亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Representations of the Drazin inverse involving idem potents in a ring

        2015-07-25 06:04:54
        關(guān)鍵詞:數(shù)學(xué)系界線東南大學(xué)

        (Department of Mathematics,Southeast University,Nanjing 211189,China)

        Representations of the Drazin inverse involving idem potents in a ring

        Zhu Huihui Chen Jianlong

        (Department of Mathematics,Southeast University,Nanjing 211189,China)

        An element a of a ring R is called Drazin invertible if there exists b∈R such that ab=ba,bab=b,and a-a2b is nilpotent.The element b above is unique if it exists and is denoted as aD.The equivalent conditionsof the Drazin inverse involving idempotents in R are established.As applications,some formulae for the Drazin inverse of the difference and the product of idempotents in a ring are given.Hence,a number of results of bounded linear operators in Banach spaces are extended to the ring case.

        idempotent;Drazin inverse;spectral idempotent

        L et R be an associative ring w ith unity 1.The symbols R-1,RDand Rnildenote the sets of invertible,Drazin invertible and nilpotent elements of R,respectively.The commutant of an element a∈R is defined as comm(a)={x∈R:xa=ax}.Recall that an element a∈R is said to have a Drazin inverse[1]if there is b∈R such that b∈comm(a),bab=b,a-a2b∈Rnil.The element b∈R above is unique if it exists and is denoted by aD.In this case,we call aπ=1-aaDthe spectral idempotent of a.The nilpotency index of a-a2b is called the Drazin index of a,denoted by ind(a).By RDwemean the setof all Drazin invertible elements in R.It is well known that a∈RDimplies that a2∈RDand(a2)D=(aD)2.

        Groβand Trenkler[2]considered the invertibility of pq for general matrix projectors p,q.Koliha and Rakocevic[3]studied the invertibility of the sum p+q and described the relationship between the invertibility of p-q and p+q for idempotents p and q in a ring.Later,Koliha and Rakocevic[4]obtained the equivalent conditions for the invertibility of p-q in a ring.

        Many authors considered Drazin invertibility in different sets.For example,Deng[5]considered the Drazin inverse of the difference and the product of projections in Hilbert spaces.Deng and Wei[6]presented the formulae for the Drazin inverse involving idempotent bounded linear operators in Banach spaces.More results on the Drazin inverse of the difference and the product of idempotents can be found in Refs.[7- 9].

        In this paper,we present the formulae for the Drazin inverse of the difference and the product of idempotents in a ring.Moreover,the equivalent relationships of Drazin inverse involving idempotents are established.Hence,the results in Refs.[5- 6]are extended to a general ring case.Note that dimensional analysis and spectral decompositions cannot be used in a ring case.The results in this paper are proved by a purely algebraic method.

        1 Some Lemmas

        In what follows,p,q always mean any two idempotents in a ring R.We first state several known results in the form of lemmas.

        Lemm a 1[10]Let S={p-q,1-pq,p-pq,p-qp,p-pqp,1-qp,q-pq,q-qp,p+q-pq}.If one of the elements in the set S is Drazin invertible,then all elements in S are Drazin invertible.

        Lemma 2[10]The following statements are equivalent:

        1)pq∈RD;

        2)1-p-q∈RD;

        3)(1-p)(1-q)∈RD.

        Lemm a 3[11](Cline’s formula) Let a,b∈RD.Then(ba)D=b((ab)D)2a.

        Lemm a 4[1]Let a,b∈RDw ith ab=ba.Then(ab)D=bDaD=aDbD.

        Lemma 5[12]Let a,b∈R.If 1-ab∈RDwith ind(1-ab)=k,then 1-ba∈RDw ith ind(1-ba)=k and

        2 M ain Results

        In this section,we present some formulae on the Drazin inverse of the difference and the product of idempotents of ring R.

        Definition 1 Let p-q∈RD.Define F,G and H as F=p(p-q)D,G=(p-q)Dp,and H=(p-q)D(p-q).

        Theorem 1 Let p-q∈RD.Then F,G and H above are idempotents and

        1)F=(p-q)D(1-q);

        2)G=(1-q)(p-q)D.

        Proof Since p,q are idempotents,we obtain p(pq)2=(p-q)2p=p-pqp.Note that a∈RDand ab=ba imply aDb=baDby Theorem 1 of Ref.[1].It follows that p∈comm((p-q)D)2.Hence,we have

        Next,we prove that F is idempotent.From p(p-q)D=(p-q)D(1-q),we have

        Sim ilarly,G2=G=(1-q)(p-q)D.It is clear that H is idempotent and

        Sim ilarly,we obtain more relationships among F,G and H.

        Corollary 1 Let p-q∈RD.Then

        1)q(p-q)D=(p-q)D(1-p);

        2)(p-q)Dq=(1-p)(p-q)D;

        3)qH=Hq;

        4)G(1-q)=(1-q)F.

        Proof 1)and 2)can be obtained by a sim ilar way of Theorem 1.

        3)Since H=(p-q)D(p-q),we have

        4)By Theorem 1,we have

        Proposition 1 Let p-q∈RD.Then

        1)Fp=pG=pH=Hp;

        2)qHq=qH=Hq=HqH.

        Proof 1)It is clear that Fp=pG,we only need to show pG=pH and pH=Hp.

        According to Theorem 1,we obtain

        Hence,1)holds.

        2)Note that qH=Hq in 3)of Corollary 1.We obtain that qHq=(Hq)q=Hq.Since H is idempotent,HqH=H2q=Hq.

        Thus,qHq=qH=Hq=HqH.

        The follow ing theorems,themain results of this paper,give the formulae of the Drazin inverses of the difference and the product of idempotents in a ring R.

        Theorem 2 Let p-q∈RD.Then

        1)(1-pqp)D=[(p-q)D]2p+1-p;

        2)(p-pqp)D=[(p-q)D]2p=p[(p-q)D]2;

        3)(p-pq)D=p[(p-q)D]3;

        4)(p-qp)D=[(p-q)D]3p;

        5)If ind(p-q)=k,then

        Proof 1)As 1-pqp=(p-q)2p+1-p,[(pq)2]D=[(p-q)D]2and(p-q)2p(1-p)=(1-p)(pq)2p=0;then(1-pqp)D=[(p-q)D]2p+1-p by Corollary 1 of Ref.[1].

        2)Observing that p-pqp=p(p-q)2=(p-q)2p,we obtain(p-pqp)D=[(p-q)D]2p=p[(p-q)D]2from Lemma 4.

        3)Let x=p[(p-q)D]3.We prove that x is the Drazin inverse of p-pq by show ing the follow ing conditions hold.

        ①From p(p-q)2=(p-q)2p=(p-pq)p,it follows that

        ②Note that(p-pq)x=p(p-q)D.We have

        ③Since(p-pq)x=p(p-q)D,we obtain that

        According to pH=Hp and qH=Hq,it follows that p(p-q)(p-q)π=(p-q)πp(p-q).By induction,one can obtain[p(p-q)]m=p(p-q)2m-1.Take m≥ind(p-q),then[p(p-q)(p-q)π]m=p(p-q)2m-1(p-q)π=0.This implies that(p-pq)-(p-pq)2x is nilpotent.

        Therefore,(p-pq)D=p[(p-q)D]3.

        4)Use a similar proof of 3).

        5)It follows from Lemma 1 that 1-pq∈RD.Lemma 5 guarantees that

        Substituting Eq.(2)into Eq.(1),we have

        Theorem 3 Let 1-p-q∈RD.Then

        1)(pqp)D=[(1-p-q)D]2p=p[(1-p-q)D]2;

        2)(pq)D=[(1-p-q)D]4pq.

        Proof 1)By pqp=p(1-p-q)2=(1-p-q)2p and Lemma 4,it follows that(pqp)D=[(1-p-q)D]2p=p[(1-p-q)D]2.

        2)From pq=ppq and Lemma 3,we have(pq)D=p[(pqp)D]2pq=[(pqp)D]2pq.According to Eq.(1),we obtain(pq)D=[(pqp)D]2pq=[(1-p-q)D]4pq.

        Deng[5]and Li[13]considered the following result for projections in Hilbert spaces,C*-algebras,respectively.Indeed,they still hold for idempotents in a ring.

        Theorem 4 Let pq∈RD.Then

        1)(pq)D=(pqp)D-p[(1-q)(1-p)]D;

        2)(pq)Dpq=(pqp)Dpq.

        Proof 1)By 4)of Theorem 2,we have(p-qp)D=[(p-q)D]3p and(q-pq)D=[(q-p)D]3q=-[(pq)D]3q.

        Hence,

        We replace p by 1-p in Eq.(3)to obtain

        Multiplying Eq.(4)by p on the left yields

        Note that p(pq)D=p(pq)(pq)D(pq)D=(pq)Dand Theorem 3.We have

        2)By Lemma 3,we have

        The proof is completed.

        Theorem 5 Let1-pq∈RD.Then p-q∈RDand

        Proof By 5)of Theorem 2,we have

        Substituting p and q by 1-p and 1-q,respectively,in Eq.(6),we obtain

        Multiplying Eq.(6)by p-pq on the right yields

        Multiplying Eq.(7)by pq-p on the right yields

        From(8)and(9),one can obtain

        The proof is complete.

        Let p,q be two idempotents in a Banach algebra.Then,p+q∈RDif and only if p-q∈RD.However,in general,this need not be true in a ring.For example,let R=Z and p=q=1.Then p-q=0∈RD,but p+q=2?RD.Next,we consider what conditions p and q satisfy,and p-q∈RDimplies that p+q∈RD.

        The following result,proved by Deng and Wei[6]for bounded linear operators in Banach spaces,indeed holds in a ring.

        Theorem 6 Let p-q∈RD.If F,G and H are given by Definition 1 and(p+q)(p-q)π∈Rnil,then

        1)(p+q)D=(p-q)D(p+q)(p-q)D;

        2)(p-q)D=(p+q)D(p-q)(p+q)D;

        3)(p-q)π=(p+q)π;

        4)(p-q)D=F+G-H;

        5)(p+q)D=(2G-H)(F+G-H).

        Koliha et al.[4]proved that p-q∈R-1implies that p+q∈R-1for idempotents p and q in a ring R.Hence,we have the follow ing results.

        Corollary 2[14]Let p-q∈R-1.If F=p(p-q)-1and G=(p-q)-1p,then

        1)(p+q)-1=(p-q)-1(p+q)(p-q)-1;

        2)(p-q)-1=(p+q)-1(p-q)(p+q)-1;

        3)(p-q)-1=F+G-1;

        4)(p+q)-1=(2G-1)(F+G-1).

        Corollary 3 Let p-qp∈RD,and then(p-q)D=(p-q)2[(p-qp)D-(q-qp)D].

        Proof Since(p-qp)D=[(p-q)D]3p and(q-qp)D=q[(q-p)D]3,we obtain

        [1]Drazin M P.Pseudo-inverses in associative rings and semigroups[J].Amer Math Monthly,1958,65(7):506-514.

        [2]GroβJ,Trenkler G.Nonsingularity of difference of two oblique projectors[J].SIAM JMatrix Anal Appl,1999,21(2):390- 395.

        [3]Koliha J J,Rakocevic V.Invertibility of the difference of idempotents[J].Linear Multilinear Algebra,2003,50(1):97- 110.

        [4]Koliha JJ,Rakocevic V.Invertibility of the sum of idempotents[J].Linear Multilinear Algebra,2002,50(4):285- 292.

        [5]Deng C Y.The Drazin inverses of products and differences of orthgonal projections[J].J Math Anal Appl,2007,355(1):64- 71.

        [6]Deng C Y,Wei Y M.Characterizations and representations of the Drazin inverse involving idempotents[J].Linear Algebra Appl,2009,431(9):1526- 1538.

        [7]Deng C Y.Characterizations and representations of group inverse involving idempotents[J].Linear Algebra Appl,2011,434(4):1067- 1079.

        [8]Koliha J J,Cvetkovc-Ilic D S,Deng C Y.Generalized Drazin invertibility of combinations of idempotents[J].Linear Algebra Appl,2012,437(9):2317- 2324.

        [9]Zhang S F,Wu J D.The Drazin inverse of the linear combinations of two idempotents in the Banach algebra[J].Linear Algebra Appl,2012,436(9):3132- 3138.

        [10]Chen J L,Zhu H H.Drazin invertibility of product and difference of idempotents in a ring[J].Filomat,2014,28(6):1133- 1137.

        [11]Cline R E,An application of the representation for the generalized inverse of a matrix[J].MRC Technical Report,1965.

        [12]Castro-Gonzalez N,Mendes-Araujo C,Patricio P.Generalized inverses of a sum in rings[J].Bull AustMath Soc,2010,82(1):156- 164.

        [13]Li Y.The Drazin inverses of products and differences of projections in a C*-algebra[J].JAustMath Soc,2009,86(2):189- 198.

        [14]Koliha J J,Rakocevic V,Straskraba I.The difference and sum of projectors[J].Linear Algebra Appl,2004,388:279- 288.

        環(huán)中涉及冪等元的Drazin逆的表示

        朱輝輝 陳建龍

        (東南大學(xué)數(shù)學(xué)系,南京211189)

        稱環(huán)R中的元素a為Drazin可逆的,如果存在R中的元素b使得ab=ba,bab=b,a-a2b是冪零的.上述元素b如果存在則是唯一的,并表示為aD.給出了一些環(huán)中涉及冪等元的Drazin逆的等價(jià)條件.作為應(yīng)用,給出了環(huán)中冪等元的積與差的Drazin逆的公式.因此,一些關(guān)于Banach空間中有界線性算子的結(jié)果被推廣到環(huán)上.

        冪等元;Drazin逆;譜冪等元

        O151.2

        10.3969/j.issn.1003-7985.2015.03.023

        2013-10-14.

        Biographies:Zhu Huihui(1985—),male,graduate;Chen Jianlong(corresponding author),male,doctor,professor,jlchen@seu.edu.cn.

        s:The National Natural Science Foundation of China(No.11371089),the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120092110020),the Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXLX13-072),the Scientific Research Foundation of Graduate School of Southeast University,the Fundamental Research Funds for the Central Universities(No.22420135011).

        :Zhu Huihui,Chen Jianlong.Representations of the Drazin inverse involving idempotents in a ring[J].Journal of Southeast University(English Edition),2015,31(3):427- 430.

        10.3969/j.issn.1003-7985.2015.03.023

        猜你喜歡
        數(shù)學(xué)系界線東南大學(xué)
        一個(gè)人就是一個(gè)數(shù)學(xué)系
        ——丘成桐
        《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
        《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
        《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
        《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
        The Beasts Within
        有界線性算子的Drazin逆的逆序律
        北京師范大學(xué)數(shù)學(xué)系教授葛建全
        關(guān)于進(jìn)一步加強(qiáng)行政區(qū)域界線管理維護(hù)邊界地區(qū)社會(huì)穩(wěn)定的意見
        論Gross曲線的二次扭
        国产一区二区三区视频在线观看 | 国产91在线免费| 精选二区在线观看视频| 欧美国产伦久久久久久久| 男人的天堂av你懂得| 欧美老肥婆牲交videos| 久久精品人人做人人爽| 亚洲日韩区在线电影| 久久久精品网站免费观看| 人人爽久久久噜人人看| 丰满老熟妇好大bbbbb| 国产91一区二这在线播放| 日本黄网色三级三级三级| 免费无码不卡视频在线观看| 久久久精品2019免费观看| 日中文字幕在线| 国产麻豆一区二区三区在线播放| 日韩女优av一区二区| 中文字幕天天躁日日躁狠狠躁免费 | 亚洲成人观看| 人妻系列少妇极品熟妇| 欧美性色欧美a在线播放| 色综合久久精品亚洲国产| 全部孕妇毛片| 亚洲aⅴ久久久噜噜噜噜| 91中文字幕精品一区二区| 欧美成人精品第一区| 老色鬼永久精品网站| 成人综合久久精品色婷婷| 全亚洲高清视频在线观看| 日韩精品人妻中文字幕有码| 国产欧美亚洲精品a| 中文字幕无码免费久久9| 国产精品人伦一区二区三| 一本色道无码道在线观看| 精品人妻VA出轨中文字幕| 亚洲国产成人久久精品美女av| 人妻丝袜中文无码av影音先锋专区| 四虎影库久免费视频| 日本成熟妇人高潮aⅴ| 中文有码人妻字幕在线|