亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        A note on ribbon elements of Hopf group-coalgebras

        2015-05-08 03:34:34ZhaoXiaofanWangShuanhong
        關(guān)鍵詞:群像數(shù)學(xué)系東南大學(xué)

        Zhao Xiaofan Wang Shuanhong

        (Department of Mathematics, Southeast University, Nanjing 211189, China)

        ?

        A note on ribbon elements of Hopf group-coalgebras

        Zhao Xiaofan Wang Shuanhong

        (Department of Mathematics, Southeast University, Nanjing 211189, China)

        LetGbe a discrete group with a neutral element andHbe a quasitriangular HopfG-coalgebra over a fieldk. Then the relationship betweenG-grouplike elements and ribbon elements ofHis considered. First, a list of useful properties of a quasitriangular HopfG-coalgebra and its Drinfeld elements are proved. Secondly, motivated by the relationship between the grouplike and ribbon elements of a quasitriangular Hopf algebra, a special kind ofG-grouplike elements ofHis defined. Finally, using the Drinfeld elements, a one-to-one correspondence between the specialG-grouplike elements defined above and ribbon elements is obtained.

        quasitriangular HopfG-coalgebra;G-grouplike element; ribbon element; Drinfeld element

        In the theory of the classical Hopf algebras[1-2], one of the celebrated results is the theory of ribbon Hopf algebras, which plays an important role in constructing invariants of framed links embedded in 3-dimensional space[3]. One important aspect of ribbon Hopf algebras is the relationship between grouplike elements and ribbon elements[4].

        As a generalization of ordinary Hopf algebras, Hopf group-coalgebras related to homotopy quantum field theories were introduced by Turaev in Ref.[5]. A purely algebraic study of Hopf group-coalgebras, such as the main properties of quasitriangular and ribbon Hopf group-coalgebras, can be found in Refs.[6-9].

        In this paper, we consider the following question: for a groupG, how to use a special kind ofG-grouplike elements to describe the ribbon elements of a HopfG-coalgebra.

        Throughout this paper, we letGbe a discrete group with a neutral element 1 andkbe a field. Assume thatHis a HopfG-coalgebra overk. Denote the set of allG-grouplike elements ofHbyG(H).

        1 Preliminaries

        Definition 1AHopfG-coalgebraH=({Hα},Δ,ε,S) is said to be crossed provided it is endowed with a familyφ={φβ:Hα→Hβαβ-1}α,β∈Gofk-linear maps (the crossing) such that for allα,β,γ∈G, 1)φβis an algebra isomorphism; 2) (φβ?φβ)Δα,γ=Δβαβ-1,βγβ-1φβ; 3)εφβ=ε; 4)φαβ=φαφβ.

        Definition 2 A quasitriangular HopfG-coalgebra is a crossed HopfG-coalgebraH=({Hα},Δ,ε,S,φ) endowed with a familyR={Rα,β∈Hα?Hβ}α,β∈Gof invertible elements (theR-matrix) such that for allα,β,γ∈G, andx∈Hαβ,

        Rα,βΔα,β(x)=σβ,α(φα-1?idHα)Δαβα-1,α(x)Rα,β
        (idHα?Δβ,γ)(Rα,βγ)=(Rα,γ)1β3(Rα,β)12γ(Δα,β?idHγ)(Rαβ,γ)=[(idHα?φβ-1)(Rα,βγβ-1)]1β3(Rβ,γ)α23
        (φβ?φβ)(Rα,γ)=Rβαβ-1,βγβ-1

        Remark 1 LetH=({Hα,mα,1α},Δ,ε,S,φ,R) be a quasitriangular HopfG-coalgebra. The generalized Drinfeld elements ofHare defined byμα=mα(Sα-1φα?idHα)σα,α-1(Rα,α-1)∈Hα, for anyα∈G.

        2 A New Description of Ribbon Hopf G-Coalgebras

        (2)

        Proof We first check the identity (1). For anyα,β∈G

        Next we show the proof of the identity (2). For anyα,β∈G, we have the following computations:

        Lemma 3 LetH=({Hα},Δ,ε,S,φ,R) be a quasitriangular HopfG-coalgebra. Then for anyα,β∈G,

        Proof Using Lemma 1 and Lemma 2, for anyα,β∈G, we compute

        This completes the proof of the lemma.

        Theorem 1 Suppose thatH=({Hα},Δ,ε,S,φ,R) is a quasitriangular HopfG-coalgebra. Then there is a one-to-one correspondence betweenEandFdefined as above.

        Let us prove the third condition. We compute

        HencePis well defined. Secondly, we show thatPhas an inverse map. Define a mapQ:F→EbyQ(θ)=μθ={μαθα∈Hα}α∈G, for anyθ∈F. Clearly,PQ=idF,QP=idE. Following Ref.[6], we know thatQis well defined. This completes the proof of the theorem.

        [1]Sweedler M.Hopfalgebras[M]. New York: Benjamin, 1969.

        [2]Montgomery S.Hopfalgebrasandtheiractionsonrings[M]. Rhode Island: American Mathematical Society, 1993.

        [3]Reshetikhin N Y, Turaev V G. Ribbon graphs and their invariants derived from quantum groups [J].CommMathPhys, 1990, 127(1): 1-26.

        [4]Kauffman L H, Radford D E. A necessary and sufficient condition for a finite-dimensional Drinfel’d double to be a ribbon Hopf algebra [J].JAlgebra, 1993, 159(1): 98-114.

        [5]Turaev V G. Homotopy field theory in dimension 3 and crossed group-categories[EB/OL]. (2000)[2013-07-01].http://arxiv.org/abs/math/0005291.

        [6]Virelizier A. Hopf group-coalgebras [J].JPureApplAlgebra, 2002, 171(1): 75-122.

        [7]Virelizier A. Graded quantum groups and quasitriangular Hopf group-coalgebras [J].CommAlgebra, 2004, 33(9): 3029-3050.

        [8]Wang S H. Group entwining structures and group coalgebras Galois extensions [J].CommAlgebra, 2004, 32(9): 3417-3436.

        [9]Wang S H. Group twisted smash products and Doi-Hopf modules for T-coalgebras [J].CommAlgebra, 2004, 32(9): 3437-3458.

        關(guān)于Hopf群余代數(shù)ribbon元的注記

        趙曉凡 王栓宏

        (東南大學(xué)數(shù)學(xué)系, 南京 211189)

        設(shè)G是一個(gè)帶有單位元的離散群,H是域k上的擬三角HopfG-余代數(shù). 考慮了H的G-群像元和ribbon元之間的關(guān)系. 首先證明了擬三角HopfG-余代數(shù)以及它的Drinfeld元的一些重要性質(zhì). 受到Hopf代數(shù)中群像元和ribbon元之間關(guān)系的啟發(fā), 定義了一類特殊的G-群像元. 最后利用Drinfeld元得到了所定義的特殊的G-群像元和ribbon元之間的一個(gè)一一對應(yīng)關(guān)系.

        擬三角HopfG-余代數(shù);G-群像元; ribbon元; Drinfeld元

        O153.3

        Foundation items:The National Natural Science Foundation of China (No.11371088), the Natural Science Foundation of Jiangsu Province (No.BK2012736), the Fundamental Research Funds for the Central Universities (No.KYZZ0060).

        :Zhao Xiaofan, Wang Shuanhong.A note on ribbon elements of Hopf group-coalgebras[J].Journal of Southeast University (English Edition),2015,31(2):294-296.

        10.3969/j.issn.1003-7985.2015.02.024

        10.3969/j.issn.1003-7985.2015.02.024

        Received 2013-10-27.

        Biographies:Zhao Xiaofan (1986—), female, graduate; Wang shuanhong (corresponding author), male, doctor, professor, shuanhwang@seu.edu.cn.

        猜你喜歡
        群像數(shù)學(xué)系東南大學(xué)
        一個(gè)人就是一個(gè)數(shù)學(xué)系
        ——丘成桐
        《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
        《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
        《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
        《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
        “一生多旦”與清代“紅樓戲”對十二釵群像的重塑
        北京師范大學(xué)數(shù)學(xué)系教授葛建全
        群像
        東方電影(2016年4期)2016-11-21 09:10:56
        論Gross曲線的二次扭
        群像掃描
        色丁香久久| 97久人人做人人妻人人玩精品| 国产aⅴ无码专区亚洲av麻豆 | 无码AV大香线蕉伊人久久| 亚洲天码一区二区三区| 国产a在亚洲线播放| 色悠久久久久综合欧美99| 国产精品18久久久久久首页| 久久国产精品国语对白| 国产做无码视频在线观看| 欧美成年黄网站色视频| 无码中文字幕av免费放| 免费人妖一区二区三区| 亚洲日韩精品无码专区网址| 免费人成年小说在线观看| 欧洲一级无码AV毛片免费| 国产自拍精品在线免费观看| 国产精品视频免费播放 | 黑人性受xxxx黑人xyx性爽| 中文在线最新版天堂av| 日本人妻免费在线播放| 精品国产午夜理论片不卡| 天天狠天天透天干天天| 亚洲天堂av在线免费播放| 中文字幕无线码一区二区| 一本大道东京热无码| 亚洲精品国产福利在线观看| 久久精品国产亚洲av性瑜伽| 国产精品 人妻互换| 91精品国产福利尤物免费| 手机在线国产福利av| 免费观看a级片| 人妻av一区二区三区精品| 亚洲国产av剧一区二区三区| 福利视频一区二区三区| 免费特级毛片| 91久久国产情侣真实对白| 免费国产一区二区视频| 一本一本久久aa综合精品 | 无码任你躁久久久久久| 好爽~又到高潮了毛片视频|