林紅波, 馬海濤, 李月, 邵冬陽
吉林大學(xué)信息工程系, 長(zhǎng)春 130012
?
基于SW統(tǒng)計(jì)量的自適應(yīng)時(shí)頻峰值濾波壓制地震勘探隨機(jī)噪聲研究
林紅波, 馬海濤*, 李月, 邵冬陽
吉林大學(xué)信息工程系, 長(zhǎng)春 130012
由于金屬礦區(qū)地震記錄中隨機(jī)噪聲性質(zhì)復(fù)雜且信噪比低,常規(guī)降噪方法難以達(dá)到預(yù)期的濾波效果.時(shí)頻峰值濾波(TFPF)方法是實(shí)現(xiàn)低信噪比地震勘探記錄中隨機(jī)噪聲壓制的有效方法,但其在復(fù)雜地震勘探隨機(jī)噪聲下時(shí)窗參數(shù)優(yōu)化問題仍難以解決.本文充分利用地震勘探噪聲的統(tǒng)計(jì)特性,結(jié)合Shapiro-Wilk(SW)統(tǒng)計(jì)量辨識(shí)地震勘探記錄中的微弱有效信號(hào),提出基于SW統(tǒng)計(jì)量的自適應(yīng)時(shí)頻峰值濾波降噪方法(S-TFPF).在S-TFPF方案中,對(duì)于有效信號(hào)集中區(qū),S-TFPF方法根據(jù)信號(hào)頻率特征,選擇有利于信號(hào)保持的較短時(shí)窗長(zhǎng)度;對(duì)于噪聲集中區(qū),按噪聲方差自適應(yīng)增加時(shí)窗長(zhǎng)度,增強(qiáng)隨機(jī)噪聲壓制能力.S-TFPF應(yīng)用于合成記錄和共炮點(diǎn)記錄的濾波結(jié)果表明,與傳統(tǒng)時(shí)頻峰值濾波方法相比,S-TFPF方法可以有效抑制低信噪比地震勘探記錄中的隨機(jī)噪聲,更好地恢復(fù)出同相軸.
地震信號(hào)處理; SW檢驗(yàn); 隨機(jī)噪聲; 自適應(yīng); 時(shí)頻峰值濾波
隨著國民經(jīng)濟(jì)對(duì)礦產(chǎn)資源需求的增長(zhǎng),利用地震勘探方法探查礦產(chǎn)資源逐步向深部礦床發(fā)展(Tang et al., 2013;梁鋒等,2014;祁光等,2014;肖曉等, 2014),所獲得的地震勘探記錄信噪比低,且噪聲性質(zhì)復(fù)雜,嚴(yán)重干擾了地震勘探記錄中有效信號(hào)的辨識(shí)及后續(xù)處理.因此,壓制低信噪比地震勘探記錄中的復(fù)雜隨機(jī)噪聲、提取有效信號(hào),在地震勘探信號(hào)處理中尤為重要(徐明才等,2004).近年來,人們先后發(fā)展了多種金屬礦區(qū)地震勘探噪聲壓制方法.韓佳君等(2010)基于波動(dòng)方程理論對(duì)散射噪聲進(jìn)行壓制,并取得了很好的噪聲壓制效果.王權(quán)峰等(2012)將小波方法和盲分離JADE算法結(jié)合壓制金屬礦原始記錄中的強(qiáng)噪聲.針對(duì)金屬礦區(qū)地震數(shù)據(jù)噪聲種類多的特點(diǎn),李陽等(2012)聯(lián)合F-K濾波,Radon變換方法和Curvelet變換對(duì)金屬礦區(qū)地震數(shù)據(jù)進(jìn)行降噪處理,噪聲壓制效果顯著.然而,傳統(tǒng)噪聲壓制方法對(duì)低信噪比地震勘探記錄中隨機(jī)噪聲壓制和有效信號(hào)保持效果不理想.
時(shí)頻峰值濾波(TFPF)方法是一種適合于低信噪比記錄的信號(hào)增強(qiáng)方法(Boashash and Mesbah,2004).近年來,TFPF應(yīng)用于地震勘探隨機(jī)噪聲壓制,在處理低信噪比地震勘探記錄方面具有一定的優(yōu)勢(shì)(林紅波等,2011;Li et al., 2013; Lin et al., 2013).時(shí)頻峰值濾波方法無失真地恢復(fù)信號(hào)的條件是噪聲為高斯白噪聲,信號(hào)接近線性.然而,實(shí)際地震資料無法完全滿足信號(hào)線性的假設(shè),導(dǎo)致TFPF估計(jì)強(qiáng)非線性地震勘探信號(hào)時(shí)存在偏差.傳統(tǒng)時(shí)頻峰值濾波方法通過減小時(shí)窗長(zhǎng)度,使信號(hào)局部線性化,從而降低地震信號(hào)估計(jì)偏差.但較短的窗長(zhǎng)弱化了噪聲的高斯白性質(zhì),導(dǎo)致時(shí)頻峰值濾波方法去噪能力降低.因此,為了在壓制隨機(jī)噪聲同時(shí)有效保持信號(hào),時(shí)頻峰值濾波方法采用時(shí)變窗長(zhǎng)濾波方案.時(shí)變窗長(zhǎng)TFPF方法的總體思想是,利用地震信號(hào)特征將地震記錄劃分為信號(hào)區(qū)和噪聲區(qū),在信號(hào)集中部分采用較小時(shí)窗參數(shù),滿足信號(hào)無偏估計(jì)的線性條件;在噪聲區(qū)采用較大的時(shí)窗參數(shù),更好地壓制噪聲,其中噪聲和信號(hào)的精確劃分至關(guān)重要(Lin et al., 2014, 2015; Zhang et al., 2015).但在強(qiáng)復(fù)雜噪聲背景下,僅考慮信號(hào)特征而不考慮噪聲特性,很難準(zhǔn)確辨識(shí)低信噪比地震勘探記錄中的有效信號(hào),導(dǎo)致時(shí)變窗長(zhǎng)時(shí)頻峰值濾波去噪效果不理想.
本文結(jié)合隨機(jī)噪聲統(tǒng)計(jì)特性,提出了基于Shapiro-Wilk (SW)統(tǒng)計(jì)量的自適應(yīng)時(shí)頻峰值濾波方法(S-TFPF).Shapiro-Wilk算法是對(duì)時(shí)間序列高斯性檢驗(yàn)的有效方法,利用統(tǒng)計(jì)學(xué)中的SW高斯性檢驗(yàn)對(duì)地震記錄測(cè)量可知,SW統(tǒng)計(jì)量值陡然變低部分對(duì)應(yīng)于地震反射信號(hào).因此,可根據(jù)SW統(tǒng)計(jì)量劃分地震勘探記錄中的有效信號(hào)和隨機(jī)噪聲,分區(qū)域調(diào)整時(shí)頻峰值濾波時(shí)窗參數(shù),在噪聲集中區(qū)采用較長(zhǎng)時(shí)窗,而在信號(hào)集中部分選擇有利于信號(hào)無偏估計(jì)的較短時(shí)窗,提高時(shí)頻峰值濾波方法壓制隨機(jī)噪聲且無失真恢復(fù)有效信號(hào)的能力.
本文結(jié)構(gòu)安排如下,首先簡(jiǎn)述時(shí)頻峰值濾波算法原理;然后根據(jù)SW檢驗(yàn)分析地震勘探隨機(jī)噪聲性質(zhì),并在此基礎(chǔ)上提出S-TFPF方法;最后,通過合成數(shù)據(jù)和實(shí)際資料處理對(duì)該方法進(jìn)行了驗(yàn)證.
地震勘探記錄可以表示為反射信號(hào)與隨機(jī)噪聲的疊加,公式為
s(t)=x(t)+n(t),
(1)
其中x(t)為反射地震信號(hào),n(t)為隨機(jī)噪聲.時(shí)頻峰值濾波方法壓制隨機(jī)噪聲分為兩步,首先,TFPF對(duì)地震勘探記錄s(t)頻率調(diào)制,生成解析信號(hào)為
(2)
其中exp為指數(shù)函數(shù).
然后,TFPF通過求取解析信號(hào)的偽維格納-威力分布(PWVD)的峰值,獲得有效信號(hào)的估計(jì)為
},
(3)
其中Wz(t,f)為解析信號(hào)的PWVD,定義為
×exp(-j2πfτ)dτ,
(4)
其中h(τ)為時(shí)窗函數(shù),*表示復(fù)共軛.
分析TFPF原理可知,TFPF方法通過頻率調(diào)制過程,將有效信號(hào)編碼為解析信號(hào)zs(t)的瞬時(shí)頻率,再通過求解解析信號(hào)時(shí)頻分布的峰值頻率估計(jì)瞬時(shí)頻率.若有效信號(hào)x(t)是關(guān)于時(shí)間的線性函數(shù),且噪聲為高斯白噪聲,TFPF可以獲得有效信號(hào)的無偏估計(jì).然而,地震勘探信號(hào)為時(shí)間的非線性函數(shù),且隨機(jī)噪聲性質(zhì)復(fù)雜,TFPF處理實(shí)際地震勘探數(shù)據(jù)時(shí)難以完全滿足信號(hào)無偏估計(jì)條件.在實(shí)際應(yīng)用中,TFPF通過減小時(shí)窗長(zhǎng)度,使解析信號(hào)的瞬時(shí)頻率在時(shí)窗內(nèi)近似線性,從而降低信號(hào)估計(jì)的偏差,更好地恢復(fù)有效地震信號(hào).但較短的時(shí)窗長(zhǎng)度降低TFPF去噪效果.因此,采用固定窗長(zhǎng)的時(shí)頻峰值濾波方法難以同時(shí)改善隨機(jī)噪聲壓制和信號(hào)保持效果.
為了在壓制復(fù)雜隨機(jī)噪聲過程中有效保持信號(hào),TFPF方法應(yīng)根據(jù)信號(hào)和噪聲特性自適應(yīng)調(diào)整時(shí)窗參數(shù),這就需要在濾波前劃分出地震勘探記錄中的有效信號(hào)和噪聲區(qū)域.在地震勘探信號(hào)處理中,通常假設(shè)地震勘探隨機(jī)噪聲服從高斯分布,而地震反射信號(hào)為非高斯信號(hào),他們的高斯統(tǒng)計(jì)特性存在較大差異.本文引入SW高斯性檢驗(yàn)方法,借助地震勘探隨機(jī)噪聲和有效信號(hào)SW統(tǒng)計(jì)量的差異,辨識(shí)地震勘探記錄中的有效信號(hào).
3.1 SW檢驗(yàn)
SW檢驗(yàn)算法是檢驗(yàn)隨機(jī)序列非高斯性的統(tǒng)計(jì)學(xué)方法(Shapiro and Wilk, 1965).其基本思想是在數(shù)據(jù)服從正態(tài)分布的假設(shè)下,利用線性回歸計(jì)算SW檢驗(yàn)統(tǒng)計(jì)量,度量待測(cè)數(shù)據(jù)順序統(tǒng)計(jì)量與標(biāo)準(zhǔn)高斯分布順序統(tǒng)計(jì)量的相關(guān)程度.相關(guān)程度越高,待測(cè)數(shù)據(jù)越近似服從正態(tài)分布.SW檢驗(yàn)統(tǒng)計(jì)量定義為
(5)
其中y為N個(gè)獨(dú)立樣本觀測(cè)值按非降序排列的順序統(tǒng)計(jì)量, 即
y1 (6) 圖1 地震勘探隨機(jī)噪聲記錄 圖2 地震勘探噪聲高斯性檢驗(yàn)結(jié)果 圖3 地震勘探噪聲高斯性檢驗(yàn)統(tǒng)計(jì)量 利用SW檢驗(yàn)算法,我們分析了沙漠某礦區(qū)100道地震勘探隨機(jī)噪聲記錄,如圖1所示.我們首先對(duì)該隨機(jī)噪聲記錄進(jìn)行SW檢驗(yàn),SW檢驗(yàn)結(jié)果如圖2所示.對(duì)SW檢驗(yàn)結(jié)果進(jìn)行統(tǒng)計(jì)可知,在5%的置信區(qū)間下, 97%的噪聲記錄的SW檢驗(yàn)結(jié)果低于高斯判決門限(橫線),被判定為非高斯噪聲.由此可知,地震勘探隨機(jī)噪聲不滿足理想高斯分布假設(shè),具有非高斯性.我們進(jìn)一步計(jì)算隨機(jī)噪聲記錄的SW統(tǒng)計(jì)量W,并與理想高斯白噪聲和模擬地震信號(hào)的SW統(tǒng)計(jì)量進(jìn)行比較.隨機(jī)噪聲的SW統(tǒng)計(jì)量值在0.926到0.997之間變化(圖3),平均值為0.985(表1).與之相比,理想高斯白噪聲的SW統(tǒng)計(jì)量的平均值為0.998,接近1;而由Ricker子波構(gòu)建的模擬地震信號(hào)的SW統(tǒng)計(jì)量W的值僅為0.297,接近0(表1).對(duì)比分析上述結(jié)果表明,地震勘探隨機(jī)噪聲記錄非高斯性較弱,其SW統(tǒng)計(jì)量與理想高斯噪聲接近,與有效信號(hào)相比差異較大. 表1 噪聲和信號(hào)的高斯性統(tǒng)計(jì)量值對(duì)比 我們進(jìn)一步分析含噪記錄的SW統(tǒng)計(jì)量.在處理實(shí)際金屬礦地震勘探記錄時(shí),由于隨機(jī)噪聲性質(zhì)較為復(fù)雜,隨機(jī)噪聲的SW統(tǒng)計(jì)量的值會(huì)有所降低.另一方面,由于有效信號(hào)受到隨機(jī)噪聲的干擾,含噪有效信號(hào)的SW統(tǒng)計(jì)量與無噪情況下相比有所提高.因此地震勘探記錄的信號(hào)部分與噪聲部分的SW統(tǒng)計(jì)量差異變小,不利于區(qū)分隨機(jī)噪聲和有效信號(hào).此外,TFPF獲得無偏估計(jì)的條件為噪聲服從高斯分布,復(fù)雜的非高斯噪聲不利于TFPF對(duì)有效信號(hào)進(jìn)行保真恢復(fù).因此,我們引入高斯化方法對(duì)地震勘探記錄預(yù)處理,增強(qiáng)隨機(jī)噪聲的高斯性,并盡可能地保持有效信號(hào)不變,進(jìn)而擴(kuò)大有效信號(hào)和隨機(jī)噪聲SW統(tǒng)計(jì)量的差異,提高基于SW統(tǒng)計(jì)量劃分有效信號(hào)和噪聲的精準(zhǔn)度. 高斯化的理論基礎(chǔ)為,若系統(tǒng)輸入為非高斯分布的平穩(wěn)隨機(jī)過程,且輸入過程的等效噪聲帶寬遠(yuǎn)大于系統(tǒng)的通頻帶,則可得到接近高斯分布的隨機(jī)過程(張堅(jiān)等,2011).基于高斯化思想,本文設(shè)計(jì)等波紋帶通濾波器預(yù)處理地震勘探記錄,并使其通頻帶范圍與有效信號(hào)帶寬一致.由于非高斯地震勘探隨機(jī)噪聲為平穩(wěn)隨機(jī)過程,其帶寬遠(yuǎn)大于等波紋帶通濾波器的通頻帶,因此利用該等波紋帶通濾波器預(yù)處理地震勘探記錄,可以將地震勘探隨機(jī)噪聲高斯化,且保持地震勘探信號(hào)不變. 我們以加入實(shí)際勘探噪聲的模擬地震信號(hào)(圖4a)為例分析高斯化前后SW統(tǒng)計(jì)量的變化.采用以當(dāng)前點(diǎn)為中心,窗長(zhǎng)為100采樣點(diǎn)的矩形滑動(dòng)窗截取樣本序列,分別計(jì)算樣本序列的SW統(tǒng)計(jì)量和高斯化SW統(tǒng)計(jì)量.含噪記錄中有效信號(hào)區(qū)的SW統(tǒng)計(jì)量W的值低于地震勘探噪聲集中區(qū)的W值(圖4b中虛線),但對(duì)應(yīng)于反射信號(hào)的W值與噪聲的W值差異不大;經(jīng)高斯化處理后(黑線),信號(hào)的W值降低,而隨機(jī)噪聲高斯化SW統(tǒng)計(jì)量的值增加到1附近,高斯化處理加大了噪聲和信號(hào)SW統(tǒng)計(jì)量的差異.上述結(jié)果表明,高斯化SW統(tǒng)計(jì)量值陡然下降對(duì)應(yīng)于有效地震信號(hào),能更好地辨識(shí)地震勘探記錄中有效信號(hào). 3.2 基于SW的自適應(yīng)TFPF 本文將SW統(tǒng)計(jì)量引入TFPF方法,利用地震勘探隨機(jī)噪聲和有效信號(hào)SW統(tǒng)計(jì)量的差異,提出基于SW統(tǒng)計(jì)量的TFPF時(shí)窗長(zhǎng)度的自適應(yīng)調(diào)整方案. 基于SW的自適應(yīng)時(shí)頻峰值濾波(S-TFPF)方法首先對(duì)地震勘探記錄高斯化預(yù)處理,然后對(duì)每道高斯化的地震數(shù)據(jù),以第j個(gè)樣本點(diǎn)為中心,采用滑動(dòng)窗獲取L個(gè)樣本觀測(cè)值,利用公式(5)計(jì)算SW統(tǒng)計(jì)量,記做第j個(gè)樣本的SW統(tǒng)計(jì)量Wj. 自適應(yīng)TFPF根據(jù)SW統(tǒng)計(jì)量的值計(jì)算窗長(zhǎng)度系數(shù)為 (7) WLj=0.384fs/fdj+ξjcσjn, (8) 其中fdj為信號(hào)主頻,fs為采樣頻率,σjn為噪聲方差,c為窗長(zhǎng)量化系數(shù).基于SW的自適應(yīng)TFPF方法可根據(jù)信號(hào)特征和噪聲強(qiáng)度自適應(yīng)調(diào)整時(shí)窗長(zhǎng)度,在信號(hào)部分,窗長(zhǎng)系數(shù)為零,時(shí)窗長(zhǎng)度取決于式(8)的第一項(xiàng),根據(jù)信號(hào)主頻調(diào)整時(shí)窗長(zhǎng)度,主頻越高,時(shí)窗長(zhǎng)度越??;而在噪聲集中區(qū),窗長(zhǎng)系數(shù)為1,此時(shí)S-TFPF的時(shí)窗長(zhǎng)度的增加項(xiàng)與噪聲方差成正比.噪聲強(qiáng)度越大,時(shí)窗長(zhǎng)度越長(zhǎng),隨機(jī)噪聲壓制效果越明顯. 圖4 含噪信號(hào)高斯檢驗(yàn)統(tǒng)計(jì)量 4.1 合成地震勘探記錄 為了驗(yàn)證S-TFPF方法的有效性,本文將其應(yīng)用于合成地震勘探記錄.圖5a為采用Ricker子波構(gòu)建的40道合成記錄,包含三個(gè)同相軸,視主頻分別為45 Hz、30 Hz和25 Hz,采樣間隔為1 ms.圖5b所示的含噪合成記錄存在較強(qiáng)隨機(jī)噪聲,信噪比為-5 dB.對(duì)含噪聲地震記錄分別采取固定窗長(zhǎng)為13樣本點(diǎn)的TFPF和S-TFPF方法降噪處理.與TFPF濾波結(jié)果(圖6a)相比, S-TFPF濾波結(jié)果的背景更干凈,同相軸更清晰、連續(xù)(圖6b).可見,S-TFPF在噪聲壓制和信號(hào)保持方面較TFPF方法得到改善.為進(jìn)一步分析S-TFPF濾波效果,任取一道濾波結(jié)果進(jìn)行時(shí)域波形對(duì)比和頻譜分析.從圖6c可以看出,與TFPF濾波結(jié)果(虛線)相比,S-TFPF濾波信號(hào)(實(shí)線)的幅度保持得更好,圖6d中頻譜對(duì)比也可見,S-TFPF方法對(duì)信號(hào)能量保持更好.上述結(jié)果表明,自適應(yīng)窗長(zhǎng)的S-TFPF具有更好地信號(hào)保持效果. 表2 信噪比和均方誤差比較 為了定量地描述濾波效果,分別對(duì)TFPF和S-TFPF濾波結(jié)果的信噪比(SNR)和均方誤差(MSE)進(jìn)行比較(表2),SNR和MSE分別表示為 (9) (10) 4.2 實(shí)際地震勘探記錄 實(shí)際資料處理時(shí)采用某礦區(qū)168道共炮點(diǎn)記錄,道間距為30 m,采樣間隔為1 ms(圖7).該記錄中可見大量隨機(jī)噪聲存在,同相軸被隨機(jī)噪聲中斷而不易辨識(shí). 分別采用TFPF和S-TFPF方法處理共炮點(diǎn)記錄,TFPF窗長(zhǎng)為13采樣點(diǎn).從圖8a可見, 經(jīng)TFPF處理后,地震勘探記錄質(zhì)量有較大改善,大部分隨機(jī)噪聲都已消除,但對(duì)方框區(qū)域深層噪聲壓制不徹底.采用S-TFPF方法處理結(jié)果如圖8b所示,S-TFPF方法在噪聲較強(qiáng)區(qū)域增加了窗長(zhǎng),有效壓制了強(qiáng)噪聲,TFPF濾波結(jié)果中的殘留噪聲在S-TFPF處理結(jié)果中得到有效壓制;與此同時(shí),S-TFPF對(duì)有效信號(hào)降低窗長(zhǎng),處理后的同相軸更加連續(xù). 分析上述結(jié)果表明: (1) S-TFPF方法基于SW統(tǒng)計(jì)量可精確地劃分地震記錄中的有效信號(hào)和隨機(jī)噪聲; (2) S-TFPF方法能夠自適應(yīng)調(diào)節(jié)時(shí)窗長(zhǎng)度,在消減復(fù)雜隨機(jī)噪聲過程中有效保持地震信號(hào)幅度. 圖5 含噪合成記錄 圖6 含噪合成記錄降噪結(jié)果 圖7 某礦區(qū)實(shí)際記錄 圖8 實(shí)際地震勘探記錄濾波結(jié)果 本文針對(duì)時(shí)頻峰值濾波時(shí)窗參數(shù)選擇問題,利用地震勘探噪聲高斯統(tǒng)計(jì)特性,結(jié)合SW統(tǒng)計(jì)量建立自適應(yīng)時(shí)頻峰值濾波方法(S-TFPF),并應(yīng)用于地震勘探復(fù)雜隨機(jī)噪聲壓制.本文提出的S-TFPF方法利用高斯化SW統(tǒng)計(jì)量,提高分離地震勘探記錄中復(fù)雜隨機(jī)噪聲和有效信號(hào)的精準(zhǔn)度,從而實(shí)現(xiàn)地震勘探記錄不同區(qū)域的時(shí)窗長(zhǎng)度自適應(yīng)調(diào)節(jié),解決了傳統(tǒng)固定窗長(zhǎng)TFPF對(duì)隨機(jī)噪聲壓制不徹底和信號(hào)幅度衰減問題.仿真實(shí)驗(yàn)和實(shí)際地震勘探記錄處理結(jié)果表明, 與傳統(tǒng)TFPF相比,S-TFPF方法在壓制復(fù)雜地震勘探隨機(jī)噪聲同時(shí),更好地保持了地震勘探信號(hào)信息,在低信噪比地震勘探記錄隨機(jī)噪聲壓制方面具有一定的優(yōu)勢(shì). Boashash B, Mesbah M. 2004. Signal enhancement by time-frequency peak filtering.IEEETransactionsonSignalProcessing, 52(4): 929-937. Donoho D L. 1995. De-noising by soft-thresholding.IEEETrans.InformationTheory, 41(3): 613-627. Han J J, Han L G, Gong X B, et al. 2010. Attenuation of near-surface scattering noise based on wave theory.GlobalGeology(in Chinese), 29(2): 310-313. Li Y, Lü Q T, Han L G, et al. 2012. Application of serial de-noise method in seismic exploration of metal mine.GlobalGeology(in Chinese), 31(2): 406-411. Li Y, Yang B J, Lin H B, et al. 2013. Suppression of strong random noise in seismic data by using time-frequency peak filtering.ScienceChinaEarthSciences, 56(7): 1200-1208. Liang F, Lü QT, Yan J Y, et al. 2014. Deep structure of Ningwu volcanic basin in the Middle and Lower reaches of Yangtze River: Insights from reflection seismic data.ActaPetrologicaSinica(in Chinese), 30(4): 941-956. Lin H B, Li Y, Ma H T, et al. 2015. Matching-pursuit-based Spatial-trace time-frequency peak filtering for seismic random noise attenuation.IEEEGeoscienceandRemoteSensingLetters, 12(2): 394-398. Lin H B, Li Y, Xu X C. 2011. Segmenting time-frequency peak filtering method to attenuation of seismic random noise.ChineseJ.Geophys. (in Chinese), 54(5): 1358-1366, doi: 10.3969/j.issn.0001-5733.2011.05.025. Lin H B, Li Y, Yang B J, et al. 2013. Random denoising and signal nonlinearity approach by time-frequency peak filtering using weighted frequency reassignment.Geophysics, 78(6): V229-V237. Lin H B, Li Y, Yang B J, et al. 2014. Seismic random noise elimination by adaptive time-frequency peak filtering.IEEEGeoscienceandRemoteSensingLetters, 11(1): 337-341. Qi G, Lü Q T, Yan J A, et al. 2014. 3D Geological modeling of Luzong Ore district based on priori information constrained.ActaGeologicaSinica(in Chinese), 88(4): 466-477. Shapiro S S, Wilk M B. 1965. An analysis of variance test for normality (complete samples).Biometrika, 52(3-4): 591-611. Tang J T, Zhou C, Wang X Y, et al. 2013. Deep electrical structure and geological significance of Tongling ore district.Tectonophysics, 606: 78-96. Wang Q F, Xu D P, Zhan Z D, et al. 2012. Research on seismic data noise reduction in metallic ore based on wavelet domain blind source separation JADE algorithm.ScientificandTechnologicalManagementofLandandResources(in Chinese), 29(6): 106-110. Xiao X, Wang X Y, Tang J T, et al. 2014. Conductivity structure of the Lujiang-Zongyang Ore concentrated Area, Anhui Province: Constraints from Magnetotelluric Data.ActaGeologicaSinica(in Chinese), 88(4): 478-495. Xu M C, Gao J H, Rong L X, et al. 2004. Application prospects of the seismic method as discussed from the experimental effects of the method for metal exploration.GeologyinChina(in Chinese), 31(1): 108-112. Zhang C, Li Y, Lin H B, et al. 2015. Seismic random noise attenuation and signal-preserving by multiple directional time-frequency peak filtering.ComptesRendusGeoscience, 347(1): 2-12. Zhang J, Lin C S, Deng P, et al. 2011. Detection of weak magnetic anomaly signal in non-Gaussian noise background.JournalofNavalUniversityofEngineering(in Chinese), 23(4): 22-26. 附中文參考文獻(xiàn) 韓佳君, 韓立國, 鞏向博等. 2010. 基于波動(dòng)理論的近地表散射噪音衰減. 世界地質(zhì), 29(2): 310-313. 李陽, 呂慶田, 韓立國等. 2012. 串聯(lián)去噪技術(shù)在金屬礦地震勘探中的應(yīng)用. 世界地質(zhì), 31(2): 406-411. 梁鋒, 呂慶田, 嚴(yán)加永等. 2014. 長(zhǎng)江中下游寧蕪火山巖盆地深部結(jié)構(gòu)特征——來自反射地震的認(rèn)識(shí). 巖石學(xué)報(bào), 30(4): 941-956. 林紅波, 李月, 徐學(xué)純. 2011. 壓制地震勘探隨機(jī)噪聲的分段時(shí)頻峰值濾波方法. 地球物理學(xué)報(bào), 54(5): 1358-1366, doi: 10.3969/j.issn.0001-5733.2011.05.025. 祁光, 呂慶田, 嚴(yán)加永等. 2014. 基于先驗(yàn)信息約束的三維地質(zhì)建模: 以廬樅礦集區(qū)為例. 地質(zhì)學(xué)報(bào), 88(4): 466-477. 王權(quán)峰, 胥德平, 詹澤東等. 2012. 金屬礦地震數(shù)據(jù)降噪研究—基于小波域盲分離JADE算法. 國土資源科技管理, 29(6): 106-110. 肖曉, 王顯瑩, 湯井田等. 2014. 安徽廬樅礦集區(qū)大地電磁探測(cè)與電性結(jié)構(gòu)分析. 地質(zhì)學(xué)報(bào), 88(4): 478-495. 徐明才, 髙景華, 榮立新等. 2004. 從金屬礦地震方法的試驗(yàn)效果探討其應(yīng)用前景. 中國地質(zhì), 31(1): 108-112. 張堅(jiān), 林春生, 鄧鵬等. 2011. 非高斯背景噪聲下的微弱磁異常信號(hào)檢測(cè)算法. 海軍工程大學(xué)學(xué)報(bào), 23(4): 22-26. (本文編輯 張正峰) Elimination of seismic random noise based on the SW statistic adaptive TFPF LIN Hong-Bo, MA Hai-Tao*, LI Yue, SHAO Dong-Yang DepartmentofInformationEngineering,JilinUniversity,Changchun130012,China Owing to complex properties of random noise in raw data in metal mine and low signal-to-noise ratio (SNR), it is extremely difficult for conventional denoising methods to obtain expected filtering results. Time-frequency peak filtering (TFPF) is an effective method to eliminate seismic random noise in seismic data at low SNR. However, the selection of window length of TFPF significantly affects the performance in signal preserving and seismic random noise attenuation. The conventional TFPF using a fixed window length usually obtains unbiased signal estimation by using a short window length, but it leads to relatively poor performance of seismic random noise attenuation. Therefore, it is crucial to adapt the window length for TFPF according to the characteristics of signal and noise, respectively.Taking statistical property of seismic random noise into account, we propose a Shapiro-Wilk (SW) statistic based adaptive time-frequency peak filtering (S-TFPF) to suppress seismic random noise in seismic data at low SNR. The SW test, a statistical method for the measurement of Gaussianity of time series, is introduced into TFPF method. Based on the assumption that seismic random noise usually is white Gaussian noise and seismic signals are non-Gaussian, the SW statistics of seismic random noise are different from those of seismic signals. Therefore, the seismic signals in seismic data can be identified by means of the SW statistics. Furthermore, Gaussianization of seismic data is done by applying a band-pass filter to seismic data, which makes complex seismic random noise Gaussian and keep seismic signals. As a result, the accuracy of identification of valid signals under complex seismic random noise is improved based on SW statistics. Then, adaptively adjusting window length of S-TFPF is implemented based on the SW statistics. In this algorithm, the window length of S-TFPF in the signal-dominant segment are set according to the frequencies of signals to preserve signals, whereas the window length of S-TFPF for noise-dominant segment increases with the variance of noise increasing, so as to completely eliminate seismic random noise.The Gaussianity of seismic noise data is investigated by SW test and the performance of new method is analyzed on synthetic data and field data. The SW test result show that most seismic random noise are non-Gaussian noise and their SW statistics are lower than but close to the SW statistic of ideal Gaussian noise. The significant difference of the SW statistics exists between random noise and seismic signals. However, the difference of SW statistic of noisy seismic data decreases, because signals are contaminated by seismic random noise and properties of seismic random noise are complex. After preprocessing seismic data by means of Gaussianization, the SW statistics of seismic random noise becomes closer to 1 and the SW statistics of seismic signals slightly decrease, which leads to an accurate segmenting of seismic signal and seismic random noise. Then the adaptive window length of the S-TFPF is obtained based on the SW statistics and apply to processing synthetic and field seismic data. The results show that the S-TFPF method better keeps the amplitude and frequency component of filtered seismic signals than the TFPF. Furthermore, the filtered seismic data obtained by the S-TFPF has higher SNR and lower mean square error comparing with the TFPF. Application to the field data shows that the filtered seismic data by using S-TFPF has less background noise and more continuous seismic events.The proposed method improves the adaptability of window length of the TFPF using SW statistics of seismic data. In the new method, the window length can be adapted at different segments of seismic data according to characteristics of seismic signals and statistical property of seismic random noise, respectively, thus reducing the bias of seismic signal estimation and improving denoising performance of the TFPF. The results of synthetic and field data demonstrate the practicability and effectiveness of the S-TFPF method. Seismic signal processing; SW test; Random noise; Adaptive; Time-frequency peak filtering 國家公關(guān)項(xiàng)目“深部礦產(chǎn)資源立體探測(cè)技術(shù)及實(shí)驗(yàn)研究”SinoProbe-03和國家自然科學(xué)基金(41130421,41274118,41574096)共同資助. 林紅波,女,1973年生,博士,副教授,主要從事信號(hào)與信息處理和地震勘探噪聲壓制研究.E-mail:hblin@jlu.edu.cn *通訊作者 馬海濤,男,博士,副教授,主要從事信號(hào)處理和地震勘探信號(hào)處理研究. E-mail:maht@jlu.edu.cn 10.6038/cjg20151218. 10.6038/cjg20151218 P631 2015-05-16,2015-12-07收修定稿 林紅波, 馬海濤, 李月等. 2015. 基于SW統(tǒng)計(jì)量的自適應(yīng)時(shí)頻峰值濾波壓制地震勘探隨機(jī)噪聲研究.地球物理學(xué)報(bào),58(12):4559-4567, Lin H B, Ma H T, Li Y, et al. 2015. Elimination of seismic random noise based on the SW statistic adaptive TFPF.ChineseJ.Geophys. (in Chinese),58(12):4559-4567,doi:10.6038/cjg20151218.4 地震數(shù)據(jù)處理
5 結(jié)論