鄧東平,李 亮
(中南大學 土木工程學院,長沙 410075)
錨索預應力長期損失與巖土體蠕變耦合模型研究
鄧東平,李 亮
(中南大學 土木工程學院,長沙 410075)
錨索通過反力支座與邊坡巖土體緊密接觸,當給錨索施加一定預應力后,巖土體同樣受到預應力作用而發(fā)生形變。該形變不會瞬時完成,而是隨時間變化,將導致錨索預應力出現(xiàn)長期損失。將錨索等效成彈性體和廣義Kelvin體(考慮錨索應力松弛) 這2種模型,并假設巖土體為考慮蠕變特性的H+nK體(n≤3),結合錨索與巖土體的耦合變形和初始條件,推導出錨索張拉力隨時間變化的計算式。經(jīng)與以往研究成果對比,驗證了模型的正確性。同時,研究分析表明,在理論模型中增加巖土體蠕變模型的K體個數(shù)及考慮錨索應力松弛現(xiàn)象,可使得擬合曲線更接近于實測的錨索預應力變化。
錨索;蠕變;耦合模型;應力松弛;預應力損失
隨著高速鐵路和公路的大量建設,邊坡加固處置也越來越多[1-4]。預應力錨索作為一種重要的加固措施[5-6],通過調節(jié)和提高巖土體的自身強度和自穩(wěn)能力以達到充分發(fā)揮巖土體的自承潛力,從而節(jié)約工程材料,并保證施工的安全與穩(wěn)定[7-8]。同時,隨著錨索施工技術的成熟和錨索預應力張拉噸位的增大,預應力錨索在邊坡加固工程中的應用也越來越廣泛[9]。
然而,預應力錨索能否對巖土體起到有效的加固效果,與其對巖土體形成有效預應力(即預應力的后期損失程度)作用直接相關[10]。對于預應力錨索,引起其預應力損失的情況有2個方面[11]:①錨索張力鎖定后短時間內的錨固系統(tǒng)回彈變形;②錨索在荷載作用下,周圍錨固巖土體蠕變和鋼絞線應力松弛等原因造成的長期預應力損失。對于前者,可通過超張拉彌補,而后者則取決于錨索和巖土體等材料性質,且關系到錨索工程的耐久性和安全性,因而,長期預應力損失成為預應力錨索設計中比較關注的問題[12]。
針對錨索在荷載作用下的長期預應力損失,研究者已開展了一些研究:如高大水等[13-17]在長期監(jiān)測邊坡錨索預應力數(shù)據(jù)的基礎上獲得了錨索預應力隨時間變化關系;景鋒等[18]通過采用室內模型的方法分析巖土體時效變形對錨索預應力損失的影響;范衛(wèi)琴[19]考慮巖土體存在蠕變性質時采用數(shù)值模擬方法研究不同條件對錨索預應力損失的影響;朱晗迓等[20-22]考慮錨索預應力損失和巖土體蠕變耦合而建立模型推導出錨索預應力隨時間變化公式。由上可知,目前,在錨索長期預應力損失分析中仍以理論模型研究為主,并采用實測數(shù)據(jù)對模型進行驗證,然后才將研究成果應用于工程實踐。然而,錨索預應力損失的影響因素較為復雜,盡管研究者已考慮錨索預應力損失與巖土體蠕變耦合這一符合實際情況的做法,但仍存在如下不足:①未考慮錨索的應力松弛;②巖土體的蠕變模型較為簡單,預測精度不高。
本文將錨索等效為彈性體和關于Kelvin體這2種模型,針對松散破碎或軟質巖體,假設巖土體為H+nK(n≤3)體,并考慮錨索預應力損失與巖土體蠕變的耦合變形,然后建立錨索預應力隨時間變化的計算公式,經(jīng)與工程算例對比分析,驗證了本文方法的可行性。
圖1 錨索與巖土體相互作用模型Fig.1 Model of the interaction between anchor cable and geotechnical body
如圖1所示,當給錨索施加一定預應力后,錨索內部存在張拉力P,設張拉力通過反力支座作用到巖土體表面的應力均勻分布,大小為σ,反力支座面積為Ar。
在巖土體表面形成一定應力σ后,巖土體在應力σ的作用下將產生壓縮形變,由于此過程中錨具緊貼在巖土體上,即錨索端頭與巖土體表面發(fā)生相同位移,從而導致錨索預應力出現(xiàn)損失。
巖土體一般具有黏性,因此,在預應力作用下巖土體形變不會瞬時完成,而是隨著時間的增長逐漸完成,即導致錨索的預應力損失也隨時間變化,并最終趨于穩(wěn)定。
表1 巖土體為蠕變模型時應力相關計算參數(shù)Table 1 Stress-related calculation parameters of geotechnical body for creep model
如圖2所示,為了描述上述錨索預應力損失與巖土體形變耦合過程,一方面需采用適當?shù)哪P湍M錨索和巖土體,另一方面需分析錨索端頭與巖土體表面的耦合條件。在圖2(a)中,錨索端頭與巖土體表面的耦合條件有2個:σs=σ/m和ε=ε1-εs。其中,σs和εs分別為錨索的應力和應變;σ和ε分別為巖土體的應力和應變;m=As/Ar,As為錨索橫斷面面積,ε1為施加預應力時錨索的初始應變量。在圖2(b)中,對于錨索來說,一般情況下可直接采用彈性模型(H體)模擬,然而,在長期預應力作用下錨索會出現(xiàn)應力松弛現(xiàn)象,為此,本文進一步采用廣義Kelvin模型(H+K體)來考慮錨索的應力松弛,其中,Es為錨索的彈性模量;E1,η1為考慮錨索應力松弛時K體的彈性模量和黏度系數(shù)。在圖2(c)中,對于巖土體來說,工程實踐和試驗分析[20]均表明采用廣義Kelvin模型(H+K體)可較好地模擬巖土體的蠕變性質,但是考慮到巖土的復雜性及理論模型對實際模型簡化造成的不精確性,本文采用H+nK體模擬巖土體,其中,取n=1,2,3;E11為H體的彈性模量;E21,E22,E23分別為第1,2,3個K體的彈性模量;η21,η22,η23分別為第1,2,3個K體的黏性系數(shù)。
圖2 錨索與蠕變巖土體耦合模型Fig.2 Coupled model of the anchor cable and the creep geotechnical body
對于巖土體,根據(jù)H+nK模型中H體和K體的應力和應變關系,并經(jīng)拉普拉斯變換可得到H+nK模型(n≤3)的本構關系,即
a0σ+a1σ′+a2σ″+a3σ?=b0ε+b1ε′+b2ε″+b3ε? 。
(1)
式中:σ′,σ″和σ?為巖土體應力對時間t的1,2,3階導數(shù);ε′,ε″和ε?為巖土體應變對時間t的1,2,3階導數(shù);a0,a1,a2,a3,b0,b1,b2,b3根據(jù)巖土體模型中K體的個數(shù)n的不同而不同,其計算式如表1和表2。
以下分析錨索為彈性體或廣義H+K體(考慮錨索應力松弛)時,錨索與巖土體耦合變形下錨索預應力損失隨時間變化的關系。
3.1 錨索為彈性體
當錨索為彈性體(H體)時,由錨索與巖土體的耦合條件,可知巖土體的應力-應變存在如下關系:
表2 巖土體為蠕變模型時應變相關計算參數(shù)Table 2 Strain-related calculation parameters of geotechnical body for creep model
(2)
利用式(2)求出巖土體應變ε關于時間t的1,2,3次導數(shù),并代入式(1)中,可得巖土體為H+nK體(n≤3)時的應力微分方程為
c0σ+c1σ′+c2σ″+c3σ?=d0ε1。
(3)
式中c0,c1,c2,c3,d0根據(jù)n的不同而不同,其計算式如表3。
表3 錨索為彈性體時巖土體應力相關計算參數(shù)Table 3 Stress-related calculation parameters of geotechnical body for elastomeric anchor cable
通過解式(3),可得巖土體為H+nK體(n≤3)時其應力σ隨時間t變化的關系為
σ=a11ε1+a12e-r1t+a13e-r2t+a14e-r3t。
(4)
與前述一致,將施加在錨索上的初始預應力等效為在錨索體上作用初始應變ε1,并以錨索與巖土體開始發(fā)生耦合變形時為時間t的0點,此時,設錨索初始張拉力為P0,巖體初始應變分為ε0,則P0,ε0與初始應變ε1滿足如下初始條件:
P0=Es(ε1-ε0)As=E11ε0Ar。
(5)
由式(5)得初始應變ε1關于P0和ε0的表達式,將其與P=σAr代入式(4)中,且滿足t=0時,P=P0,可得錨索與巖土體耦合變形下巖土體為H+nK體(n≤3)時錨索張拉力P隨時間t的關系(即錨索預應力損失),即
P=P0e-r1t+k1(1-e-r1t)+k2(e-r2t-e-r1t)+k3(e-r3t-e-r1t) 。
(6)
式中k1,k2和k3的計算式為
3.2 錨索為廣義H+K體
當考慮錨索在長期預應力作用下存在的應力松弛現(xiàn)象,將錨索采用廣義H+K體進行模擬,其模型本構方程[23]為
(7)
(8)
ε=ε1-G0σ+G1e-s1t-G2e-s2t。
(9)
式中G0,G1,G2,s1,s2的計算式為
(10)
對式(9)中求巖土體應變ε關于時間t的1,2,3次導數(shù),并將其與式(9)代入式(1)中,可得考慮錨索應力松弛下巖土體為H+nK體(n≤3)時的應力微分方程,即
(11)
(12)
式中a0,a1,a2,a3,b0,b1,b2,b3根據(jù)巖土體模型中K體個數(shù)n的不同而不同,且與式(1)計算一致。
通過解式(11),可得考慮錨索應力松弛和錨索與巖土體耦合變形下巖土體為H+nK體(n≤3)時其應力σ隨時間t的關系,即
σ=a20ε1+a21e-s1t+a22e-s2t+
a23e-r1t+a24e-r2t+a25e-r3t。
(13)
表4 考慮錨索應力松弛下巖土體應力相關計算參數(shù)Table 4 Stress-related calculation parameters of geotechnical body in consideration of stress relaxation of anchor cable
同樣,將由式(5)得初始應變ε1關于P0和ε0的表達式與P=σAr及t=0時P=P0代入式(13)中,可得考慮錨索應力松弛和錨索與巖土體耦合變形下巖土體為H+nK體時錨索張拉力P隨時間t的關系(即錨索預應力損失),即
(14)
通過上述分析和理論公式推導,可知當錨索為彈性體(H體)時,考慮巖土體模型中K體個數(shù)n,通過對參數(shù)k1,k2,k3,r1,r2,r3部分或全部進行參數(shù)擬合可得錨索預應力損失計算公式;當錨索為廣義H+K體(考慮錨索應力松弛)時,同樣根據(jù)巖土體中考慮K體個數(shù)n,通過對參數(shù)
部分或全部進行參數(shù)擬合可得到錨索預應力損失計算公式。同時,錨索的初始預應力P0也作為參數(shù)參與擬合。由此,在得到預應力損失計算公式的基礎上來預測錨索后期預應力的變化情況。
表5 錨索為彈性體時預應力變化參數(shù)擬合值Table 5 Fitted parameters for calculating the change of pre-stress when anchor cable is equivalent to elasticity body
表6 錨索為廣義Kelvin體時預應力變化參數(shù)擬合值Table 6 Fitted parameters for calculating the change of pre-stress when anchor cable is equivalent to generalized Kelvin body
算例1:朱晗迓等[20]根據(jù)相似比例模型對軟巖錨索加固預應力變化進行模擬試驗,通過試驗獲得錨索在600 h內錨索預應力隨時間變化情況,如圖3(a)所示。
算例2:陳安敏等[24]通過實驗模型研究錨索張拉噸位隨時間變化的規(guī)律,獲得某根錨索600 h內預應力隨時間變化曲線,如圖3(b)所示。
算例3:朱晗迓等[20]通過對金麗溫高速公路某高邊坡典型錨索預應力進行長期觀測,獲得該段錨索300 d內預應力隨時間的變化曲線,如圖3(c)所示。
當錨索采用彈性體(H體)模型時,取n分別為1和2,當錨索采用廣義Kelvin體(即考慮錨索應力松弛)模型時,取n為1,對上述3個算例的預應力隨時間變化曲線進行擬合,得到各參數(shù)的擬合值見表5和表6,其擬合曲線與實測曲線對比如圖3所示。
注:1為實測曲線;2為n=1時的擬合曲線;3為n=2時的擬合曲線。
從表5、表6和圖3中可知:①本文通過理論推導出考慮巖土體蠕變及錨索和巖土體耦合變形得到的錨索預應力變化計算公式可較好地模擬實測錨索預應力隨時間變化曲線;②是否將初始預應力作為參數(shù)擬合對擬合結果影響很小,不同條件下得到的參數(shù)擬合值均滿足實際情況;③考慮錨索應力松弛和增加描述巖土體蠕變性質的K體個數(shù)對擬合曲線趨近于實測曲線更有利。
(1) 通過與已有試驗結果進行對比驗證,說明本文對錨索和巖土體模型的假設及考慮其變形耦合符合實際情況,并在一定條件下利用本文模型可以正確預測錨索的預應力隨時間的變化。
(2) 考慮錨索應力松弛現(xiàn)象及增加描述巖土體蠕變特性的K體個數(shù)對計算模型逼近實測數(shù)據(jù)更有利。
(3) 在有限監(jiān)測數(shù)據(jù)的基礎上,可利用本文計算公式對實測曲線進行擬合以得到參數(shù)擬合值,進而對錨索長期預應力變化進行預測。
[1] 何思明. 預應力錨索作用機理研究[D]. 成都:西南交通大學,2004:1-14. (HE Si-ming. Study on Mechanism of Pre-stressed Anchor Rope[D]. Chengdu:Southwest Jiaotong University,2004:1-14. (in Chinese))
[2] ZHANG L L, XIA Y Y, GU J C,etal. Test Analysis of Stress Characteristics on Reinforcing Rock Slope with Group Anchorage Cable[J]. Journal of Coal Science and Engineering, 2010, 16(1): 23-28.
[3] ZHU W,ZHANG Y. Effect of Reinforcing the High Jointed Slopes of Three Gorges Flight Lock[J]. Rock Mechanics and Rock Engineering, 1998, 31(1): 63-77.
[4] CARRANZA-TORRES C. Analytical and Numerical Study of the Mechanics of Rockbolt Reinforcement around Tunnels in Rock Masses[J]. Rock Mechanics and Rock Engineering, 2009, 42(2): 175-228.
[5] 韓 斌,鄭祿璟,王少勇,等. 復雜破碎露天邊坡的綜合加固技術[J]. 中南大學學報(自然科學版),2013,44(2):772-777. (HAN Bin, ZHENG Lu-jing, WANG Shao-yong,etal. Synthetic Reinforcement of Complicated and Broken Open Pit Slope[J]. Journal of Central South University (Science and Technology),2013,44(2):772-777. (in Chinese))
[6] 何美麗,劉 霽. 預應力錨索地梁結構在邊坡穩(wěn)定中的作用機理[J]. 中南大學學報(自然科學版),2013,44(6):2543-2548. (HE Mei-li, LIU Ji. Force Transmission Law of Pre-stressed Anchor-rope and Groundsill Structure in Slope Stability[J]. Journal of Central South University (Science and Technology),2013,44(6):2543-2548. (in Chinese))
[7] 李厚恩,秦四清,孫 強. 基坑支護錨桿預應力損失探討及預測分析[J]. 工程勘察,2007,35(4):7-10. (LI Hou-en,QIN Si-qing,SUN Qiang. Discussion and Prediction Analysis on Pre-stress of Foundation Pit Anchor[J]. Geotechnical Investigation and Surveying,2007,35(4):7-10. (in Chinese))
[8] 葉慧飛. 錨索預應力損失變化規(guī)律分析[D]. 杭州:浙江大學,2004:1-10. (YE Hui-fei. Analysis on Pre-stress Loss of Anchorage Cable[D]. Hangzhou: Zhejiang University, 2004: 1-10. (in Chinese))
[9] 蔣楚生,周德培. 非圓弧滑面滑坡中滿足平衡條件的預應力錨索設計拉力的確定方法[J]. 鐵道學報,2006,28(5):125-128. (JIANG Chu-sheng,ZHOU De-pei. Method for Determining the Designed Pulling Forces of Pre-stressed Cable Anchors Used for Non-circular Slip-surface Landslides under Equilibrium Conditions[J]. Journal of the China Railway Society,2006,28(5):125-128. (in Chinese))
[10]張發(fā)明,趙維炳,劉 寧,等. 預應力錨索錨固荷載的變化規(guī)律及預測模型[J]. 巖石力學與工程學報,2004,23(1):39-43. (ZHANG Fa-ming,ZHAO Wei-bing,LIU Ning,etal. Long-term Performance and Load Prediction Model of Pre-stressed Cables[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(1):39-43.(in Chinese))
[11]周永江,何思明,楊雪蓮. 預應力錨索的預應力損失機理研究[J]. 巖土力學,2006,27(8):1353-1356. (ZHOU Yong-jiang,HE Si-ming,YANG Xue-lian. Study on Pre-stress Loss of Anchor Cables under Long-term Loading[J]. Rock and Soil Mechanics,2006,27(8):1353-1356. (in Chinese))
[12]景 鋒,余美萬,邊智華,等. 預應力錨索預應力損失特征及模型研究[J]. 長江科學院院報,2007,24(5):52-55. (JING Feng,YU Mei-wan,BIAN Zhi-hua,etal. Study on Pre-stress Loss Characteristic and Model of Pre-stressed Cable[J]. Journal of Yangtze River Scientific Research Institute,2007,24(5):52-55.(in Chinese))
[13]高大水,曾 勇. 三峽永久船閘高邊坡錨索預應力狀態(tài)監(jiān)測分析[J]. 巖石力學與工程學報,2001,20(5):653-656.(GAO Da-shui,ZENG Yong. Monitoring Analysis on Pre-stress State of Anchor Cable of High Slope of the TGP Permanent Ship-locks[J]. Chinese Journal of Rock Mechanics and Engineering,2001,20(5):653-656. (in Chinese))
[14]李端友,湯 平,李亦明. 三峽永久船閘一期工程巖錨預應力監(jiān)測[J]. 長江科學院院報,2000,17(1):39-42. (LI Duan-you, TANG Ping, LI Yi-ming. Safety Monitoring of Rock Anchor Pre-stress during 1st Stage Construction of TGP’s Permanent Lock[J]. Journal of Yangtze River Scientific Research Institute,2000,17(1):39-42. (in Chinese))
[15]張永安,李 峰. 邊坡錨索預應力長期監(jiān)測成果分析[J]. 工程勘察,2010,38(3):11-14. (ZHANG Yong-an,LI Feng. Analysis on Pre-stress State of Cable Applied to Slope Reinforcement[J]. Geotechnical Investigation and Surveying,2010,38(3):11-14. (in Chinese))
[16]楊志紅,郭忠賢. 深基坑加固錨索預應力荷載變化規(guī)律的監(jiān)測分析[J]. 巖土工程學報,2012,34(增刊):145-148. (YANG Zhi-hong,GUO Zhong-xian. Monitoring Analysis of Pre-stressed Load of Anchor Cables for Deep Excavations[J]. Chinese Journal of Geotechnical Engineering,2012,34(Sup.):145-148. (in Chinese))
[17]齊明柱. 預應力錨索框架結構的現(xiàn)場原型試驗研究[D]. 北京:鐵道科學研究院,2007:56-157. (QI Ming-zhu. Field Prototype Experimental Study on the Concrete Frame Structure with Pre-stressed Anchor Cable[D]. Beijing:Academy of Railway Sciences,2007:56-157. (in Chinese))
[18]景 鋒,成傳歡,余美萬,等. 錨索內錨段荷載分布及其隨時間變化規(guī)律[J]. 長江科學院院報,2011,28(5):50-54. (JING Feng,CHENG Chuan-huan,YU Me-iwan,etal. Load Distribution and the Law of Its Variation in the Inner Segment of Pre-stressed Anchor Cable[J]. Journal of Yangtze River Scientific Research Institute,2011,28(5):50-54. (in Chinese))
[19]范衛(wèi)琴. 錨索預應力損失規(guī)律的數(shù)值模擬[D]. 武漢:武漢理工大學,2007:35-57. (FAN Wei-qin. Numerical Simulation on Pre-stress Loss of Cable-bolt[D]. Wuhan:Wuhan University of Technology,2007:35-57. (in Chinese))
[20]朱晗迓,尚岳全,陸錫銘,等. 錨索預應力長期損失與坡體蠕變耦合分析[J]. 巖土工程學報,2005,27(4):464-467. (ZHU Han-ya,SHANG Yue-quan,LU Xi-ming,etal. Coupling Analysis of Long-term Pre-stress Loss and Slope Creep[J]. Chinese Journal of Geotechnical Engineering,2005,27(4):464-467. (in Chinese))
[21]李英勇,王夢恕,張頂立,等. 錨索預應力變化影響因素及模型研究[J]. 巖石力學與工程學報,2008,27(增1):3140-3146. (LI Ying-yong,WANG Meng-shu,ZHANG Ding-li,etal. Study on Influential Factors and Model for Variation of Anchor Cable Pre-stress[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(Sup.1):3140-3146. (in Chinese))
[22]周永江,何思明,楊雪蓮. 預應力錨索的預應力損失機理研究[J]. 巖土力學,2006,27(8):1353-1356. (ZHOU Yong-jiang,HE Si-ming,YANG Xue-lian. Study on Pre-stress Loss of Anchor Cables under Long-term Loading[J]. Rock and Soil Mechanics,2006,27(8):1353-1356. (in Chinese))
[23]周德培,朱本珍,毛堅強. 流變力學原理及其在巖土工程中的應用[M]. 成都:西南交通大學出版社,1995:27-30. (ZHOU De-pei,ZHU Ben-zhen,MAO Jian-qiang. Rheological Mechanics and Its Application in Geotechnical Engineering[M]. Chengdu:Southwest Jiaotong University Press,1995:27-30. (in Chinese))
[24]陳安敏,顧金才,沈 俊,等.軟巖加固中錨索張拉噸位隨時間變化規(guī)律的模型試驗研究[J]. 巖石力學與工程學報,2002,21(2):251-256. (CHEN An-min,GU Jin-cai,SHEN Jun,etal. Model Testing Research on the Variation of Tension Force of Anchor Cable with Time in Reinforcement of Soft Rocks[J]. Chinese Journal of Rock Mechanics and Engineering,2002,21(2):251-256. (in Chinese))
(編輯:黃 玲)
Coupled Model for the Long-term Pre-stress Loss ofAnchor Cable and Geotechnical Creep
DENG Dong-ping, LI Liang
(College of Civil Engineering, Central South University, Changsha 410075, China)
Anchor cable is closely contacted with geotechnical body through reaction support. After a certain pre-stress is applied on anchor cable, the geotechnical body also deforms under the action of pre-stress. Due to the creep property of geotechnical body, its deformation doesn’t complete instantaneously but changes with time, which causes the long-term loss of pre-stress. In this research, anchor cable is equivalent to two models (elasticity body and generalized Kelvin body), and geotechnical body is assumed to be model ofH+nK(n≤3) which could simulate the creep property of geotechnical body. According to the coupling deformation between anchor cable and geotechnical body and the initial conditions, formulas of calculating the pre-stress of anchor cable with the change of time are obtained. Through comparison with the results of previous studies, the correctness of this model is verified. Moreover, the fitting curve could be more consistent with the measured pre-stress variation if the number ofKin creep model of geotechnical body is increased and the relaxation of anchor cable stress is considered in the theoretical model.
anchor cable; creep; coupling model; stress relaxation; loss of pre-stress
2014-03-13;
2014-04-16
教育部博士研究生學術新人獎項目(114801045);湖南省研究生科研創(chuàng)新項目(CX2012B056);貴州省交通運輸廳科技項目(2010-122-020)
鄧東平(1985-),男,湖南岳陽人,博士后,從事道路與鐵道工程等研究,(電話)13975150476(電子信箱)dengdp851112@126.com
10.3969/j.issn.1001-5485.2015.08.012
TU43
A
1001-5485(2015)08-0065-07
2015,32(08):65-71