韓珍珍,菅喜岐
(天津醫(yī)科大學(xué) 生物醫(yī)學(xué)工程與技術(shù)學(xué)院,天津300070)
高強(qiáng)度聚焦超聲(high intensity focused ultrasound,HIFU)腫瘤治療具有無(wú)創(chuàng)、可重復(fù)治療等優(yōu)勢(shì)[1],目前已應(yīng)用于乳腺癌、子宮肌瘤、前列腺癌等實(shí)體軟組織腫瘤的臨床治療[2]。對(duì)于如圖1所示的經(jīng)顱腦腫瘤HIFU治療而言,顱骨與周邊軟組織聲速及聲阻抗差異大、顱骨的不均質(zhì)和強(qiáng)衰減性等導(dǎo)致經(jīng)顱聚焦超聲(transcranial focused ultrasound,tcFUS)相位和幅值失真[3]。這些失真使得顱內(nèi)散焦、焦點(diǎn)嚴(yán)重偏移目標(biāo)靶區(qū)、顱骨處能量沉積而出現(xiàn)高溫區(qū)域,導(dǎo)致顱骨周邊正常組織損傷和目標(biāo)靶區(qū)內(nèi)腫瘤不能完全致死等臨床問(wèn)題的發(fā)生。1955年,F(xiàn)ry等[4~7]首次證實(shí)了在切除部分顱骨條件下HIFU應(yīng)用于腦腫瘤治療的可行性。為實(shí)現(xiàn)經(jīng)顱腦腫瘤的HIFU無(wú)創(chuàng)治療,必須通過(guò)相控?fù)Q能器及其相關(guān)技術(shù)才能實(shí)現(xiàn)。1990年以來(lái),隨著相控?fù)Q能器及其控制技術(shù)的發(fā)展,tcFUS無(wú)創(chuàng)治療腦腫瘤成為可能,并受到眾多研究者的廣泛關(guān)注[8]。2009年,以色列InSightec公司研發(fā)的ExAblate 4000無(wú)創(chuàng)經(jīng)顱治療系統(tǒng)已應(yīng)用于神經(jīng)性疼痛[9]和特發(fā)性震顫[10]等腦功能障礙的臨床試驗(yàn)(如圖2所示)。
圖1經(jīng)顱腦腫瘤HIFU治療示意圖
圖2ExAblate 4000經(jīng)顱腦腫瘤HIFU治療系統(tǒng)臨床試驗(yàn)(圖片出處:http://www.insightec.com/)
相控?fù)Q能器是經(jīng)顱腦腫瘤HIFU治療系統(tǒng)中最關(guān)鍵的部件之一,其激勵(lì)頻率、陣列基體參數(shù)、陣元參數(shù)等因素均對(duì)tcFUS腦腫瘤治療效果有影響。
采用與陣元諧振頻率相同的激勵(lì)信號(hào)觸發(fā)陣元時(shí),超聲換能器的能量轉(zhuǎn)化效率最高,陣元的工作狀態(tài)最佳。超聲頻率越高,組織的吸收系數(shù)越大,對(duì)聲能的吸收越強(qiáng),焦域體積減小,且焦域最大溫升位置會(huì)向換能器方向移動(dòng);頻率越低,穿透組織的能力越強(qiáng),焦域體積增大,空化閾值越小越易產(chǎn)生空化效應(yīng)[11,12]。2005年,Hynynen等[13]采用0.25MHz的低頻進(jìn)行經(jīng)顱仿真研究,結(jié)果表明低頻雖在一定程度上降低了tcFUS相位和幅值的失真度,但空化效應(yīng)風(fēng)險(xiǎn)增大。為此經(jīng)顱治療選擇頻率時(shí),既要保證超聲能夠順利地穿過(guò)顱骨到達(dá)目標(biāo)靶區(qū),又要在焦點(diǎn)處形成足夠高的超聲能量。1978年,F(xiàn)ry等[14]對(duì)0.25~6.0MHz范圍內(nèi)的頻率進(jìn)行篩選,發(fā)現(xiàn)tcFUS的頻率在0.5~1.0MHz范圍內(nèi)時(shí)聚焦效果較好。
相控?fù)Q能器由若干離散的陣元鑲嵌在一定形狀的基體上構(gòu)成[15],基體一般有平面形和球面形,其中球面相控陣自身具有幾何焦點(diǎn),聲強(qiáng)增益高[16]。目前tcFUS腦腫瘤治療中主要采用球冠狀相控?fù)Q能器[17,18]和半球形相控?fù)Q能器(如圖3所示)。對(duì)于球冠狀相控?fù)Q能器而言,其焦域的可調(diào)控范
圖3經(jīng)顱治療腦腫瘤相控?fù)Q能器基體形狀
圍較大,但當(dāng)目標(biāo)焦點(diǎn)位置離顱骨表面由遠(yuǎn)及近時(shí),顱骨內(nèi)的聲壓呈增加趨勢(shì)。就目前球面相控陣的控制技術(shù)而言,當(dāng)焦點(diǎn)距離顱骨表面小于3cm時(shí),顱骨中可能出現(xiàn)的高溫升區(qū)域?qū)е嘛B骨周?chē)=M織損傷[19]。對(duì)于半球形相控?fù)Q能器而言,其幾何結(jié)構(gòu)可使顱骨表面的超聲輻照面積最大化,顱骨中的熱沉積最小[20],通過(guò)仿真與實(shí)驗(yàn)對(duì)比驗(yàn)證了半球形相控?fù)Q能器可降低顱骨溫升,但該換能器形成焦域的可調(diào)控范圍較小,僅限于治療深部腦腫瘤。2005年,Clement等[21]設(shè)計(jì)了開(kāi)口直徑30cm、激勵(lì)頻率0.7~0.8MHz的500陣元半球形換能器,研究結(jié)果表明該陣列可實(shí)現(xiàn)靶區(qū)腦組織的消融,不會(huì)對(duì)顱骨等正常組織造成損傷。2009年,以色列InSightec公司開(kāi)發(fā)出ExAblate 4000系列無(wú)創(chuàng)經(jīng)顱治療系統(tǒng),采用開(kāi)口直徑30cm、頻率0.22或0.65MHz的1024陣元半球形相控?fù)Q能器[22]。2013年,Chauvet等[23]設(shè)計(jì)了激勵(lì)頻率為1MHz的512陣元高功率半球形相控?fù)Q能器用于經(jīng)顱腦腫瘤治療的仿真和離體實(shí)驗(yàn),結(jié)果表明該陣列可實(shí)現(xiàn)目標(biāo)靶區(qū)的有效消融。
2009年,吉翔等[24]的研究結(jié)果表明相控?fù)Q能器基體的曲率半徑趨近于最大掃描深度,開(kāi)口直徑大小決定了可能的最大偏離聲軸距離,同時(shí)F值(曲率半徑與開(kāi)口直徑的比值)越大聚焦深度越大,但越容易引起近距離正常組織的損傷,為避免近場(chǎng)正常組織的損傷F值需小于等于1.0[25]。
2.3.1陣元分布
陣元分布方式是tcFUS相控?fù)Q能器優(yōu)化設(shè)計(jì)的關(guān)鍵之一,常見(jiàn)的tcFUS相控?fù)Q能器有規(guī)則分布和隨機(jī)分布,其中規(guī)則分布中主要有扇蝸分布和活塞分布。
圖4扇蝸分布
如圖4所示的扇蝸分布換能器是將除中心陣元外的同心環(huán)狀陣元均分成若干面積相等的四邊形小陣元,每環(huán)的分割數(shù)目不等。通過(guò)對(duì)各陣元施加不同的相位延遲,可實(shí)現(xiàn)軸上變焦和離軸聚焦[26]。2000年,Clement等[27]設(shè)計(jì)了64陣元半球形扇渦陣,中心陣元為七邊形,其周?chē)囋獮樗倪呅?、四層同心環(huán)結(jié)構(gòu)分布,陣元數(shù)目由內(nèi)到外依次為7、13、20、23,仿真和離體實(shí)驗(yàn)結(jié)果均表明該陣列可經(jīng)過(guò)顱骨在目標(biāo)靶區(qū)產(chǎn)生損傷。2002年,Connor等[28]對(duì)500陣元的半球形扇蝸陣進(jìn)行仿真實(shí)驗(yàn),結(jié)果表明該陣列可實(shí)現(xiàn)靶區(qū)腦組織的無(wú)創(chuàng)消融,且不會(huì)造成周?chē)=M織的損傷。2013年,Narumi等[29]設(shè)計(jì)了56和256陣元中心開(kāi)孔的球冠狀扇蝸陣,仿真結(jié)果表明兩種陣列均可實(shí)現(xiàn)tcFUS有效聚焦。
如圖5所示的活塞分布換能器是將一定形狀陣元(如矩形、菱形、圓形等)按一定方式(如六邊形、同心環(huán)等)排布在球面基體內(nèi)表面,通過(guò)調(diào)整相位可實(shí)現(xiàn)整個(gè)三維空間的調(diào)控聚焦[30]。2000年,Clement等[31]設(shè)計(jì)了相鄰陣元中心間距相等的40矩形陣元相控陣,仿真結(jié)果表明該陣列可在目標(biāo)靶區(qū)產(chǎn)生足夠的聲能量,且不會(huì)對(duì)顱骨等周?chē)=M織造成損傷。2001年,Sharifi等[32]對(duì)相同條件下矩形和圓形陣元相控陣的聲場(chǎng)進(jìn)行對(duì)比,結(jié)果表明圓形陣元可降低聲場(chǎng)旁瓣、增大焦域能量。2010年,Matsumoto等[33]設(shè)計(jì)了以同心環(huán)方式分布的61圓形陣元活塞陣,基于人體頭部CT圖像建立的顱骨模型非線性仿真了tcFUS的聲壓場(chǎng),結(jié)果表明該陣列可明顯改善聲場(chǎng)分布。2008年,Song等[34]采用長(zhǎng)度為6mm、內(nèi)徑7.2mm、外徑10mm的圓柱形陣元,設(shè)計(jì)了開(kāi)口直徑為310mm以同心環(huán)方式分布的1372陣元半球形相控?fù)Q能器,激勵(lì)頻率為0.306或0.84MHz。
圖5活塞分布(以圓形陣元為例)
如圖6所示的陣元隨機(jī)分布與圓形陣元的活塞分布類(lèi)似,只是采取隨機(jī)分布的陣元分布方式,使得相鄰陣元的中心間距在一定范圍內(nèi)不等。2003年,Pernot等[35]對(duì)六邊形、同心環(huán)、隨機(jī)分布的200圓形陣元相控陣tcFUS的聲壓場(chǎng)進(jìn)行仿真對(duì)比,結(jié)果表明隨機(jī)分布相控陣可明顯降低聲場(chǎng)旁瓣。2007年,Tanter等[36,37]設(shè)計(jì)300圓形陣元隨機(jī)分布的相控?fù)Q能器,仿真結(jié)果表明該陣列可明顯改善聲場(chǎng)分布、不會(huì)損傷顱骨周?chē)日=M織。
圖6隨機(jī)分布
2.3.2陣元面積和數(shù)目
陣元面積的選擇與陣元數(shù)目緊密相關(guān),從理論上講小的陣元面積,可以有效降低旁瓣、改善聲場(chǎng)分布,但是面積越小越容易引起不同的振動(dòng)方式,難以保證全部陣元以單一頻率發(fā)射,且陣元面積越小陣元數(shù)目越多。1998年,Jie等[38]指出當(dāng)陣元尺寸小于波長(zhǎng)的5~6倍時(shí),tcFUS聚焦效果最優(yōu)。
2000年,Clement等[27]對(duì)相同條件下1、11、64、228、512陣元組成的半球形相控?fù)Q能器進(jìn)行仿真對(duì)比,結(jié)果表明隨著陣元數(shù)目的增加,旁瓣數(shù)目逐漸減小、旁瓣聲壓幅值逐漸降低、焦域能量逐漸升高,然后趨于飽和。通過(guò)對(duì)tcFUS焦平面聲場(chǎng)分布和主瓣聲壓幅值變化曲線比較得出在陣元數(shù)目為64時(shí),就可以達(dá)到良好的聚焦效果。2013年,Narumi等[29]對(duì)56和256陣元球冠狀相控?fù)Q能器的tcFUS聲壓場(chǎng)進(jìn)行仿真和實(shí)驗(yàn)對(duì)比分析,結(jié)果表明256陣元可明顯增強(qiáng)相位校正和幅值補(bǔ)償?shù)挠行?、降低聲?chǎng)旁瓣。
圖7時(shí)間反轉(zhuǎn)示意圖
圖8顱骨臨床CT數(shù)據(jù)處理過(guò)程
相控?fù)Q能器各陣元的激發(fā)電路相對(duì)獨(dú)立,通過(guò)分別調(diào)控每個(gè)陣元的相位和幅值可實(shí)現(xiàn)tcFUS聚焦。對(duì)于經(jīng)顱畸變超聲相位和幅值失真以及熱點(diǎn)(二次高聲壓旁瓣)等問(wèn)題均可基于時(shí)間反轉(zhuǎn)法進(jìn)行校正或消除。1996年,F(xiàn)ink等[39]首次將時(shí)間反轉(zhuǎn)法用于tcFUS,該方法首先在如圖7(a)所示的目標(biāo)位置設(shè)置點(diǎn)聲源,超聲信號(hào)穿過(guò)顱骨等介質(zhì)后由換能器接收信號(hào)并將其轉(zhuǎn)換成電信號(hào),對(duì)該電信號(hào)進(jìn)行存儲(chǔ)和時(shí)間反轉(zhuǎn)處理,提取相位信息后加到換能器各自對(duì)應(yīng)的陣元上進(jìn)行激勵(lì)[40],可在目標(biāo)位置處實(shí)現(xiàn)自適應(yīng)聚焦(如圖7(b)所示)。同時(shí)近年來(lái)隨著MRI和CT成像技術(shù)的進(jìn)步,為顱骨等組織聲學(xué)參數(shù)的獲取提供了可能。1998年,Sun等[38]基于人體顱骨的MRI圖像,提取顱骨的輪廓信息,雖然能夠確定顱骨的具體位置和厚度,但是不能獲得顱骨內(nèi)部的不均質(zhì)信息。2001年,Pernot等[41]通過(guò)高分辨率顱骨CT圖像的亨氏值H求得孔隙率Φ,包括水、顱骨三層典型結(jié)構(gòu)(外層骨密質(zhì)、內(nèi)層板障結(jié)構(gòu)),再由孔隙率得出顱骨的聲學(xué)參數(shù),包括密度ρ、聲速c、吸收系數(shù)α,其公式如下:
其中,ρwater為水的密度1000kg/m3,ρbone為骨密質(zhì)的密度2000kg/m3,cwater為水的聲速1486m/s,cbone為骨密質(zhì)的聲速3200m/s,αwater為水的吸收系數(shù)0.2dB/(m·MHz),αbone為骨密質(zhì)的吸收系數(shù)8dB/(m·MHz),β為常數(shù)0.5。
如圖8所示為人體頭顱CT圖像截取和三維重建示意圖。通過(guò)CT圖像三維重建以(2)~(4)式計(jì)算顱骨參數(shù),使基于經(jīng)顱腦腫瘤HIFU治療數(shù)值仿真模型的建立成為可能,為經(jīng)顱畸變超聲校正技術(shù)的進(jìn)一步研究成為可能。
2001年,Aubry等[42]利用時(shí)間反轉(zhuǎn)法對(duì)tcFUS相位差進(jìn)行校正,實(shí)驗(yàn)結(jié)果表明該方法可實(shí)現(xiàn)經(jīng)顱精確聚焦。2003年,Aubry等[43]基于CT圖像獲得顱骨聲學(xué)參數(shù)模型,結(jié)合時(shí)間反轉(zhuǎn)法進(jìn)行三維時(shí)域有限差分仿真,使該相位校正法與CT圖像計(jì)算顱骨結(jié)構(gòu)及其聲學(xué)參數(shù)相結(jié)合,用來(lái)預(yù)測(cè)tcFUS形成的聲壓場(chǎng)和溫度場(chǎng),仿真結(jié)果表明相位校正后焦點(diǎn)位于目標(biāo)靶區(qū),焦域外無(wú)明顯旁瓣。
雖然相位校正法可使焦點(diǎn)位于目標(biāo)靶區(qū),但顱骨的強(qiáng)衰減性、顱骨與周邊軟組織聲阻抗的不匹配等使得聚焦于焦點(diǎn)處的能量損失嚴(yán)重、聲場(chǎng)旁瓣較高[44]。2002年,Aubry等[45]對(duì)tcFUS進(jìn)行幅值補(bǔ)償,結(jié)果表明該方法可改善聲場(chǎng)聚焦性能、增大焦域能量。2005年,Hynynen等[46]對(duì)有無(wú)相位或幅值補(bǔ)償方法的實(shí)驗(yàn)進(jìn)行對(duì)比,結(jié)果表明幅值補(bǔ)償法可增大焦域能量并使之均勻化、降低旁瓣聲壓幅值、改善聚焦質(zhì)量。2013年,Narumi等[29]基于時(shí)間反轉(zhuǎn)的互相關(guān)法進(jìn)行相位校正和幅值補(bǔ)償,即以某以陣元作為參考陣元,在保持輸入能量一致的條件下利用互相關(guān)法求得每一陣元的延遲相位和調(diào)制幅值(如圖9所示),其研究結(jié)果表明該幅值補(bǔ)償法可使能量有效匯聚于目標(biāo)焦點(diǎn),但并不能降低熱點(diǎn)聲壓幅值。
雖然通過(guò)相位校正和幅值補(bǔ)償可使經(jīng)顱超聲精確聚焦在目標(biāo)靶區(qū),但由于顱骨等介質(zhì)的非均質(zhì)性,tcFUS在顱骨內(nèi)部或顱骨表面易有熱點(diǎn)出現(xiàn)。2012年,Nicolas等[47]提出采用重復(fù)多次時(shí)間反轉(zhuǎn)的方法進(jìn)行熱點(diǎn)消除,即分別在目標(biāo)靶區(qū)和熱點(diǎn)位置設(shè)置點(diǎn)聲源獲取相位信號(hào),調(diào)整聚焦在熱點(diǎn)位置超聲信號(hào)的相位和幅值后,與聚焦在目標(biāo)靶區(qū)的信號(hào)進(jìn)行線性疊加,以達(dá)到降低熱點(diǎn)聲壓幅值的目的。如果熱點(diǎn)消除后仍存在熱點(diǎn),可重復(fù)進(jìn)行熱點(diǎn)消除,熱點(diǎn)消除的終止條件是旁瓣峰值與主瓣峰值的聲壓比值小于等于0.67[48]。
圖9基于互相關(guān)法進(jìn)行相位校正和幅值補(bǔ)償
數(shù)值仿真是預(yù)測(cè)tcFUS形成聲壓場(chǎng)和溫度場(chǎng)的有效方法,實(shí)驗(yàn)測(cè)量是驗(yàn)證仿真方法的有效手段。數(shù)值仿真中,非線性聲場(chǎng)一般采用Westervelt方程[49,50]或KZK方程[51],線性聲場(chǎng)也可采用亥姆霍茲-克希霍夫積分定理[52]等進(jìn)行計(jì)算;對(duì)于溫度場(chǎng)而言,一般采用Pennes生物熱傳導(dǎo)方程[53]。驗(yàn)證實(shí)驗(yàn)中,一般采用離體顱骨或者活體動(dòng)物進(jìn)行HIFU經(jīng)顱實(shí)驗(yàn)。
1998年,Hynynen等[54]進(jìn)行如圖10所示的離體顱骨實(shí)驗(yàn),經(jīng)水聽(tīng)器測(cè)量經(jīng)顱超聲的延遲相位后,加到相控?fù)Q能器對(duì)應(yīng)陣元上進(jìn)行激勵(lì),實(shí)驗(yàn)結(jié)果表明該方法可實(shí)現(xiàn)相位差的有效校正,使超聲準(zhǔn)確聚焦于靶區(qū)且能量最高。2006年,Marquet等[55]以活體獼猴頭顱為研究對(duì)象,基于頭顱CT掃描數(shù)據(jù)建立數(shù)值仿真模型,通過(guò)仿真計(jì)算出超聲輻照功率及調(diào)制相位和幅值后進(jìn)行活體動(dòng)物實(shí)驗(yàn),結(jié)果表明該方法可實(shí)現(xiàn)目標(biāo)靶區(qū)的有效聚焦。2007年,Pernot等[56]選用與人體顱骨參數(shù)相近的綿羊進(jìn)行活體動(dòng)物實(shí)驗(yàn),在目標(biāo)靶區(qū)插入水聽(tīng)器,基于時(shí)間反轉(zhuǎn)法進(jìn)行經(jīng)顱超聲的相位校正,實(shí)驗(yàn)結(jié)果表明在目標(biāo)靶區(qū)可產(chǎn)生熱損傷。2009年,Marquet等[57]選用活體猴子和離體人顱骨樣本進(jìn)行仿真和實(shí)驗(yàn)驗(yàn)證,仿真和實(shí)驗(yàn)結(jié)果均表明該方法可實(shí)現(xiàn)tcFUS有效聚焦,治療誤差在0.7mm范圍以內(nèi)。
圖10離體顱骨實(shí)驗(yàn)示意圖
腦腫瘤HIFU治療具有無(wú)創(chuàng)、可重復(fù)治療等優(yōu)點(diǎn),受到眾多研究者的關(guān)注,該技術(shù)仍處于研究階段,到目前為止僅有以色列InSightec公司的ExAblate 3000和4000治療系統(tǒng)進(jìn)行過(guò)少數(shù)病例的臨床試驗(yàn)。2010年,McDannold等[58]第一次將HIFU應(yīng)用于3個(gè)惡性膠質(zhì)瘤患者,其中一位患者選取的最大功率為650W,另兩位患者選取最大功率為800W,但此試驗(yàn)最終沒(méi)有對(duì)治療區(qū)域造成熱凝固性壞死損傷。2011年,Martind等[59]對(duì)丘腦膠質(zhì)瘤病人進(jìn)行tcFUS治療,試驗(yàn)結(jié)果表明腫瘤組織完全消融,但是病人五天后死于對(duì)側(cè)腦室出血。食品藥品監(jiān)督管理局對(duì)此事進(jìn)行深入調(diào)查,但未發(fā)現(xiàn)治療與死因間的因果關(guān)系。2012年,Jeanmonod等[60]對(duì)神經(jīng)性疼痛進(jìn)行tcFUS治療,治療結(jié)束后發(fā)現(xiàn)有一例病人有一處8~10mm出血點(diǎn)。在經(jīng)顱腦腫瘤HIFU臨床治療過(guò)程中,精確聚焦是其關(guān)鍵技術(shù)之一,在實(shí)現(xiàn)精確聚焦之后,如在高能量下顱骨及其周邊組織的熱損傷問(wèn)題[61,62],治療過(guò)程中溫度監(jiān)控及其治療劑量問(wèn)題[63],通過(guò)焦點(diǎn)后的連續(xù)超聲波再被顱骨反射及其形成駐波效應(yīng)[64,65]的影響等尚不清楚。由于這些問(wèn)題的存在,制約著經(jīng)顱腦腫瘤HIFU治療的臨床應(yīng)用。
tcFUS腦腫瘤治療的關(guān)鍵在于使超聲能量高度集中在靶區(qū)位置以增強(qiáng)病變區(qū)域的輻照效果和能量沉積,這既要求超聲換能器具有精確的聚焦特性和較高的聲強(qiáng)增益,又要盡可能減少對(duì)顱骨及頭皮等正常組織的損傷。目前,篩選并研制適合不同部位腦腫瘤治療的相控陣換能器、改進(jìn)經(jīng)顱相控陣聚焦超聲系統(tǒng)的控制技術(shù),對(duì)無(wú)創(chuàng)治療腦腫瘤的治療效果和臨床推廣有著重要意義。隨著這些關(guān)鍵技術(shù)問(wèn)題的解決,tcFUS腦腫瘤治療的應(yīng)用具有廣闊前景。
[1] Haar G T, Coussios C. High intensity focused ultrasound: physical principles and devices. International Journal of Hyperthermia, 2007,23(2): 89-104.
[2] Kennedy J E. High-intensity focused ultrasound in the treatment of solid tumours. Nature reviews cancer, 2005, 5(4): 321-327.
[3] White D N, Clark J M, Chesebrough J N,et al.Effect of the skull in degrading the display of echoencephalographic B and C scans. The Journal of the Acoustical Society of America, 1968, 44(5): 1339-1345.
[4] Fry W J, Fry F J, Barnard J W,et al.Ultrasonic lesions in mammalian central nervous system. Science, 1955, 122(3179):1091-1091.
[5] Fry W J, Barnard J W, Fry F J,et al.Ultrasonically produced localized selective lesions in the central nervous system. American Journal of Physical Medicine & Rehabilitation, 1955, 34(3): 413-423.
[6] Fry W J. Intense ultrasound in investigations of the central nervous system. Advances in biological and medical physics, 1957, 6: 281-348.
[7] Fry W J, Fry F. Fundamental neurological research and human neurosurgery using intense ultrasound. IRE Trans Med Electron,1960, 3: 166-181.
[8] Kyriakou A, Neufeld E, Werner B,et al.A review of numerical and experimental compensation techniques for skull-induced phase aberrations in transcranial focused ultrasound. International Journal of Hyperthermia, 2013, 30(1): 36-46.
[9] Martin E, Jeanmonod D, Morel A,et al.High-intensity focused ultrasound for noninvasive functional neurosurgery. Annals of neurology, 2009, 66(6): 858-861.
[10] Lipsman N, Schwartz M L, Huang Y,et al.MR-guided focused ultrasound thalamotomy for essential tremor: a proof-of-concept study. The Lancet Neurology, 2013, 12(5): 462-468.
[11] Dalecki D. Mechanical bioeffects of ultrasound. Annu. Rev. Biomed.Eng., 2004, 6: 229-248.
[12] Humphrey V F. Ultrasound and matter-Physical interactions.Progress in biophysics and molecular biology, 2007, 93(1): 195-211.
[13] Yin X, Hynynen K. A numerical study of transcranial focused ultrasound beam propagation at low frequency. Physics in medicine and biology, 2005, 50(8): 1821-1836.
[14] Fry F J, Barger J E. Acoustical properties of the human skull. The Journal of the Acoustical Society of America, 1978, 63(5): 1576-1590.
[15] 陳亞珠.相控聚焦高強(qiáng)度換能器陣列: 中國(guó), 200410017185.3.2005-01-12.
[16] Ebbini E S, Cain C A. A spherical-section ultrasound phased array applicator for deep localized hyperthermia. Biomedical Engineering,IEEE Transactions on, 1991, 38(7): 634-643.
[17] Marquet F, Boch A L, Pernot M,et al.Non-invasive ultrasonic surgery of the brain in non-human primates. The Journal of the Acoustical Society of America, 2013, 134(2): 1632-1639.
[18] Okita K, Ono K, Takagi S,et al.Numerical simulation of the tissue ablation in high-intensity focused ultrasound therapy with array transducer. International Journal for Numerical Methods in Fluids,2010, 64(10-12): 1395-1411.
[19] Pinton G, Aubry J F, Fink M,et al.Effects of nonlinear ultrasound propagation on high intensity brain therapy. Medical physics, 2011,38(3): 1207-1216.
[20] Sun J, Hynynen K. The potential of transskull ultrasound therapy and surgery using the maximum available skull surface area. The Journal of the Acoustical Society of America, 1999, 105(4): 2519-2527.
[21] Clement G T, White P J, King R L,et al.A magnetic resonance imaging-compatible, large-scale array for trans-skull ultrasound surgery and therapy. Journal of ultrasound in medicine, 2005, 24(8):1117-1125.
[22] http://finance.ifeng.com/usstock/realtime/20090714/935495.shtml[OL]. 2009-07-14.
[23] Chauvet D, Marsac L, Pernot M,et al.Targeting accuracy of transcranial magnetic resonance–guided high-intensity focused ultrasound brain therapy: a fresh cadaver model: Laboratory investigation. Journal of neurosurgery, 2013, 118(5): 1046-1052.
[24] Ji X, Bai J, Shen G,et al.High-intensity focused ultrasound with large scale spherical phased array for the ablation of deep tumors.Journal of Zhejiang University SCIENCE B, 2009, 10(9): 639-647.
[25] Daum D R, Hynynen K. Theoretical design of a spherically sectioned phased array for ultrasound surgery of the liver. European journal of ultrasound, 1999, 9(1): 61-69.
[26] 向軍. HIFU多焦點(diǎn)聲焦域形態(tài)研究.重慶醫(yī)科大學(xué)碩士學(xué)位論文.2010.
[27] Clement G T, Sun J, Giesecke T,et al.A hemisphere array for noninvasive ultrasound brain therapy and surgery. Physics in medicine and biology, 2000, 45(12): 3707-3719.
[28] Connor C W, Clement G T, Hynynen K. A unified model for the speed of sound in cranial bone based on genetic algorithm optimization. Physics in medicine and biology, 2002, 47(22): 3925-3944.
[29] Narumi R, Matsuki K, Mitarai S,et al.Focus control aided by numerical simulation in heterogeneous media for high-intensity focused ultrasound treatment. Japanese Journal of Applied Physics,2013, 52(7S): 07HF01.
[30] Raju B I, Hall C S, Seip R. Ultrasound therapy transducers with space-filling non-periodic arrays. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 2011, 58(5): 944-954.
[31] Clement G T, White J, Hynynen K. Investigation of a large-area phased array for focused ultrasound surgery through the skull.Physics in medicine and biology, 2000, 45(4): 1071-1083.
[32] Sharifi H, Soltanian-Zadeh H. New 2D ultrasound phased-array design for hyperthermia cancer therapy. International Society for Optics and Photonics, 2001: 473-482.
[33] Okita K, Ono K, Takagi S,et al.Development of high intensity focused ultrasound simulator for large-scale computing.International Journal for Numerical Methods in Fluids, 2011, 65(1-3): 43-66.
[34] Song J, Hynynen K. Electronically steerable large-scale ultrasound phased-array for noninvasive transcranial therapy. Ultrasonics Symposium, 2008. IUS 2008. IEEE. IEEE, 2008: 447-450.
[35] Pernot M, Aubry J F, Tanter M,et al.High power transcranial beam steering for ultrasonic brain therapy. Physics in medicine and biology, 2003, 48(16): 2577-2589.
[36] Tanter M, Pernot M, Aubry J F,et al.Compensating for bone interfaces and respiratory motion in high-intensity focused ultrasound. International Journal of Hyperthermia, 2007, 23(2): 141-151.
[37] Pernot M, Aubry J F, Tanter M,et al.High power phased array prototype for clinical high intensity focused ultrasound: applications to transcostal and transcranial therapy. Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE. IEEE, 2007: 234-237.
[38] Sun J, Hynynen K. Focusing of therapeutic ultrasound through a human skull: a numerical study. The Journal of the Acoustical Society of America, 1998, 104(3): 1705-1715.
[39] Thomas J L, Fink M A. Ultrasonic beam focusing through tissue inhomogeneities with a time reversal mirror: application to transskull therapy. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 1996, 43(6): 1122-1129.
[40] 劉冬冬, 張碧晶. 超聲時(shí)間反轉(zhuǎn)掃描方法研究. 聲學(xué)技術(shù), 2011,12(30): 23-24.
[41] Pernot M, Aubry J F, Tanter M,et al.Experimental validation of 3D finite differences simulations of ultrasonic wave propagation through the skull. Ultrasonics Symposium, 2001 IEEE. IEEE, 2001,2: 1547-1550.
[42] Aubry J F, Tanter M, Gerber J,et al.Optimal focusing by spatiotemporal inverse filter. II. Experiments. Application to focusing through absorbing and reverberating media. The Journal of the Acoustical Society of America, 2001, 110(1): 48-58.
[43] Aubry J F, Tanter M, Pernot M,et al.Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans. The Journal of the Acoustical Society of America, 2003, 113(1): 84-93.
[44] Tanter M, Thomas J L, Fink M. Focusing and steering through absorbing and aberrating layers: Application to ultrasonic propagation through the skull. The Journal of the Acoustical Society of America, 1998, 103(5): 2403-2410.
[45] Aubry J F, Cassereau D, Tanter M,et al.Skull surface detection algorithm to optimize time reversal focusing through a human skull[C].Ultrasonics Symposium, 2002. Proceedings. 2002 IEEE.IEEE, 2002, 2: 1451-1454.
[46] White J, Clement G T, Hynynen K. Transcranial ultrasound focus reconstruction with phase and amplitude correction. Ultrasonics,IEEE Transactionson Ferroelectrics and Frequency Control, 2005,52(9): 1518-1522.
[47] Leduc N, Okita K, Sugiyama K,et al.Focus control in HIFU therapy assisted by time-reversal simulation with an iterative procedure for hot spot elimination. Journal of Biomechanical Science and Engineering, 2012, 7(1): 43-56.
[48] Song J, Pulkkinen A, Huang Y,et al.Investigation of standingwave formation in a human skull for a clinical prototype of a largeaperture, transcranial MR-guided focused ultrasound (MRgFUS)phased array: an experimental and simulation study. Biomedical Engineering, IEEE Transactions on, 2012, 59(2): 435-444.
[49] Hamiltion M F, Blockstock D T. Nonlinear Acoustics. Boston:Academic Press, 1998.
[50] Bailty M, Khokhlova V, Sapozhnikov O,et al.Physical mechanism of the therapeutic effect of ultrasound (A review). Acoustic physics.2003, 49(4): 369-388.
[51] 孫俊霞. 高強(qiáng)度聚焦超聲腫瘤治療系統(tǒng)的換能器研究和生物效應(yīng)分析. 上海: 上海交通大學(xué), 2001.
[52] 章琛曦, 張素, 張炤, 等. 相控陣聚焦超聲消融腫瘤的建模與仿真.系統(tǒng)仿真學(xué)報(bào), 2007, 19(1): 164-167.
[53] Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. Journal of Applied Physiology, 1948,1: 93-122.
[54] Hynynen K, Jolesz F A. Demonstration of potential noninvasive ultrasound brain therapy through an intact skull. Ultrasound in medicine & biology, 1998, 24(2): 275-283.
[55] Marquet F, Pernot M, Aubry J F,et al.Non-invasive transcranial ultrasound therapy guided by CT-scans. Engineering in Medicine and Biology Society, 2006. EMBS'06. 28th Annual International Conference of the IEEE. IEEE, 2006: 683-687.
[56] Pernot M, Aubry J F, Tanter M,et al.In vivo transcranial brain surgery with an ultrasonic time reversal mirror. Journal of neurosurgery, 2007, 106(6): 1061-1066.
[57] Marquet F, Pernot M, Aubry J F,et al.Non-invasive transcranial ultrasound therapy based on a 3D CT scan: protocol validation and in vitro results. Physics in medicine and biology, 2009, 54(9): 2597.
[58] McDannold N, Clement G, Black P,et al.Transcranial MRI-guided focused ultrasound surgery of brain tumors: Initial fi ndings in three patients. Neurosurgery, 2010, 66(2): 323.
[59] Martin E, Jolesz F A. Noninvasive treatment for brain tumors:Magnetic resonance-guided focused ultrasound surgery. Tumors of the Central Nervous system, Volume 3. Springer Netherlands, 2011: 227-236.
[60] Jeanmonod D, Werner B, Morel A,et al.Transcranial magnetic resonance imaging–guided focused ultrasound: noninvasive central lateral thalamotomy for chronic neuropathic pain. Neurosurgical focus, 2012, 32(1): E1.
[61] Dubinsky T J, Cuevas C, Dighe M K,et al.High-intensity focused ultrasound: current potential and oncologic applications. American journal of roentgenology, 2008, 190(1): 191-199.
[62] Hynynen K. MRI-guided focused ultrasound treatments. Ultrasonics,
2010, 50(2): 221-229.
[63] Hijnen N, Langereis S, Grüll H. Magnetic resonance guided highintensity focused ultrasound for image-guided temperature-induced drug delivery. Advanced drug delivery reviews, 2014, 72: 65-81.
[64] O'Reilly M A, Huang Y, Hynynen K. The impact of standing wave effects on transcranial focused ultrasound disruption of the blood–brain barrier in a rat model. Physics in medicine and biology, 2010,55(18): 5251.
[65] Song J, Pulkkinen A, Huang Y,et al.Investigation of standingwave formation in a human skull for a clinical prototype of a largeaperture, transcranial MR-guided focused ultrasound (MRgFUS)phased array: an experimental and simulation study. Biomedical Engineering, IEEE Transactions on, 2012, 59(2): 435-444.