趙曉鋒,呂盼晴,張 珂,2,付忠軍,3,許蒙蒙,彭 倩,李慧敏,楊慧麗,丁 冬
(1.河南農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,河南 鄭州450002;2.石河子大學(xué),新疆石河子832000;3.重慶市農(nóng)業(yè)科學(xué)院,重慶401329)
MicroRNAs(miRNAs)為21~23個核苷酸(nt)片段的、非編碼的、相對分子質(zhì)量較小的RNA,在轉(zhuǎn)錄后水平基因表達調(diào)控中起關(guān)鍵作用,包括生物代謝[1]、激素反應(yīng)[2]、表觀遺傳控制的轉(zhuǎn)座因子[3]、生物脅迫[4]和非生物脅迫[5]等多個方面.植物miRNAs介導(dǎo)的基因調(diào)控涉及植物發(fā)育多個過程,如器官分化[6]、葉片生長[7]、性別決定[8]、雌 雄 不 育[9]、果 核 形 成[10]、子 粒 灌 漿[11]等.MiRNAs主要通過切割靶mRNA或抑制靶mRNA的翻譯實現(xiàn)轉(zhuǎn)錄后水平調(diào)控[12].通過芯片技術(shù)和高通量測序可以快速高效地檢測并鑒定miRNA,而對于miRNA剪切的靶基因鑒定常使用低通量的5’-RACE技術(shù).降解組測序技術(shù)(degradome Sequencing)利用植物miRNA在調(diào)控靶基因的表達時通常與靶mRNA進行幾乎完全的配對的特點,結(jié)合高通量測序技術(shù)、生物信息學(xué)分析和RACE驗證,能夠快速高效鑒定miRNA的靶基因.降解組測序技術(shù)已應(yīng)用于擬南芥(Arabidopsis thaliana)[13]、小立碗蘚(Physcomitrella patens)[14]、水稻(Oryza sativa)[15]、大豆(Glycine max)[16]、葡萄(Vitis vinifera)[17]、黃瓜(Cucumis sativus)[18]、馬鈴薯(Solannum tuberosum)[19]、海 島 棉 (Gossypium barbadense)[20]、泡 桐 (Paulownia australis)[21]及 玉 米(Zea mays)[22]等多種植物miRNA靶基因的檢測。本研究采用降解組測序的方法,分別對昌7-2,鄭58等2個玉米自交系的雌穗發(fā)育5個關(guān)鍵時期取樣,并混樣進行測序分析,以鑒定出與玉米雌穗發(fā)育相關(guān)miRNAs的靶基因,為進一步研究miRNAs在玉米雌穗發(fā)育過程中的調(diào)控作用奠定基礎(chǔ)。
試驗材料選用2013年4月種植在河南農(nóng)業(yè)大學(xué)鄭州科教園區(qū)(平均氣溫14.3℃,年均降雨量為640.9 mm)的昌7-2,鄭58等2個玉米自交系材料,每個自交系選生長錐未伸長期,生長錐伸長期,小穗分化期,小花分化期,性器官形成期等5個時期的雌穗進行取樣,每個時期取樣量為30個,取樣后放在-80℃冰箱中保存。
用液氮將樣品在研缽中研磨至細碎,轉(zhuǎn)移到用DEPC處理過的 1.5 mL Eppendorf管中,以 100 mg∶1 mL(樣品:TRIzol)的量向管中加入TRIzol溶液,充分搖勻后12 000 r·min-1離心10 min;收集上清液到新的離心管中,加入1/5體積氯仿充分混勻,室溫放置 5 min 后,12 000 r·min-1離心 10 min,收集上清液;再加等體積的異丙醇,放在-20℃冰箱過夜。第2天12 000 r·min-1離心10 min后,倒掉廢液,輕微離心,用移液槍吸除管底殘液,自然干燥10 min;RNA沉淀溶于50 μL DEPC水中,溶解完全后對RNA進行質(zhì)量檢測。
對檢測后的RNA進行降解組測序文庫的構(gòu)建:
1)miRNA靶基因mRNA片段的分選,將3’接頭(adapter)與靶基因mRNA片段的3’端退火互補,獲得含有3’接頭-mRNA連接產(chǎn)物的連接混合物;
2)將步驟1所獲的連接混合物中的3’接頭-mRNA連接產(chǎn)物連上5’接頭反轉(zhuǎn)錄獲得兩端均帶有接頭的靶基因mRNA片段;
3)miRNA靶基因cDNA的擴增:以兩端均帶有接頭的靶基因mRNA片段為模板,進行PCR擴增,凝膠電泳分離PCR產(chǎn)物,切取預(yù)期大小分子并回收,得到靶基因mRNA片段的降解組測序文庫,進行高通量測序。
高通量測序得到的數(shù)據(jù)中去除接頭序列后得到目的序列,應(yīng)用CleaveLand分析軟件將目的序列與玉米的genome進行比對,記錄匹配上的序列舍棄未比對上的序列,通過匹配可以得到被切割mRNA的完整序列信息。計算機分析結(jié)果可以直觀地顯示在mRNA序列的某個位點會出現(xiàn)一個波峰,而該處正是候選的miRNA剪切位點。為了進一步確定miRNA的靶基因,又基于植物miRNA的切割常常發(fā)生在互補位點的第10或11位核苷酸上,因此,取波峰上游和下游各15 nt核苷酸序列產(chǎn)生1個30 nt的序列(t-signature),將該序列反向互補并與玉米miRNA數(shù)據(jù)庫去匹配,符合要求的匹配則為確定了的miRNA靶基因。
選取昌7-2,鄭58雌穗在小穗分化期和小花分化期的花序分生組織(inflorescence meristems,IM)分化為成對小穗分生組織(spikelet pair meristems,SPM)、成對小穗分生組織分化為小穗分生組織(spikelet meristems,SM),小花分生組織(Floral meristems,F(xiàn)M)3 個階段,對 miR159,miR160,miR167,miR169,miR172a,miR172e,miR390 等 7個miRNAs與其靶基因進行了Real-time PCR驗證。Real-time PCR反應(yīng)選用 RR820A試劑盒(Takara,日本)SYBR Green I作為熒光染料,Actin2作為內(nèi)參基因,用Bio-rad IQ5熒光定量PCR儀進行擴增,結(jié)果數(shù)據(jù)用2-△△t法進行處理。
降解組測序后將miRNA序列與mRNA序列的配對預(yù)測結(jié)果和降解組密度文件的結(jié)果相結(jié)合進行靶基因的精確預(yù)測,共發(fā)現(xiàn)16個miRNA家族的95個miRNAs對應(yīng)47個靶基因(P<0.1)(表1)。
根據(jù)其生物學(xué)功能,對測序檢測到的95個miRNAs作用的47個靶基因進行Gene Ontology(GO)分類,發(fā)現(xiàn)處于細胞核和CCAAT結(jié)合因子復(fù)合體的靶基因占78.5%(圖1-A),與 miRNA主要在基因轉(zhuǎn)錄后水平進行調(diào)控相一致;參與轉(zhuǎn)錄、DNA依賴、轉(zhuǎn)錄調(diào)控、細胞分化的靶基因占53.2%(圖1-B),這些靶基因還與花器官發(fā)育、種子發(fā)育、細胞分裂、分生組織保持、根毛細胞生長、硫酸鹽吸收、生長素信號轉(zhuǎn)導(dǎo)等多種生物過程密切相關(guān);在分子功能方面,與DNA結(jié)合、特殊序列DNA結(jié)合、金屬離子DNA結(jié)合的靶基因占72.9%,同時參與與蛋白結(jié)合、蛋白活性、三磷酸鳥苷(GTP)結(jié)合、三磷酸鳥苷(GTP)、翻譯延伸因子活性調(diào)控(圖1-C)。
表1 昌7-2、鄭58雌穗發(fā)育相關(guān)的miRNA靶基因Table 1 The target genes related to ear development of Chang 7-2 Zheng 58
圖1 玉米雌穗發(fā)育相關(guān)miRNA相應(yīng)靶基因GO統(tǒng)計Fig.1 The dereloping maize ear relevant miRNA target genes GO list
降解組測序數(shù)據(jù)分析表明,每個miRNA對應(yīng)的轉(zhuǎn)錄本一般為多個,其中檢測到miR159的轉(zhuǎn)錄本為7個,參與細胞分化、花器官發(fā)育、DNA結(jié)合等過程;miR160對應(yīng)轉(zhuǎn)錄本為7個,與蛋白二聚反應(yīng)活性、生長素介導(dǎo)的信號轉(zhuǎn)導(dǎo)通路等過程相關(guān);而miR167對應(yīng)轉(zhuǎn)錄本僅1個,與蛋白二聚反應(yīng)活性,生長素介導(dǎo)的信號轉(zhuǎn)導(dǎo)通路等相關(guān);miR169對應(yīng)轉(zhuǎn)錄本為20個,與特異序列DNA結(jié)合,轉(zhuǎn)錄因子活性相關(guān);miR172a,miR172e對應(yīng)轉(zhuǎn)錄本各7個,參與細胞分化、種子發(fā)育、花器官發(fā)育、分生組織保持等過程;miR390有3個轉(zhuǎn)錄本,其功能未知(表2)。
選 中 miR159,miR160,miR167,miR169,miR172a,miR172e,miR390 等7 個 miRNAs及其靶基因構(gòu)建其在昌7-2與鄭58中的表達圖譜(圖2)。在昌7-2中miR159呈上升趨勢,而T159沒有明顯變化;miR160,miR167,miR172a呈下降趨勢,而T160先下降后上升,T167,T172a先上升后下降。在鄭58中miR169呈上升趨勢,T169呈下降趨勢;miR159,miR167,miR390沒有明顯變化,而T159,T390呈上升趨勢,T167先上升后下降;miR172a呈下降趨勢,而T172a呈上升趨勢。表明在雌穗發(fā)育過程中存在著復(fù)雜的miRNAs調(diào)控,miRNAs與其靶基因不存在簡單的負線性調(diào)控關(guān)系,并且在不同自交系間也存在著較大的表達調(diào)控差異。
表2 7個miRNAs對應(yīng)的靶基因Table 2 The target genens of the seven miRNAs
降解組測序技術(shù)結(jié)合了高通量測序技術(shù)與生物信息學(xué)分析各自的優(yōu)勢,對細胞或組織中miRNA介導(dǎo)的降解的mRNA剪切片段進行深度測序分析,能夠高效準確篩選出miRNA的靶基因,為研究miRNA以及其對應(yīng)的靶基因的相互關(guān)系提供了有效的手段。采用降解組測序技術(shù),檢測到在玉米雌穗的發(fā)育過程中16個miRNA家族95個miRNAs對應(yīng)的47個靶基因,多數(shù)存在于細胞核內(nèi),功能多為轉(zhuǎn)錄翻譯的DNA結(jié)合蛋白,參與轉(zhuǎn)錄調(diào)控,與生長激素密切相關(guān)。這與在擬南芥及水稻中已經(jīng)發(fā)現(xiàn)或者預(yù)測的結(jié)果相似[23-26]。
其中一些miRNA已被證明是涉及介導(dǎo)植物激素生長素響應(yīng)信號轉(zhuǎn)導(dǎo)途徑,例如,在擬南芥中,miR159被發(fā)現(xiàn)特異剪切MYB(v-myb avian myeloblastosis viral oncogene homolog)家族轉(zhuǎn)錄因子MYB33和MYB65的轉(zhuǎn)錄本,以降低植物對脫落酸(abscisic acid,ABA)的敏感性[27],這可能有利于植物的生長發(fā)育,本研究測定的miR159靶基因多數(shù)也為轉(zhuǎn)錄調(diào)控因子MYB。擬南芥中miR160作用的靶基因為生長素響應(yīng)因子基因(auxin response factors,ARF)ARF10和 ARF16,抑制植物的向性生長[28],在玉米自交系昌 7 -2,鄭 58 中,miR160 靶標為 ARF8,ARF13,ARF18,ARF22,miR167 的靶標是ARF12,通過生長素作用因子的調(diào)控來調(diào)節(jié)雌穗生長發(fā)育。另外,miR162家族的靶標是基因中心,差異表達的miR162作用于類Dicker酶1(Dicer-Like1,DCL1),DCL1的同系物是 miRNA積累所需物[29]。
圖2 7個miRNA及其靶基因的差異表達圖譜Fig.2 Expression profiles of 7 miRNAs and the target genes
本研究中,測定的miRNA156,miR172在先前研究中顯示在植物發(fā)育的整個階段起作用,從最早的花誘導(dǎo)形成階段到最終的性器官形成。miR172主要通過靶基因調(diào)控花器官的形成和花模式,miR172功能的缺失將延遲花的發(fā)育或造成花發(fā)育異常,相比之下,過表達的miR172將導(dǎo)致花期提前[30],而在玉米雌穗發(fā)育過程中miR172可能對花器官的形成也起到關(guān)鍵的調(diào)控,在玉米中miR156 a-l從玉米幼穗到成熟過渡階段可能作用于幾個Squamosa啟動子結(jié)合蛋白基因(squamosa promoter binding protein like genes,SPL),可能是通過SPL 間接地激活miR172。miR172已被證明能夠下調(diào)基因光澤15(Glossy15,GL15),促進幼穗階段的維持[31]。同時miR172e可能會控制無限小穗1(Indeterminate Spikelet 1,IDS 1)和姊妹無限小穗1(Sister Indeterminate Spikelet 1,SID 1),通過翻譯抑制和mRNA降解方式,對玉米小穗性別和莖尖細胞分化起決定作用。除了miR156和miR172,miR164靶基因編碼無頂端分生組織(No Apical Meristem,NAM)蛋白,可能參與調(diào)節(jié)雌穗發(fā)育[32-35]。miR390通過切割反式作用干擾小 RNA(tasiRNA,TAS)產(chǎn)生多片段,這些片段在一系列RNA酶作用下,形成 TAS,靶向 ARF2,ARF3和ARF4,參與植物生長發(fā)育調(diào)控[36,37]。本研究通過混合樣品測序分析,鑒定出與玉米雌穗發(fā)育相關(guān)miRNA的靶基因,為進一步研究miRNA及其靶基因在玉米雌穗發(fā)育過程中的調(diào)控作用奠定了基礎(chǔ)。
[1] NAG A,JACk T.Sculpting the flower;the role of microRNAs in flower development[J].Plant Development,2010,91:349 -378.
[2] LIU Q,CHEN Y Q.Insights into the mechanism of plant development:interactions of miRNAs pathway with phytohormone response[J].Biochem Biophys Res Commun,2009,384(1):1 -5.
[3] LISCH D.How important are transposons for plant evolution?[J].Nature Reveiews Genetics,2013,14(1):49-61.
[4] VOINNET O.Post-transcriptional RNA silencing in plantmicrobe interactions:a touch of robustness and versatility[J].Curr Opin Plant Biol,2008,11(4):464 -470.
[5] SUNKAR R,CHINNUSAMY V,ZHU J,et al.Small RNAs as big players in plant abiotic stress responses and nutrient deprivation [J].Trends Plant Sci,2007,12(7):301-309.
[6] BOWMAN J L.Class III HD-Zip gene regulation,the golden fleece of ARGONAUTE activity?[J].Bio Essays,2004,26:938 -942.
[7] CHUCK G,CIGAN A M,SAETEURN K et al.The heterochromic maize mutant Corngrass1 results from overexpression of a tandem microRNA [J].Nature Genetics,2007,39:544 -549.
[8] CHUCK G,MEELEY R,IRISH E,et al.The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1 [J].Nature Genetics,2007,39:1517-1521.
[9] MILLAR A A,GUBLER F.The Arabidopsis GAMYB-like genes,MYB33 and MYB65,are microRNA regulated genes that redundantly facilitate anther development[J].The Plant Cell,2005,17:705 -721.
[10] REN G H,WANG B J.Cloning,expression,and characterization of miR058 and its target PPO during the development of grapevine berry stone[J].Gene,2014,548:166-173.
[11] PENG T,SUN H Z,QIAO M M,et al.Differentially expressed microRNA cohorts in seed deve-lopment may contribute to poor grain filling of inferior spikelets in rice[J].BMC Plant Biology,2014,14:196.
[12] KURIHARA Y,WATANABE Y.Arabidopsis microRNA biogenesis through Dicer-like 1 protein functions[J].Proc Natl Acad Sci USA,2004,101(34):12753-12758.
[13] ADDO-QUAYE C,ESHOO T W,BARTEL D P,et al.Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome[J].Curr Biol,2008,18:758 -762.
[14] ADDO-QUAYE C,SNYDER J A,PARK Y B,et al.Sliced microRNA targets and precise loop-first processing of MIR319 hairpins revealed by analysis of the Physcomitrella patens degradome[J].RNA,2009,15:2112 -2121.
[15] LI Y F,ZHENG Y,ADDO-QUAYE C,et al.Transcriptome-wide identification of microRNA targets in rice[J].Plant J,2010,62:742 -759.
[16] SONG Q X,LIU Y F,HU X Y,et al.Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing [J].Bmc Plant Biology,2011,11:5.
[17] PANTALEO V,SZITTYA G,MOXON S,et al.Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis[J].Plant J,2010,62:960 -976.
[18] MAO W,LI Z,Xia X,et al.A combined approach of high-throughput sequencing and degradome analysis reveals tissue specific expression of microRNAs and their targetsin cucumber [J].PLoS One,2012,7(3):e33040.
[19] FENG J,LIU S,WANG M,et al.Identification of microRNAs and their targets in tomato infected with Cucumber mosaic virus based on deep sequencing[J].Planta,2014,240(6):1335 -1352.
[20] LIU N,TU L,TANG W,et al.Small RNA and degradome profiling reveals a role for miRNAs and their targets in the developing fibers of Gossypium barbadense[J].Plant J,2014,80(2):331 -344.
[21] NIU S,F(xiàn)AN G,XU E,et al.Transcriptome/degradome-wide discovery of microRNAs and transcript targets in two paulownia australis genotypes[J].PLoS One,2014,9(9):e106736.
[22] ZHAO M,TAI H,SUN S,et al.Cloning and characterization of maize miRNAs involved in responses to nitrogen deficiency[J].PLoS One,2012,7(1):e29669.
[23] GERMAN M A,PILLAY M,JEONG D H,et al.Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends[J].Nat Biotechno,2008,l26:941-946.
[24] ADDO-QUAYEC,MILLERW,AXTELLMJ.CleaveLand:a pipeline for using degradome data to find cleaved small RNA targets[J].Bioinformatics,2009,25(1):130-131.
[25] ELBASHIR S M,LENDECKEL W,TUSCHL T.RNA interference is mediated by 21-and 22-nucleotide RNAs[J].Genes Dev,2001,15(2):188 -200.
[26] RHOADES,MATTHEW W,REINHART,et a1.Prediction of plant microRNA targets [J].Cell,2002,110(4):513-520.
[27] PALATNIK,JAVIER F,ALLEN.et al.Control of leaf morphogenesis by microRNAs [J].Nature,2003,425,257-263.
[28] CHEN X.A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development[J].Science,2004,303:2022 -2025.
[29] XIE Z,KASSCHAU K D,CARRINGTON J C,et al.Negative feedback regulation of Dicer-like1 in Arabidopsis by microRNA degradation[J].Curent Biology,2003,13:784-789.
[30] AUKERMAN,SAKAI.Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes [J].Plant Cell,2003,15(11):2730-2741.
[31] LAUTER N,KAMPANI A,CALSON S,et al.micro RNA172 down regulates glossy15 to promote vegetative phase change in maize[J].Proc Natl Acad Sci USA,2005,102(26):9412 -9417.
[32] MALLORY,ALLISON C,DUGAS,et al.MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjaeent embryonic,vegetative,and floral organs[J].Curt Biol,2004,14(12):1035-1046.
[33] ZHU Q H,SPRIGGS A,MATTHEW L,et al.A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains[J].Genome Res,2008,18(9):1456-1465.
[34] CHUCK G,CIGAN A M,SAETEURN K,et al.The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA [J].Nat Genet,2007,39(4):544 -549.
[35] CHUCK G,MEELEY R,HAKE S.Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1 [J].Development,2008,135(18):3013-3019.
[36] ALLEN E,XIE Z,GUSTAFSON A M,et al.MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants[J].Cell,2005,121(2):207 -221.
[37] WILLIAMS L,CARLES C C,OSMONT K S,et al.A database analysis method identifies an endogenous transacting short-interfering RNA that targets the Arabidopsis ARF2,ARF3,and ARF4 genes[J].Proc Natl Acad Sci USA,2005,102(27):9703 -9708.