亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        The Empirical Nitrogen Equivalent Equations for Predicting the Detonation Velocity and Detonation Pressure of CHNO Explosives with Approaching the Results of Kamlet-Jacobs Equations

        2015-05-10 06:19:11HURongzuYAOErgangMAHaixiaZHANGHaiGAOHongxuHANLuZHAOFengqiLUOYangZHAOHongan
        含能材料 2015年12期

        HU Rong-zu, YAO Er-gang, MA Hai-xia, ZHANG Hai, GAO Hong-xu, HAN Lu, ZHAO Feng-qi, LUO Yang, ZHAO Hong-an

        (1. Science and Technology on Combustion and Explosion Laboratory, Xi′an Modern Chemistry Research Institute, Xi′an 710065, China; 2. College of Chemical Engineering, Northwest University, Xi′an 710069, China; 3. Department of Mathematics/Institute of data analysis and computation chemistry, Northwest University, Xi′an, 710069, China; 4. College of Communication Science and Engineering, Northwest University, Xi′an 710069, China)

        In 1964,Guo Yuxian proposed a nitrogen equivalent (NE) equation for predicting the detonation velocity (D) of CHNO explosives. In the early 1980′s, Guo Yuxian and Zhang Housheng[1-2]proposed two NE equations for predicting theDand detonation pressure (p) of CHNO explosives. Here we plan to propose two empirical NE equations for predicting the values ofDandpwith more approaching the values ofDandpin Kamlet-Jacobs equations than Guo Yuxian-Zhang Housheng′s NE equations.

        By substituting the 1631 sets of original data (Table S2),Di,Mi,iandxi,i=1, 2, … , 1631, for 324 CHNO single-compound explosives (Table S1) into eqns. (1), (3), (5) and (7), eqns. (2), (4), (6) and (8) are obtained via solution of eqns. (1), (3), (5) and (7) using the trust region approach.

        s.t. 690.00≤a≤690.01, 1160≤b≤1160.01, 1.000≤NN2≤1.001, 0.5400≤NH2O≤0.5401, 1.3500≤NCO2≤1.3501,

        0.7800≤NCO≤0.7801, 0.2900≤NH2≤0.2901, 0.5000≤NO2≤0.5001, 0.1500≤NC≤0.1501

        (1)

        (2)

        whereDis the detonation velocity, m·s-1;Mis the mole weight of explosive, g·mol-1; 690 and 1160 are constants;ρis the initial densities of explosives, g·cm-3; 1.00, 0.54, 1.35, 0.78, 0.29, 0.50, 0.15 are the nitrogen equivalent coefficient of gaseous detonation products N2, H2O, CO2, CO, H2, O2, C of explosive;xi(i= N2, H2O, CO2, CO, H2, O2, C) is the numbers of moles of gaseous detonation products.

        Equation (2) is known as Guo Yuxian-Zhang Housheng′s NE equation for predicting the value ofDof CHNO explosives.

        s.t. 1.09200≤c≤1.09201, 1.000≤NN2≤1.001, 0.5400≤NH2O≤0.5401, 1.3500≤NCO2≤1.3501, 0.7800≤NCO≤0.7801,

        0.2900≤NH2≤0.2901, 0.5000≤NO2≤0.5001, 0.1500≤NC≤0.1501, 0.57400≤d≤0.57401

        (3)

        (4)

        wherepis the detonation pressure, GPa; 1.092 and 0.574 are constants.

        Equation (4) is known as Guo Yuxian-Zhang Housheng′s NE equation for predicting the value ofpof CHNO explosives.

        s.t. 650≤a≤695, 1150≤b≤1165, 0.800≤NN2≤1.001, 0.340≤NH2O≤0.640, 1.150≤NCO2≤1.350,

        0.250≤NCO≤0.780, 0.110≤NH2≤0.290, 0.010≤NO2≤0.500, 0.110≤NC≤0.150

        (5)

        (6)

        where 695 and 1150 are constants; 1.00, 0.64, 1.34, 0.72, 0.18, 0.50, 0.12 are the nitrogen equivalent coefficient of gaseous detonation products N2, H2O, CO2, CO, H2, O2, C of explosive.

        Equation (6) is known as the empirical NE equation for predicting the value ofDof CHNO explosives

        The relative error (Δδ) of eqn. (6) is:

        s.t. 1.060≤a≤1.500, 1.000≤NN2≤1.001, 0.6400≤NH2O≤0.6401, 1.3400≤NCO2≤1.3401, 0.7200≤NCO≤0.7201,

        0.1800≤NH2≤0.1801, 0.0.500≤NO2≤0.501, 0.1200≤NC≤0.1201, 0.001≤d≤0.874

        (7)

        (8)

        where 1.060 and 0.619 are constants.

        Equation (8) is known as the empirical NE equation for predicting the value ofpof CHNO explosives

        Compared with the values of Δδof eqns. (2) and (4), the ones of Δδof eqns. (6) and (8) decrease by 25.2% and 23.0%, respectively, indicating that eqns. (6) and (8) can be used to predict the values ofDandpof CHNO explosives with more approaching the values ofDandpin Kamlet-Jacobs equations than common used nitrogen equivalent equations.

        Associated Content: Supporting information

        The supporting information of the structure formula (Table S1) and original data (Table S2) is available free of charge on the website of Chinese Journal of Energetic Materials.

        [1] The explosive theory writing group. Theory of Explosive[M]. Beijing: National Defence Industry Press, 1982.

        [2] Guo Yu-xian, Zhang Hou-sheng. Nitrogen equivalent (NE) and modified nitrogen equivalent (MNE) equations for predicting detonation parameters of explosives-prediction of detonation velocity of explosives[J].ExplosiveandShockWaves, 1987, 7(4), 348 (in Chinese).

        [3] Keshavarz M H. Prediction of the condensed phase heat of formation of energetic compounds[J].JournalofHazardousMaterials, 2011, 190(1-3): 330-344.

        [4] Ovchinnikov V. Thermochemistry of heteroatomic compounds: interdependence between of some thermochemical parameters of the different classes organic Nitro compounds and a number of valence electrons in their molecules[J].AmericanChemicalScienceJournal, 2013, 3(1): 11-23.

        [5] Tian De-yu, Zhao Feng-qi, Liu Jian-hong. Handbook of energetic materials and the related compounds[M]. Beijing: National Defence Industry Press, 2011.

        [6] Mohammad H K. Simple correlation for predicting detonation velocity of ideal and non-ideal explosives[J].JournalofHazardousMaterials, 2009, 166(2-3): 762-769.

        [7] Mohammad H K. Theoretical prediction of condensed phase heat of formation of nitramines, nitrate esters, nitroaliphatics and related energetic compounds[J].JournalofHazardousMaterials, 2006, 136(2): 145-150.

        [8] Rothstein L R, Petersen R. Predicting high explosive detonation velocities from their composition and structure[J].Propellants,Explosives,Pyrotechnics, 1979, 4(3): 56-60.

        [9] Mohammad H K. Novel method for predicting densities of polynitro arene and polynitro heteroarene explosives in order to evaluate their detonation performance[J].JournalofHazardousMaterials, 2009, 165(1-3): 579-588.

        [10] Kamlet M J, Jacobs S J. Chemistry of detonations. I. A simple method for calculating detonation properties of CHNO explosives[J].TheJournalofChemicalphysics, 1966, 48(1): 23-35.

        久久久亚洲欧洲日产国产成人无码| 日本视频精品一区二区| 娇柔白嫩呻吟人妻尤物| 99久久国内精品成人免费 | 国产精品久久综合桃花网| 欧美日本道免费二区三区| 99久久久无码国产精品动漫| 亚洲精品一区二区三区蜜臀| 亚洲成人色黄网站久久| 久久蜜桃资源一区二区| 亚洲成年国产一区二区| a级毛片免费观看在线播放| 亚洲乳大丰满中文字幕| 中文字幕日本特黄aa毛片| 日本丰满熟妇bbxbbxhd| 日本边添边摸边做边爱的网站| 极品粉嫩小泬无遮挡20p| 亚洲欧洲∨国产一区二区三区| 欧美一级色图| 插入中文字幕在线一区二区三区| 永久免费在线观看蜜桃视频| 大屁股流白浆一区二区| 国产美女一区三区在线观看| 亚洲综合伊人久久综合| 我的美艳丝袜美腿情缘| 按摩偷拍一区二区三区| 青青草亚洲视频社区在线播放观看 | 亚州终合人妖一区二区三区| 99e99精选视频在线观看| 在线观看热码亚洲av每日更新| 天天躁日日躁狠狠很躁| 永久免费的av在线电影网无码| 乱码一二三入区口| 伊人精品在线观看| 国产成人拍精品免费视频| 美女爽好多水快进来视频| 亚洲激情视频在线观看a五月| 东北女人啪啪对白| 久久天天躁狠狠躁夜夜2020一| 久热这里只有精品视频6| 亚洲两性视频一三区|