亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        On the Dedekind Sums and Two-Term Exponential Sums?

        2015-06-01 07:34:36DiHANTingtingWANG

        Di HAN Tingting WANG

        1 Introduction

        Let q be a natural number and h an integer prime to q.The classical Dedekind sums

        where

        describes the behaviour of the logarithm of the eta-function(see[10–11])under modular transformations.About the arithmetical properties of S(h,q),one can find them in[1,6,9,13–14].

        Recently,the second author and Zhang[12]studied the computational problem of the mean value

        and obtained several interesting computational formulae for it,where the two-term exponential sums C(m,n,k,h;q)are defined as follows:

        e(y)=e2πiyand≡ 1 mod p.Some results related to C(m,n,k,h;q)can be found in references[2–5].

        In this paper as a note of[12],we consider the hybrid mean value

        and then use the analytic method to give an exact computational formula for(1.1).That is,we shall prove the following theorem.

        Theorem 1.1For any odd prime p>3,we have the computational formulae:

        (A)If p≡1 mod 4,then

        (B)If p=12k+11,and u0is the solution of the congruent equation u3≡?4 mod p,then

        (C)If p=12k+7,and the congruent equation u3≡?4 mod p has no solution,then

        (D)If p=12k+7,and the congruent equation u3≡ ?4 mod p has three integer solutions u1,u2and u3,then

        where () denotes the Legendre’s symbol,and hpdenotes the class number of the quadratic field

        It is clear from this theorem that we may immediately deduce the following corollary.

        Corollary 1.1Let p=12k+7 be an odd prime such that 4 is not a cubic residue mod p,and then we have the identity

        For general integers q≥3 and k≥4,whether there exists an exact computational formula for the mean value

        and

        is an open problem,where p is an odd prime.

        2 Several Lemmas

        In this section,we shall give several lemmas,which are necessary in the proof of our theorem.First we have the following lemma.

        Lemma 2.1Let p>3 be a prime.Then for any integer n with(n,p)=1,we have the identity

        wheredenotes the Legendre’s symbol.

        ProofSee Lemma 1 of[12].

        Lemma 2.2Let p>3 be a prime with p≡3 mod 4,and then we have the identities:

        (U)If p=12k+11,and u0satis fies the congruence u3≡?4 mod p,then

        (V)If p=12k+7,and the congruence u3≡?4 mod p has no solution,then

        (W)If p=12k+7 and the congruence u3≡ ?4 mod p has three solutions u1,u2and u3,then

        ProofFirst let a+b=u,and then from the properties of the Legendre’s symbol,we have the identity

        Now for prime p>3,from Lemma 2.1 we have the identity

        If p=12k+11,then=1 and(3,p?1)=1.This time,if u0passes through a residue system mod p,thenalso passes through the residue system,so there exists one and only one integer 1≤u0≤p?1 such that the congruence≡?4 mod p or 4≡0 mod p.For other u,we have

        By Lemma 2.1,noting that

        we have

        So if p=12k+11,then combining(2.1)–(2.3),we have

        If p=12k+7,then= ?1 and(3,p?1)=3.So the number of the solutions of the congruence equation u3≡?4 mod p is 0 or 3.

        (I)If the equation u3≡?4 mod p has no solutions,then from the method of proving(2.4),we have

        (II)If the equation u3≡ ?4 mod p has three solutions:u1,u2and u3.Then=?1,i=1,2,3.From the method of proving(2.4),we have

        Now Lemma 2.2 follows from(2.4)–(2.6).

        Lemma 2.3Let p>3 be a prime,and χ be any odd character mod p.Then we have the identities:

        (a)If p≡1 mod 4,then

        (b)If p=12k+11,and u0satisfies the congruent equation u3≡?4 mod p,then

        (c)If p=12k+7,and the congruent equation u3≡?4 mod p has no solutions,then

        (d)If p=12k+7,and the congruent equation u3≡ ?4 mod p has three solutions u1,u2and u3,then

        ProofFrom the Definition and the properties of the Gauss sums τ(χ),we have

        where we have used the fact that τ(χ)·τ()= ?p,if χ is an odd character mod p.

        If p ≡ 1 mod 4,then for any odd character χ mod p,2is a non-principal character mod p.So we have

        Therefore,from(2.7)we can deduce that

        If p ≡ 3 mod 4,then for any non-real odd character χ mod p,2is a non-principal character mod p.So we also have

        If χ is the Legendre’s symbol,then χ2is the principal character mod p,and

        Therefore,from(2.2),(2.7)and(U)of Lemma 2.2,we can deduce that if p=12k+11,and u0satisfies the congruent equation u3≡?4 mod p,then

        If p=12k+7,and the congruent equation u3≡?4 mod p has no solutions,then from(2.2),(2.7)and(V)of Lemma 2.2,we can deduce that

        If p=12k+7,and the congruent equation u3≡ ?4 mod p has three solutions u1,u2and u3,then from(2.2),(2.7)and(W)of Lemma 2.2,we can deduce that

        Now Lemma 2.3 follows from(2.8)–(2.11).

        Lemma 2.4Let p=12k+7 be an odd prime such that the congruent equation u3≡?4 mod p has three integer solutions u1,u2and u3.Then we have the identity

        where ()denotes the Legendre’s symbol.

        ProofSince u1,u2and u3are the three integer solutions of the congruent equation u3≡?4 mod p,from the properties of the polynomial congruence,we have

        (u?u1)(u?u2)(u?u3)≡0 mod p

        or

        u3?u2(u1+u2+u3)+u(u1u2+u2u3+u3u1)?u1u2u3≡0 mod p.

        Comparing this formula with u3+4≡0 mod p,we have the congruences

        u1+u2+u3≡0 mod p, u1u2u3≡?4 mod p

        and

        u1u2+u2u3+u3u1≡0 mod p.

        Then using these three congruences we have

        From this identity and noting thatwe may immediately deduce

        This proves Lemma 2.4.

        Lemma 2.5Let q>2 be an integer,and then for any integer a with(a,q)=1,we have the identity

        where L(1,χ)denotes the Dirichlet L-function corresponding to the character χ mod d.

        ProofSee Lemma 2 of[14].

        3 Proof of Theorem 1.1

        In this section,we shall complete the proof of our theorem.By Lemma 2.5,we have

        If p≡1 mod 4,then from(3.1),the Definition of C(m,n,3,1;p)and(a)of Lemma 2.3,we have

        If p=12k+11,and u0is the solution of the congruent equation u3≡ ?4 mod p,then noting that L(1,χ2)=(see[7,p.50]),from(3.1),the Definition of C(m,n,3,1;p)and(b)ofLemma 2.3,we have

        If p=12k+7,and the congruent equation u3≡ ?4 mod p has no solutions,then from(3.1),the Definition of C(m,n,3,1;p)and(c)of Lemma 2.3,we have

        If p=12k+7,and the congruent equation u3≡?4 mod p has three solutions u1,u2and u3,then from(3.1),Lemma 2.4,the Definition of C(m,n,3,1;p)and(d)of Lemma 2.3,we have

        Now our conclusion follows from(3.2)–(3.5).This completes the proof of our theorem.

        AcknowledgementThe authors would like to thank the referees for their very helpful and detailed comments,which have signi ficantly improved the presentation of this paper.

        [1]Apostol,T.M.,Modular Functions and Dirichlet Series in Number Theory,Springer-Verlag,New York,1976.

        [2]Cochrane,T.and Zheng,Z.,Upper bounds on a two-term exponential sums,Sci.in China(Series A),44,2001,1003–1015.

        [3]Cochrane,T.,Exponential sums modulo prime powers,Acta Arithmetica,101,2002,131–149.

        [4]Cochrane,T.and Pinner,C.,A further re finement of Mordell’s bound on exponential sums,Acta Arithmetica,116,2005,35–41.

        [5]Cochrane,T.and Pinner,C.,Using Stepanov’s method for exponential sums involving rational functions,Journal of Number Theory,116,2006,270–292.

        [6]Conrey,J.B.,Fransen,E.,Klein,R.and Scott,C.,Mean values of Dedekind sums,Journal of Number Theory,56,1996,214–226.

        [7]Davenport,H.,Multiplicative Number Theory,Springer-Verlag,New York,1980.

        [8]Hua,L.K.,Introduction to Number Theory,Science Press,Beijing,1979.

        [9]Jia,C.,On the mean value of Dedekind sums,Journal of Number Theory,87,2001,173–188.

        [10]Rademacher,H.,On the transformation of log η(τ),J.Indian Math.Soc.,19,1955,25–30.

        [11]Rademacher,H.and Grosswald,E.,Dedekind Sums,Carus Mathematical Monographs,Math.Assoc.Amer.,Washington D.C.,1972.

        [12]Wang,T.and Zhang,W.,On the hybrid mean value of Dedekind sums and two-term exponential sums,Frontiers of Mathematics in China,6,2011,557–563.

        [13]Zhang,W.,A note on the mean square value of the Dedekind sums,Acta Mathematica Hungarica,86,2000,275–289.

        [14]Zhang,W.,On the mean values of Dedekind sums,Journal de Théorie des Nombres de Bordeaux,8,1996,429–442.

        亚洲精品中文字幕二区| 国产精品_国产精品_k频道| 妇女性内射冈站hdwwwooo | 国产精品毛片极品久久| av免费不卡国产观看| 成人h动漫精品一区二区| 亚洲熟女av超清一区二区三区| 国产在线视频一区二区三区| 浓毛老太交欧美老妇热爱乱| 婷婷中文字幕综合在线| 久久无码一一区| 国产伦精品一区二区三区在线| 久久婷婷综合缴情亚洲狠狠| 亚洲七久久之综合七久久| 免费一区在线观看| 婷婷开心五月综合基地| 一区二区国产av网站| 亚洲日韩国产一区二区三区在线 | 69av视频在线| 自拍偷区亚洲综合第一页| 成人网站在线进入爽爽爽| 大学生被内谢粉嫩无套| 亚洲无码啊啊啊免费体验| 国产亚洲精品在线视频| 天下第二社区在线视频| 亚洲天堂中文| 日韩激情av不卡在线| 肥老熟妇伦子伦456视频| 国产又黄又猛又粗又爽的a片动漫| 激,情四虎欧美视频图片| 国产视频激情在线观看| 无码尹人久久相蕉无码| 亚洲AV永久无码精品导航| 日本免费一区二区精品| 俺去啦最新地址| 欧美日本日韩aⅴ在线视频| 亚洲传媒av一区二区三区 | 一本大道无码人妻精品专区| 久热这里只有精品99国产| 亚洲一区二区三区一区| 日本熟妇人妻xxxx|