0∈RD,but p+q=2?RD.Next,we consider what conditions p and q satisfy,and p-q∈RDimplies that p+q∈RD.

        The following result,proved by Deng and Wei[6]for bounded linear operators in Banach spaces,indeed holds in a ring.

        Theorem 6 Let p-q∈RD.If F,G and H are given by Definition 1 and(p+q)(p-q)π∈Rnil,then

        1)(p+q)D=(p-q)D(p+q)(p-q)D;

        2)(p-q)D=(p+q)D(p-q)(p+q)D;

        3)(p-q)π=(p+q)π;

        4)(p-q)D=F+G-H;

        5)(p+q)D=(2G-H)(F+G-H).

        Koliha et al.[4]proved that p-q∈R-1implies that p+q∈R-1for idempotents p and q in a ring R.Hence,we have the follow ing results.

        Corollary 2[14]Let p-q∈R-1.If F=p(p-q)-1and G=(p-q)-1p,then

        1)(p+q)-1=(p-q)-1(p+q)(p-q)-1;

        2)(p-q)-1=(p+q)-1(p-q)(p+q)-1;

        3)(p-q)-1=F+G-1;

        4)(p+q)-1=(2G-1)(F+G-1).

        Corollary 3 Let p-qp∈RD,and then(p-q)D=(p-q)2[(p-qp)D-(q-qp)D].

        Proof Since(p-qp)D=[(p-q)D]3p and(q-qp)D=q[(q-p)D]3,we obtain

        [1]Drazin M P.Pseudo-inverses in associative rings and semigroups[J].Amer Math Monthly,1958,65(7):506-514.

        [2]GroβJ,Trenkler G.Nonsingularity of difference of two oblique projectors[J].SIAM JMatrix Anal Appl,1999,21(2):390- 395.

        [3]Koliha J J,Rakocevic V.Invertibility of the difference of idempotents[J].Linear Multilinear Algebra,2003,50(1):97- 110.

        [4]Koliha JJ,Rakocevic V.Invertibility of the sum of idempotents[J].Linear Multilinear Algebra,2002,50(4):285- 292.

        [5]Deng C Y.The Drazin inverses of products and differences of orthgonal projections[J].J Math Anal Appl,2007,355(1):64- 71.

        [6]Deng C Y,Wei Y M.Characterizations and representations of the Drazin inverse involving idempotents[J].Linear Algebra Appl,2009,431(9):1526- 1538.

        [7]Deng C Y.Characterizations and representations of group inverse involving idempotents[J].Linear Algebra Appl,2011,434(4):1067- 1079.

        [8]Koliha J J,Cvetkovc-Ilic D S,Deng C Y.Generalized Drazin invertibility of combinations of idempotents[J].Linear Algebra Appl,2012,437(9):2317- 2324.

        [9]Zhang S F,Wu J D.The Drazin inverse of the linear combinations of two idempotents in the Banach algebra[J].Linear Algebra Appl,2012,436(9):3132- 3138.

        [10]Chen J L,Zhu H H.Drazin invertibility of product and difference of idempotents in a ring[J].Filomat,2014,28(6):1133- 1137.

        [11]Cline R E,An application of the representation for the generalized inverse of a matrix[J].MRC Technical Report,1965.

        [12]Castro-Gonzalez N,Mendes-Araujo C,Patricio P.Generalized inverses of a sum in rings[J].Bull AustMath Soc,2010,82(1):156- 164.

        [13]Li Y.The Drazin inverses of products and differences of projections in a C*-algebra[J].JAustMath Soc,2009,86(2):189- 198.

        [14]Koliha J J,Rakocevic V,Straskraba I.The difference and sum of projectors[J].Linear Algebra Appl,2004,388:279- 288.

        環(huán)中涉及冪等元的Drazin逆的表示

        朱輝輝 陳建龍

        (東南大學(xué)數(shù)學(xué)系,南京211189)

        稱環(huán)R中的元素a為Drazin可逆的,如果存在R中的元素b使得ab=ba,bab=b,a-a2b是冪零的.上述元素b如果存在則是唯一的,并表示為aD.給出了一些環(huán)中涉及冪等元的Drazin逆的等價(jià)條件.作為應(yīng)用,給出了環(huán)中冪等元的積與差的Drazin逆的公式.因此,一些關(guān)于Banach空間中有界線性算子的結(jié)果被推廣到環(huán)上.

        冪等元;Drazin逆;譜冪等元

        O151.2

        10.3969/j.issn.1003-7985.2015.03.023

        2013-10-14.

        Biographies:Zhu Huihui(1985—),male,graduate;Chen Jianlong(corresponding author),male,doctor,professor,jlchen@seu.edu.cn.

        s:The National Natural Science Foundation of China(No.11371089),the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120092110020),the Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXLX13-072),the Scientific Research Foundation of Graduate School of Southeast University,the Fundamental Research Funds for the Central Universities(No.22420135011).

        :Zhu Huihui,Chen Jianlong.Representations of the Drazin inverse involving idempotents in a ring[J].Journal of Southeast University(English Edition),2015,31(3):427- 430.

        10.3969/j.issn.1003-7985.2015.03.023

        猜你喜歡
        數(shù)學(xué)系界線東南大學(xué)
        一個(gè)人就是一個(gè)數(shù)學(xué)系
        ——丘成桐
        《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
        《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
        《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
        《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
        The Beasts Within
        有界線性算子的Drazin逆的逆序律
        北京師范大學(xué)數(shù)學(xué)系教授葛建全
        關(guān)于進(jìn)一步加強(qiáng)行政區(qū)域界線管理維護(hù)邊界地區(qū)社會(huì)穩(wěn)定的意見
        論Gross曲線的二次扭
        亚洲国产精品二区三区| 性色av无码一区二区三区人妻| 亚洲AV永久无码制服河南实里 | 日本淫片一区二区三区| 成人免费播放视频777777| 天天弄天天模| 国产精品亚洲A∨天堂| 成人偷拍自拍在线视频| 亚洲精品视频在线一区二区| 日韩人妻无码精品久久免费一| 欧美日韩国产免费一区二区三区欧美日韩| 一区二区特别黄色大片| av手机免费在线观看高潮| 亚洲精品久久7777777| 最新亚洲人成无码网www电影| 一区二区三无码| 人妖国产视频一区二区| 波多野结衣的av一区二区三区 | 久久精品国产精品国产精品污| 日中文字幕在线| 日韩av中文字幕少妇精品| 久久99精品久久久久麻豆| 真人无码作爱免费视频禁hnn| 在线观看亚洲精品国产| 亚洲永久精品日韩成人av| 午夜精品久久久久久久99老熟妇| 131美女爱做视频| 日韩人妻无码中文字幕一区| 久久国产亚洲精品一区二区三区| 亚洲国产精品一区二区www| 亚洲无毛片| 亚洲av毛片一区二区久久| 亚洲av综合色区无码一区| 人妻丰满熟妇av无码处处不卡| 无码无在线观看| 国产自产二区三区精品| 亚洲av日韩av无码污污网站| 国产精品爆乳在线播放 | 久久精品国产色蜜蜜麻豆| 精品无码AV无码免费专区| 国产亚洲精品综合在线网站|