亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Coherence-based performance analysis of the generalized orthogonal matching pursuit algorithm

        2015-04-22 07:48:56ZHAOJuan趙娟BIShihe畢詩(shī)合BAIXia白霞TANGHengying唐恒瀅WANGHao王豪

        ZHAO Juan(趙娟), BI Shi-he(畢詩(shī)合) BAI Xia(白霞)TANG Heng-ying(唐恒瀅) WANG Hao(王豪)

        (1.School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China;2.Beijing Key Laboratory of Fractional Signals and Systems, Beijing 100081, China)

        ?

        Coherence-based performance analysis of the generalized orthogonal matching pursuit algorithm

        ZHAO Juan(趙娟), BI Shi-he(畢詩(shī)合)1,2, BAI Xia(白霞)1,2,TANG Heng-ying(唐恒瀅)1,2, WANG Hao(王豪)1,2

        (1.School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China;2.Beijing Key Laboratory of Fractional Signals and Systems, Beijing 100081, China)

        compressedsensing;sparsesignalreconstruction;orthogonalmatchingpursuit(OMP);supportrecovery;coherence

        Among the existing recovery algorithms, two major approaches arel1-minimization and greedy algorithms.l1-minimization methods, such as basis pursuit (BP)[4], can work correctly for sparse signals by solving a convexl1minimization problem instead of thel0minimization, but require high computational complexity. On the other hand, greedy methods, such as orthogonal matching pursuit (OMP)[5], have received considerable attention due to their lower computational complexity and competitive performance. Greedy methods identify the supports of the sparse signal iteratively and construct an approximation on the estimated support until a halting condition is met. The OMP is the classical greed algorithm, which selects one column ofΦthat is most correlated with the current residual at each iteration. Some papers discussed the OMP performance of recovering sparse signals based on restricted isometry property (RIP)[6-7]and mutual incoherence property (MIP)[5,8-9]. Most of greedy algorithms such as regularized OMP (ROMP)[10], stagewise OMP (StOMP)[11], compressive sampling matching pursuit (CoSaMP)[12]and subspace pursuit (SP)[13]can be regarded as modifications of the OMP, mainly on the identification step, to improve the computational efficiency and recovery performance.

        Recently, an extension of the OMP termed as generalized OMP (gOMP) has been proposed[14], which identifies multiple indices in each iteration by choosing indices corresponding toN(≥1) largest correlation in magnitude and can reconstruct sparse signals with much smaller number of iterations when compared to the OMP. The sufficient condition for perfectly recovering sparse signals via the gOMP has been derived based on RIP[14-15]. However, the performance of the gOMP in the framework of coherence has not been presented before. The goal of this paper is to provide the performance guarantees of the gOMP in terms of coherence to ensure identification of correct indices of sparse signals in noiseless and noisy cases. The achieved results can be regarded as extensions of the results of the OMP[5,8-9].

        1 Generalized OMP algorithm

        The generalized OMP identifies multiple indices in each iteration by choosing indices corresponding toN(≥1) largest correlation in magnitude[14]and its detailed description is shown in algorithm 1.

        Algorithm1GeneralizedOMPalgorithm

        Input:measurementsignaly∈Rm, measurement matrixΦ∈Rm×n, number of indices for each iterationN, halting threshold σ,maximumiterationskmax

        Initialization:residualr0=y, estimated support setΛ0=?, iteration counterk=1

        Loop: atkth(k≥1) iteration

        ②Update estimated support set:Λk=Λk-1∪{i1,i2,…,iN}

        ④If (‖rk‖2<δork≥kmax) break; else setk=k+1 and go to step 1)

        End loop

        Case1IfT?Λk, we have

        (1)

        (2)

        Thus

        (3)

        Case 2 IfT?Λk,wehave

        (4)

        FromEq.(4),weknowthataslongasatleastonecorrectindexisselectedineachiterationofthegOMP,T?ΛkwillholdafterKiterationsandthusthesparsesignalcanbeperfectlyrecovered.Successmeansthatatleastonecorrectindexischosenintheiteration.Inthenextsectionwewillanalyzecoherence-basedconditionguaranteeingthesuccessofthegOMPinnoiselessandnoisycases.

        2 Coherence-based analysis of the generalized OMP algorithm

        2.1 In noiseless case

        Theorem1Supposethaty=Φx, where x is aK-sparse vector with supportTandΦhas coherence parameterμ. The gOMP withN≥2 will perfectly recover anyK-sparse signal x within at mostKiterations if

        (5)

        Proof Mathematical induction method is used to prove the theorem. Suppose that the gOMP performedk-1 iterations successfully, i.e., Λk-1containsatleastk-1correctindices,thattosay, |Λk-1∩T|≥k-1and|Λk-1|=N(k-1),whichholdstruewhenk=1naturally.Letβ1denotesthelargestcorrelationinmagnitudebetweenrk-1andcolumnswhoseindicesbelongtoTΛk-1(i.e.,thesetofremainingcorrectindices)andαNdenotestheN-thlargestcorrelationinmagnitudebetweenrk-1andcolumnsindexedbyF={1,2,…,n}(T∪Λk-1)(i.e.,thesetofremainingincorrectindices).Forthekthiteration,toguaranteeselectingatleastonecorrectindex,werequire

        β1>αN

        (6)

        Sincey=Φx,theresidualrk-1canbewrittenas

        (7)

        ‖xTΛk-1‖∞-(|TΛk-1|-1)μ‖xTΛk-1‖∞-

        (8)

        |TΛk-1|μ‖xTΛk-1‖∞

        (9)

        According to Eq.(8) and Eq.(9), we obtain the sufficient condition of Eq.(6) as

        which can be simplified as

        (10)

        Since|TΛk-1|≤K-(k-1),toguaranteeEq.(10)holds,werequire

        (11)

        whichcanbereducedtoEq.(5).ThuswecanobtainthatEq.(6)willholdundertheconditiongivenbyEq.(5),whichguaranteesthatatleastonecorrectindexischoseninthekth iteration. That is to say,T?ΛKwillholdafteratmostKiterationsandthusthesparsesignalcanbeperfectlyrecovered.Theorem1isproved.

        FromTheorem1wecanfindthatthesufficientconditionguaranteeingthatthegOMPwithN=2perfectlyrecoversanyK-sparsesignalisthesameasthatoftheOMP[5].

        2.2Innoisycase

        Inpracticalapplications,themeasurementsignalyisoftencontaminatedbynoise,i.e.,y=Φx+e,whereedenotestheboundednoisewith‖e‖2≤εorGaussiannoisewithe~N(0,σ2Im×m),whereIm×misidentitymatrix.

        Theorem2 (boundednoisecase)Supposethatthenoisymeasurementsignaly satisfies y=Φx+e, where e denotes the noise with ‖e‖2≤ε, x be aK-sparse vector with supportTandΦhas coherence parameterμ. The gOMP withN≥2 will identify the support setTof anyK-sparse signal x within at mostKiterations if

        (12)

        Proof We still use mathematical induction method to derive the condition under which the identification step of the gOMP will select at least one correct index in each iteration.

        Suppose that the gOMP performedk-1 iterations successfully, i.e., Λk-1containsatleastk-1correctindices,thattosay, |Λk-1∩T|≥k-1and|Λk-1|=N(k-1),whichholdstruewhenk=1naturally.Atthekthiteration,toguaranteechoosingatleastonecorrectindex,westillrequirethatEq.(6)holds.

        Accordingtoy=Φx+e,theresidualrk-1canbewrittenas

        (13)

        In addition, note that ‖e‖2≤εandusingEq.(2),wehave

        (14)

        Using Eq.(13) and Eq.(14), we have

        ‖xTΛk-1‖∞-(|TΛk-1|-1)μ‖xTΛk-1‖∞-

        (15)

        Ontheotherhand,wecanobtain

        |TΛk-1|μ‖xTΛk-1‖∞+ε

        (16)

        Combing Eq.(15) and Eq.(16), to guarantee Eq.(6) holds, we require

        ‖xTΛk-1‖∞-(|TΛk-1|-1)μ‖xTΛk-1‖∞-

        |TΛk-1|μ‖xTΛk-1‖∞+ε

        which can be reduced to

        Since ‖xTΛk-1‖∞≥xminand|TΛk-1|≤K-(k-1),weobtainthesufficientconditionofEq.(6)as

        (17)

        whichcanbereducedtoEq.(12).ThuswecanobtainthatEq.(6)willholdundertheconditiongivenbyEq.(12),whichguaranteesthatatleastonecorrectindexischoseninthekth iteration. That is to say,T?ΛKwillholdafteratmostKiterations.Theorem2isproved.

        FurthermoreweconsiderthecaseofGaussiannoise.Ife~N(0,σ2Im×m),itisshownthat[9]

        (18)

        ByusingEq.(18)togetherwithTheorem2,wecandirectlyobtainthefollowingresult.

        Theorem 3 (Gaussian noise case) Suppose that the noisy measurement signalysatisfiesy=Φx+e,wheree~N(0,σ2Im×m),xbeaK-sparsevectorwithsupportTandΦhascoherenceparameterμ.If

        (19)

        thenthegOMPwithN≥2 will identify the support setTofxwithinatmostKiterationswithprobabilityatleast1-1/m.

        Similarly,fromTheorem2andTheorem3itisshownthatthesufficientconditionsguaranteeingthatthegOMPwithN=2identifiesthecorrectsupportofanyK-sparsesignalarethesameasthoseoftheOMP[8-9].

        3 Conclusion

        Inthispaper,theperformanceofthegOMPalgorithmwhichidentifiesmultipleindicesperiterationtoreconstructsparsesignalswithmuchsmallernumberofiterationsisanalyzedintermsofcoherence.SomesufficientconditionsensuringidentificationofthesupportofsparsesignalsviathegOMParederivedinthenoiselessandnoisycases.Theachievedresultsmaybenefittheunderstandingandanalysisofgreedyalgorithms.

        [1] Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.

        [2] Candes E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.

        [3] Tsaig Y, Donoho D L. Extensions of compressed sensing [J]. Signal Processing, 2006,86(3):549-571.

        [4] Kim S, Koh K, Lustig M, et al. An interior-point method for large scale L1 regularized least squares [J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4):606-617.

        [5] Tropp J A. Greed is good: algorithmic results for sparse approximation [J]. IEEE Transactions on Information Theory, 2004,50(10):2231-2242.

        [6] Zhang Tong. Sparse recovery with orthogonal matching pursuit under RIP [J]. IEEE Transactions on Information Theory, 2011,57(9):6215-6221.

        [7] Wu Rui, Huang Wei, Chen Di Rong. The exact support recovery of sparse signals with noise via orthogonal matching pursuit [J]. IEEE Signal Processing Letters, 2013,20(4):403-406.

        [8] Donoho D L, Elad M, Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise [J]. IEEE Transactions on Information Theory, 2006,52(1):6-18.

        [9] Cai T T, Wang Lie. Orthogonal matching pursuit for sparse signal recovery with noise [J]. IEEE Transactions on Information Theory, 2011,57(7):4680-4688.

        [10] Needell D, Vershynin R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit [J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2):310-316.

        [11] Donoho D L, Tsaig Y, Drori I, et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2012, 58(2): 1094-1121.

        [12] Needell D, Tropp J A. Cosamp: Iterative signal recovery from incomplete and inaccurate samples [J]. Applied and Computational Harmonic Analysis, 2009, 26(3):301-321.

        [13] Dai Wei, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction [J]. IEEE Transactions on Information Theory, 2009,55(5):2230-2249.

        [14] Wang Jian, Kwon S, Shim B. Generalzied orthoginal matching pursuit [J]. IEEE Transactions on Signal Processing, 2012, 60(12):6202-6216.

        [15] Satpathi S, Das R, Chakraborty M. Improving the bound on the RIP constant in generalized orthogonal matching pursuit[J]. IEEE Signal Processing Letters, 2013, 20(11): 1074-1077.

        [16] Elad M. Sparse and redundant representations: from theory to applications in signal and imaging processing [M]. New York: Springer, 2009.

        (Edited by Cai Jianying)

        10.15918/j.jbit1004-0579.201524.0313

        TN911.7Documentcode:AArticleID: 1004- 0579(2015)03- 0369- 06

        Received2014- 01- 04

        SupportedbytheNationalNaturalScienceFoundationofChina(60119944,61331021);theNationalKeyBasicResearchProgramFoundedbyMOST(2010CB731902);theProgramforChangjiangScholarsandInnovativeResearchTeaminUniversity(IRT1005);BeijingHigherEducationYoungEliteTeacherProject(YETP1159)

        E-mail: juanzhao@bit.edu.cn

        亚洲av成熟国产精品一区二区| 欧美专区在线| 在线观看精品国产福利片87| 亚洲av色精品国产一区二区三区| 国产亚洲精品久久久久5区| 极品av麻豆国产在线观看| 99福利网| 国产一品二品三品精品久久| 亚洲女优中文字幕在线观看| 久久超碰97人人做人人爱| 欧美日韩精品乱国产538| 婷婷开心五月综合基地| 男女射黄视频网站在线免费观看 | 亚洲成aⅴ人片久青草影院| 99久久久无码国产精品免费砚床| 国产一区二区a毛片色欲| 女同恋性吃奶舌吻完整版| 国产精品a免费一区久久电影| 最新亚洲人成无码网www电影| 亚洲国产成人aⅴ毛片大全| 亚洲一区二区三区日韩在线观看 | 中文字幕精品一区二区三区| 国内精品卡一卡二卡三| 久草国产视频| av免费网站不卡观看| 精人妻无码一区二区三区| 欧美aa大片免费观看视频| 成人无码激情视频在线观看| 按摩师玩弄少妇到高潮av| 爱性久久久久久久久| 97国产免费全部免费观看| 久久熟女精品—区二区蜜臀| 亚洲国产精品无码久久一区二区| 麻豆高清免费国产一区| 无码一区二区三区人| 少妇太爽了在线观看免费| 美女av一区二区三区| 伊人久久大香线蕉在观看| 最新日本女优中文字幕视频| 国产欧美va欧美va香蕉在| 久久精品国产99国产精2020丨 |