豆敬兆 付順 張華鋒**
DOU JingZhao1,F(xiàn)U Shun2 and ZHANG HuaFeng1**
1. 中國地質(zhì)大學(xué)地球科學(xué)與資源學(xué)院,北京 100083
2. 成都理工大學(xué),數(shù)學(xué)地質(zhì)四川省重點實驗室,成都 610059
1. School of Earth Sciences and Resources,China University of Geosciences,Beijing 100083,China
2. Sichuan Mathematical Geology Key Laboratory,Chengdu University of Technology,Chengdu 610059,China
2014-09-07 收稿,2015-01-31 改回.
研究地殼隆升剝蝕過程對了解造山帶的演化及找礦具有重要意義。地殼隆升剝蝕的研究方法主要有熱年代學(xué)、盆地碎屑鋯石年齡統(tǒng)計分析及礦物壓力計。不同礦物的同位素體系封閉溫度不同而導(dǎo)致記錄的同位素年齡也存在差異,這一特征能夠反映地質(zhì)體的冷卻歷史(Hart,1964)。Dodson(1973)在此基礎(chǔ)上提出了礦物封閉溫度的概念,建立了礦物同位素冷卻年齡理論,并得到了良好應(yīng)用(Chen et al.,2013;Lin et al.,2011)。此方法前提是隆升速率等于地表剝蝕速率。盆地碎屑鋯石年齡統(tǒng)計分析是通過對沉積物中碎屑鋯石的年齡與區(qū)域地質(zhì)體同位素年齡進(jìn)行對比,通過同位素示蹤判斷沉積物源區(qū),結(jié)合造山時限,進(jìn)而反演造山帶的隆升剝蝕過程(Yang et al.,2006,2014c)。礦物壓力計則是利用巖體中某些特定礦物的化學(xué)成分估算巖體侵位固結(jié)壓力,該方法簡單有效而得到應(yīng)用(馬昌前等,1995;Sial et al.,1999;Helmy et al.,2004;Zhang et al.,2006)。近年來鋯石、磷灰石(U-Th)/He 熱年代學(xué)開始在礦床剝露史示蹤中得到應(yīng)用(Li et al.,2014;Liu et al.,2014)。本文采用礦物溫壓計對膠東郭家?guī)X巖體的冷卻固結(jié)條件進(jìn)行分析,結(jié)合前人發(fā)表的同位素數(shù)據(jù),探討其冷卻抬升歷史。
郭家?guī)X巖體位于膠東半島西北部,玲瓏金礦區(qū)及招掖成礦帶的北部。該巖體侵入膠東巖群及侏羅紀(jì)玲瓏巖體,形成時間在130 ~126Ma(關(guān)康等,1998;Wang et al.,1998,2014;Yang et al.,2012,2014b)。前人通過礦物學(xué)及巖石學(xué)的研究,提出巖漿混合(陳光遠(yuǎn)等,1993;曲曉明和王鶴年,1997;Hou et al.,2007)、高Ba-Sr 花崗巖(Wang et al.,2014)及下地殼鎂鐵質(zhì)巖石脫水部分熔融(楊進(jìn)輝等,2003)等不同認(rèn)識。
對于郭家?guī)X巖體形成物理化學(xué)條件,前人研究頗少。林文蔚和殷秀蘭(1998)通過Q-Ab-Or-H2O 體系實驗相圖、礦物溫壓計等對郭家?guī)X巖體形成的溫度、壓力及氧逸度等物理化學(xué)條件進(jìn)行了研究,認(rèn)為郭家?guī)X巖體形成過程中富水的巖漿流體捕獲了金,熱液的濃縮作用促進(jìn)了金礦的形成。陳光遠(yuǎn)等(1993)通過詳細(xì)的成因礦物學(xué)提出,由東向西,角閃石由短柱狀至長柱狀的變化反映的是郭家?guī)X巖體由東至西巖體侵位逐漸變淺。而角閃石-斜長石溫壓計獲得的結(jié)果則顯示由東向西溫度及壓力逐漸升高,這種現(xiàn)象被認(rèn)為是膠東西部差異隆升的結(jié)果(陸麗娜等,2011)。盡管前人對郭家?guī)X巖體形成的物理化學(xué)條件有過相應(yīng)研究,并對膠東西部100Ma 年以來地殼隆升剝蝕速率進(jìn)行過研究(柳振江等,2010),但對于郭家?guī)X巖體形成后的冷卻史、隆升剝蝕及其機制缺乏詳細(xì)研究,對巖體形成與金礦的關(guān)系也存在爭議。本文通過郭家?guī)X巖體物理化學(xué)條件的詳細(xì)研究,結(jié)合已有資料針對上述問題進(jìn)行深入探討。
膠東半島位于中國東部,西界為郯廬斷裂,南側(cè)為蘇魯-大別造山帶(圖1a),由經(jīng)歷超高壓變質(zhì)作用的揚子陸塊和具有華北克拉通屬性的膠北隆起組成,是金礦床的主要富集區(qū)(Li and Santosh,2014;Fan et al.,2014)。兩大構(gòu)造單元則以桃村和米山斷裂圍限的昆崳山混雜帶分隔(Zhai et al.,2000)。區(qū)域上出露的地層主要有太古宙膠東巖群、古元古界荊山群和粉子山群變質(zhì)巖以及少量震旦亞界蓬萊群(陳光遠(yuǎn)等,1993)。巖漿活動主要為中生代花崗巖類,伴生少量中基性脈巖,出露的花崗巖體主要為侏羅紀(jì)玲瓏、灤家河及白堊紀(jì)郭家?guī)X和艾山巖體(徐金方和沈步云,1989;孫豐月等,1995)。玲瓏巖體位于新城-焦家斷裂帶和招遠(yuǎn)-平度斷裂帶之間,呈NNE 帶狀展布,巖性為片麻狀黑云母花崗巖和花崗閃長巖,區(qū)域上侵入太古宙膠東巖群;鋯石U-Pb 年齡顯示形成時代在163 ~149Ma(Jiang et al.,2012;Yang et al.,2014b),是膠西北金礦床主要的容礦圍巖。賦存于玲瓏巖體內(nèi)的金礦類型主要為石英脈型金礦(楊立強等,2014;Wen et al.,2014;Song et al.,2015)。研究區(qū)內(nèi)發(fā)育多條NE、NNE 向斷裂帶,是中生代金礦的主要控礦斷裂(鄧軍等,1996,1999;呂古賢等,2006;宋明春等,2009)。
郭家?guī)X巖體是膠東西北部金礦床的主要控礦圍巖,呈NE 向帶狀分布(圖1b),自東向西依次為郭家?guī)X、叢家、北截、上莊、三山島等巖體(陳光遠(yuǎn)等,1993)。郭家?guī)X巖體侵入玲瓏巖體,并在東部郭家?guī)X地區(qū)被艾山巖體侵入。賦存于郭家?guī)X巖體中的金礦為破碎蝕變巖型金礦,其礦化時間在126 ~120Ma(Wang et al.,1998;Qiu et al.,2002;Hu et al.,2013)。巖體內(nèi)廣泛發(fā)育韌性剪切變形,同時可見大量暗色微粒包體以及暗色礦物為主的流動狀條帶(圖2a)。
本次野外樣品采自郭家?guī)X63(37°29'18″N,120°36'01″E),叢家15B(37°32'25″N,120°33'15″E),北截11B(37°29'17″N,120°23'28″E)及上莊07(37°24'54″N,120°11'40″E)等巖體。巖性主要為花崗閃長巖、二長花崗巖及石英閃長巖,普遍為似斑狀結(jié)構(gòu),塊狀構(gòu)造,斑晶主要為斜長石(40% ~50%),鉀長石(25% ~30%),石英(20% ~25%),角閃石(4% ±),黑云母(5% ±),另有副礦物榍石、褐簾石、綠簾石、磷灰石及磁鐵礦等(圖2d,f)。
斜長石自形-半自形,普遍發(fā)育聚片雙晶,大小約0.5 ×1mm,并見蠕蟲結(jié)構(gòu)(圖2d)。斜長石存于礦物顆粒之間及鉀長石中,表明鉀長石晚于斜長石結(jié)晶。鉀長石,自形-半自形,斑晶顆粒較大,約4 ×3cm,基質(zhì)鉀長石中發(fā)育自形斜長石及黑云母等(圖2b,e)。
角閃石較自形,斑晶大小約1.5 ×2mm,不同的巖體中角閃石含量略有變化,約4% ~5%。
圖1 膠東西部區(qū)域地質(zhì)簡圖(a,據(jù)Zhao et al.,1999 修改;b,據(jù)山東省地勘局,1999①山東省地勘局.1999.1∶150 萬山東省地質(zhì)圖修改)Fig.1 Geological sketch map of the Guojialing granodiorites in western Jiaodong Peninsula,China (a,after Zhao et al.,1999)
黑云母形態(tài)上明顯的分為兩類,一類自形,存于鉀長石中及礦物顆粒間;另一類彎曲變形,發(fā)育于礦物顆粒間,可能受后期的構(gòu)造作用所致(圖2c,d)。兩類黑云母多色性較弱,淺綠或淺褐色-褐色,局部綠泥石化,并沿解理析出磁鐵礦。石英他形充填于礦物顆粒間,見波狀消光。褐簾石自形柱狀,邊緣為綠簾石,并顯示出弱的成分環(huán)帶,無次生蝕變現(xiàn)象,表明為巖漿成因(圖2f)。
巖相學(xué)特征顯示,基質(zhì)中角閃石及斜長石自形,鉀長石自形-半自形,且礦物內(nèi)部包含有自形的黑云母及斜長石,說明基質(zhì)中的鉀長石晚于斜長石及黑云母結(jié)晶,黑云母發(fā)育于自形板狀的斜長石礦物顆粒之間,暗示黑云母結(jié)晶于斜長石之后,而他形的石英則表明其最晚結(jié)晶。
我們對黑云母、角閃石、鉀長石及斜長石進(jìn)行礦物化學(xué)分析,采用角閃石全鋁壓力計(Anderson and Smith,1995),獲得巖體侵位壓力;利用角閃石-斜長石溫度計(Holland and Blundy,1994)計算其平衡溫度;采用黑云母-角閃石溫壓計(Симонова,1979)、黑云母溫度計(Henry et al.,2005)及二長石溫度計(Putirka,2008)進(jìn)行礦物平衡溫度估算。在中國地質(zhì)科學(xué)院電子探針實驗室JXA-8230 型電子探針測試儀器上完成,加速電壓15kV,電流20nA,束斑直徑5μm。測試結(jié)果見表1。
礦物化學(xué)分析顯示,兩類黑云母在化學(xué)成分上基本相同。黑云母-角閃石平衡溫壓反映的是共生的角閃石和黑云母達(dá)到平衡時的溫壓條件,故邊部成分更接近平衡時的狀態(tài)。為采用黑云母-角閃石平衡溫壓計,我們選擇黑云母干凈且無后期蝕變的邊部進(jìn)行礦物化學(xué)的分析。其氧化物含量SiO2=34.94% ~37.69%,F(xiàn)eO =15.70% ~17.92%,MgO=12.01% ~14.39%,TiO2=1.81% ~2.43%,Mg/(Mg+Fe)=0.55 ~0.63;黑云母分類圖解中屬于鎂黑云母(圖3a),與前人的結(jié)果一致(陳光遠(yuǎn)等,1993)。在成因分類中,落入再平衡區(qū)域(圖3c)。黑云母鏡下多色性較弱,呈淺綠色,并見含鈦磁鐵礦沿黑云母解理及黑云母與鉀長石接觸邊緣發(fā)育,這與前人對于再平衡黑云母特征的描述一致,可能與巖漿后期流體作用有關(guān)(Nachit et al.,2005),而在形態(tài)上發(fā)生變形彎曲的黑云母,與巖體固結(jié)后的韌性剪切作用有關(guān)。在黑云母MgO-FeOT-Al2O3構(gòu)造環(huán)境判別圖中,顯示郭家?guī)X花崗閃長巖為造山帶鈣堿性花崗巖(圖3d),與前人利用全巖化學(xué)成分獲得的結(jié)果一致(陳光遠(yuǎn)等,1993)。
圖2 膠東郭家?guī)X巖體野外及巖相學(xué)特征(a、b)郭家?guī)X巖體中閃長質(zhì)包體及鉀長石斑晶;(c)自形及彎曲變形的兩類黑云母;(d、e)黑云母與石英、榍石、角閃石、斜長石及鉀長石共生;(f)自形褐簾石及粒狀角閃石. 礦物縮寫據(jù)Whitney and Evans (2010):Am-角閃石;Bi-黑云母;Kfs-鉀長石;Pl-斜長石;Qz-石英;Spn-榍石;Aln-褐簾石;Ep-綠簾石Fig.2 Field and micrographical photos for the Guojialing granodiorites in Jiaodong Peninsula
角閃石斑晶在花崗閃長巖中以短柱狀、長柱狀產(chǎn)出,半自形-自形。礦物化學(xué)顯示,角閃石SiO2= 42.54% ~44.76%,Al2O3=8.91% ~10.18%,MgO、CaO 含量較高,分別為10.64% ~11.99%和11.11% ~11.52%,其CaB>1.5,(Na+K)A<0.5 屬于鈣質(zhì)角閃石亞族中的鎂角閃石(圖3b)。
與角閃石共生的斜長石礦物邊部化學(xué)分析表明,斜長石SiO2= 62.13% ~62.53%,Na2O 含量較高,為8.97% ~9.51%,Al2O3=22.81% ~23.51%;Ab =0.79 ~0.82,An =0.17 ~0.21。
鉀長石產(chǎn)于斑晶及基質(zhì)中,電子探針結(jié)果顯示:SiO2=60.05% ~64.48%,Al2O3= 18.71% ~18.78%,K2O =13.69% ~14.26%;Ab=0.14 ~0.18,Or=0.82 ~0.86。
根據(jù)前人數(shù)據(jù)(Zhang et al.,2010;陸麗娜等,2011),據(jù)Watson and Harrison (1983)提供的花崗巖鋯飽和溫度計算方法,獲得郭家?guī)X巖體的鋯飽和溫度為726 ~800℃,平均為755℃,代表巖漿侵位溫度。結(jié)合已有的主量數(shù)據(jù)(楊進(jìn)輝等,2003;Zhang et al.,2010;陸麗娜等,2011),采用QAb-Or 標(biāo)準(zhǔn)礦物的共結(jié)壓力圖解(Huang and Wyllie,1975),獲得巖體固結(jié)壓力集中在4 ~5kbar 之間。少量點偏離壓力線而處于5kbar 之下,這可能與巖體局部鉀長石斑晶較多有關(guān),反映巖體局部的鉀長石斑晶先結(jié)晶的特點(圖4a)。
表1 膠東郭家?guī)X巖體黑云母、角閃石、斜長石及鉀長石礦物化學(xué)成分表(wt%)Table1 Chemicalcomposition ofbiotite, amphibole, plagioclaseand potassiumfeldsparfromGuojialingpluton in JiaodongPeninsula, China(wt%)
圖3 郭家?guī)X巖體角閃石和黑云母礦物化學(xué)分類圖解(a,b)黑云母、角閃石分類圖解(底圖分別據(jù)Foster,1960;Leake et al. ,1997);(c)黑云母10TiO2-FeOT-MgO 成因類型圖解(Nachit et al. ,2005),其中A、B、C 分別代表原生、再平衡、新生黑云母區(qū)域;(d)黑云母MgO-FeOT-Al2O3 相關(guān)圖(Abdel-Rahman,1994),A、C、P 分別代表非造山帶堿性花崗巖、造山帶鈣堿性花崗巖、過鋁質(zhì)花崗巖. 空心圓圈為本人數(shù)據(jù),實心圓圈引自陳光遠(yuǎn)等(1993)Fig.3 Chemical composition classification diagrams of amphibole and biotite for the Guojialing granodiorites(a,b)Classification diagrams of biotite and calcic amphibole (after Foster,1960;Leake et al. ,1997,respectively);(c)10TiO2-FeOT-MgO diagram of biotite (after Nachit et al. ,2005),A,B and C correspond to the domains of primary magmatic biotites,reequilibrated biotites and the neoformed biotites,respectively;(d)MgO-FeOT-Al2O3 biotite discriminant diagram for biotite in anorogenic alkaline suites(field A),biotite in calcalkaline orogenic suites (field C)and biotite in peralumino us suites (field P)(after Abdel-Rahman,1994). Data represented by open circles from this paper and filled circles after Chen et al.(1993)
Holland and Blundy (1994)基于淺閃石-透閃石(A)和淺閃石-鈉透閃石(B)反應(yīng)平衡的研究,分別提出兩個角閃石-斜長石溫度計(A、B),其方程式如下:
因為溫度計B 所獲得溫度能夠被其他礦物溫度計所再現(xiàn),故溫度計B 獲得的結(jié)果更為可信(Anderson,1996)。采用溫度計B 計算時,需要代入相應(yīng)的壓力值,故先利用Schmit (1992)提到的角閃石全鋁壓力計獲得壓力結(jié)果,將獲得的壓力值代入溫度計B 中,得到平衡溫度為657 ~717℃(±40),集中在693 ~717℃(±40)。采用角閃石全鋁壓力計(Anderson and Smith,1995),并利用溫度計B 所獲得的結(jié)果對所獲壓力進(jìn)行校正,獲得的壓力為4.8 ±0.6kbar。
圖4 郭家?guī)X巖體固結(jié)冷卻溫壓條件圖解(a)花崗巖Q-Ab-Or 共結(jié)壓力圖解(底圖據(jù)Huang and Wyllie,1975),數(shù)據(jù)引自Zhang et al. (2010);陸麗娜等(2011);(b、c)角閃石-黑云母礦物對Mg/(Ti+Mg+Fe+Mn)Bi-Mg/(Ti+Mg+Fe+Mn)Am溫度及Al/(Ti+Mg+Fe+Mn)Bi-Mg/(Ti+Mg+Fe+Mn)Am壓力圖解(底圖據(jù)Симонова,1979);(d)黑云母Ti-Mg/(Mg+Fe)溫度圖解(底圖據(jù)Henry et al. ,2005)Fig.4 Estimated pressures and temperatures for the Guojialing granodiorites(a)Q-Ab-Or diagram for the Guojialing granodiorites in Jiaodong Peninsula (after Huang and Wyllie,1975),data from Zhang et al. (2010),Lu et al. (2011);(b,c)temperature diagram of Mg/(Ti+Mg+Fe+Mn)Bi vs. Mg/(Ti+Mg+Fe+Mn)Am,and pressure diagram of Al/(Ti+Mg+Fe+Mn)Bi vs. Mg/(Ti+Mg+Fe+Mn)Am for amphibole and biotite (after Симонова,1979;(d)Ti-Mg/(Mg +Fe)geothermometry diagram for biotite (after Henry et al. ,2005)
在角 閃 石-黑 云 母 壓 力 與 溫 度 圖 解 中(Симонова,1979),獲得二者平衡條件為4 ~4.4kbar,650 ~700℃(圖4b,c),與黑云母Ti-Mg/(Mg +Fe)投圖(Henry et al.,2005)獲得的溫度結(jié)果相近(圖4d)。利用Putirka (2008)提出的二長石溫度計,其方程式為:
所獲得的平衡溫度略低,僅為570 ~580℃。
郭家?guī)X巖體中礦物組合多見石英+榍石+磁鐵礦組合,而該組合可以用于計算礦物結(jié)晶時的氧逸度條件(Wones,1989),其公式為:logfO2= -30930/T +14.98 +0.142(P -1)/T。根據(jù)角閃石-斜長石溫度計所獲溫度(717 ~657℃)及角閃石全鋁壓力計獲得的壓力結(jié)果(4.8 ±0.6kbar),代入公式獲得的氧逸度為-18.3 ~-16.3。在云母氧緩沖劑圖解中(Wones and Eugster,1965),黑云母投點落在NB 氧緩沖劑反應(yīng)線附近(圖5a),結(jié)合黑云母結(jié)晶溫度,在不同緩沖劑的溫度-氧逸度圖解中(圖5c),黑云母結(jié)晶時的氧逸度條件大約在-18 ~-17,該結(jié)果與黑云母的Fe3+/(Fe3++Fe2+)與氧逸度關(guān)系圖中所獲得的氧逸度條件相近(圖5b)。根據(jù)角閃石-黑云母溫壓計估算結(jié)果,利用Wones(1989)氧逸度計算公式獲得的氧逸度值為-18.5 ~-16.8,與上述兩種方法所得結(jié)果一致。
圖5 黑云母氧逸度及角閃石溫壓條件圖解(a)黑云母組成與氧緩沖劑相關(guān)圖(據(jù)Wones and Eugster,1965),MH,NB,F(xiàn)MQ 及WM 分別為磁鐵礦-赤鐵礦,自然鎳-綠鎳礦,鐵橄欖石-磁鐵礦-石英,方鐵礦-磁鐵礦緩沖劑組合;(b)黑云母100 ×Fe3+ /(Fe3+ +Fe2+)、結(jié)晶溫度與氧逸度相關(guān)圖(ΠeрчукЛЛ,1973);(c)不同氧緩沖劑溫度-氧逸度關(guān)系圖(Eugster and Wones,1962);(d)角閃石壓力計及角閃石-斜長石溫度計計算所獲溫壓范圍Fig.5 Oxygen fugacity of biotite and P-T conditions for amphibole(a)the correlative diagram between biotite composition and oxygen buffer-reagent (after Wones and Eugster,1965);(b)100 × Fe3+ /(Fe3+ +Fe2+)crystal temperature and oxygen fugacity of biotite (ΠeрчукЛЛ et al. ,1973);(c)the different oxygen buffer-reagent temperature-oxygen fugacity diagram (after Eugster and Wones,1962);(d)the result of amphibole barometer and amphibole-plagioclase thermometer calculation
花崗巖Q-Ab-Or 標(biāo)準(zhǔn)礦物結(jié)晶壓力圖解、角閃石全鋁壓力計及角閃石-黑云母壓力計所獲壓力基本一致,結(jié)果表明巖體侵位壓力在4 ~5kbar 之間;鏡下觀察到,巖石中發(fā)育大量自形的褐簾石和綠簾石(圖2f),且無溶蝕現(xiàn)象,表明這些綠簾石及褐簾石為巖漿成因,它的出現(xiàn)暗示巖體侵位壓力在3 ~5kbar(Schmidt and Thompson,1996)。綜上所述,我們認(rèn)為采用角閃石全鋁壓力計(Anderson et al.,1995)計算獲得的平衡壓力(4.8 ±0.6kbar)比較合理。按照上地殼平均比重(2.7g/cm3)和平均地壓梯度2.7km/kbar 進(jìn)行計算,郭家?guī)X巖體侵位深度約13 ±1.6km。
郭家?guī)X巖體的鋯飽和溫度約在755℃,代表其巖漿侵位溫度。礦物平衡溫度則反映結(jié)晶冷卻過程。我們的結(jié)果表明,角閃石-斜長石平衡溫度為657 ~717℃,角閃石-黑云母平衡溫度為650 ~700℃,而二長石平衡溫度在570 ~580℃之間,這與巖相學(xué)觀察到的礦物結(jié)晶順序一致(基質(zhì)中礦物結(jié)晶順序為角閃石-斜長石-黑云母-鉀長石-石英)。基質(zhì)中的鉀長石盡管為晚期結(jié)晶礦物,但二長石記錄的平衡溫度明顯較飽和水花崗巖固相線低了近70 ~100℃。這很可能與巖體侵位深度大,巖體固結(jié)冷卻后與圍巖溫度相差不大而相互平衡有關(guān)。我們所測二長石均為基質(zhì)中新鮮潔凈顆粒,不存在后期蝕變改造可能。如果膠東地區(qū)早白堊世的地溫梯度按照35℃/km 和40℃/km 分別計算,郭家?guī)X巖體侵位固結(jié)后的圍巖溫度分別為455 ±56℃和520 ±64℃。后者與二長石570 ~580℃的平衡溫度比較吻合。因此,我們將二長石平衡溫度解釋為巖體與圍巖平衡的結(jié)果是合理的。另外,推算的本區(qū)早白堊世地溫梯度在40℃/km 左右比較合理。當(dāng)時的高地溫梯度可能與其構(gòu)造背景及區(qū)域巖漿作用關(guān)系密切。
郭家?guī)X巖體鋯石年齡為130 ~126Ma(關(guān)康等,1998;Wang et al.,1998;Yang et al.,2012,2014b),而角閃石和黑云母的40Ar-39Ar 年齡分別為130 ±2Ma 和124 ±1Ma,二者理論上的封閉溫度分別在500 ~400℃和300 ~200℃之間(Reiners and Brandon,2006;Li et al.,2003)。它們的封閉溫度與礦物冷卻速率、深部地質(zhì)體隆升剝蝕速率關(guān)系密切,礦物冷卻速率和地質(zhì)體抬升速率越快,其封閉溫度則越高(Reiners and Brandon,2006)。如果我們假設(shè)郭家?guī)X巖體固結(jié)后發(fā)生快速冷卻抬升,角閃石與黑云母封閉溫度分別為最高的500℃和300℃。那么,巖體從130 ~126Ma(固結(jié)溫度650℃)至124Ma 的300℃,平均冷卻速率約60 ~175℃/Myr。假設(shè)角閃石冷卻到500℃獲得40Ar-39Ar 封閉年齡是130Ma,冷卻到黑云母記錄125 ~123Ma 時的封閉溫度為300℃,則巖體的平均冷卻速率為40 ~70℃/Myr。
角閃石與黑云母40Ar-39Ar 開始冷卻封閉的溫度不代表巖體當(dāng)時所處深度上圍巖溫度。但是,對于深成巖體根據(jù)地溫梯度可以估算礦物40Ar-39Ar 封閉時的最大深度。因此根據(jù)地溫梯度(40℃/km)計算,郭家?guī)X巖體與圍巖溫度平衡后經(jīng)歷了快速隆升過程。黑云母40Ar-39Ar 體系封閉溫度在300~200℃,對應(yīng)的最大深度約7.5 ~5km。由于郭家?guī)X巖體黑云母化學(xué)成分上顯示為再平衡結(jié)果,巖石學(xué)特征上也顯示大量黑云母經(jīng)歷過剪切變形作用。所以,我們認(rèn)為黑云母40Ar-39Ar冷卻封閉年齡很可能是區(qū)域韌性剪切作用后的冷卻年齡,即韌性剪切時代發(fā)生在126 ~124Ma,前人測得郭家?guī)X韌性剪切帶糜棱巖中角閃石和黑云母的40Ar-39Ar 年齡分別為124 ±1.8Ma、123 ±1.5Ma(Charles et al.,2013),也能說明這一點。韌性剪切作用發(fā)生的深度至少在10km 左右。這意味著韌性剪切作用之后,郭家?guī)X巖體發(fā)生了快速隆升剝蝕。侵入郭家?guī)X巖體的艾山巖體鋯石年齡顯示為116 ±2Ma(Goss et al.,2010),侵位壓力在1kbar 左右(孫豐月等,1995),即深度僅2.7km 左右。所以,郭家?guī)X巖體黑云母40Ar-39Ar 記錄124 ±1Ma 時的合理深度約7.5 ~2.7km。本區(qū)金礦流體包裹體研究顯示金礦成礦壓力變化在1 ~3kbar,深度相當(dāng)于2.7~8.1km(Fan et al.,2003)。根據(jù)地溫梯度計算,成礦深度范圍內(nèi)地殼的溫度在100 ~320℃之間。這與郭家?guī)X巖體黑云母40Ar-39Ar 記錄124Ma 的封閉溫度吻合。
綜上,郭家?guī)X巖體在130Ma 形成后到艾山巖體侵位(116Ma),地殼總體隆升剝蝕達(dá)10 ±1.6km 左右,其冷卻和隆升路徑見圖6。大量同位素年齡揭示出膠東金礦集中爆發(fā)在120 ±5Ma(Yang and Zhou,2000,2001;陳衍景等,2004;Li et al.,2008;于學(xué)峰等,2012;Guo et al.,2013;Hu et al.,2013),巖體快速隆升剝蝕發(fā)生在韌性剪切作用之后,約124 ~116Ma 之間。這說明,成礦作用發(fā)生在韌性剪切作用后的地殼快速隆升剝蝕過程中。從時間和郭家?guī)X隆升剝蝕過程判斷,郭家?guī)X巖體在金礦爆發(fā)期間的快速隆升與金礦作用相關(guān)的巖漿-構(gòu)造熱事件緊密相關(guān)。
圖6 郭家?guī)X巖體抬升軌跡圖其中TZr 為鋯飽和溫度(數(shù)據(jù)引自Zhang et al.,2010;陸麗娜等,2011);方法據(jù)Watson and Harrison (1983);壓力計算方法據(jù)花崗巖Q-Ab-Or 標(biāo)準(zhǔn)礦物結(jié)晶壓力圖解(數(shù)據(jù)引自楊進(jìn)輝等,2003;Zhang et al.,2010;陸麗娜等,2011). TAm-Pl為角閃石-斜長石平衡溫壓,計算方法據(jù)Holland and Blundy (1994)及Anderson and Smith (1995).TAm-Bi為角閃石-黑云母平衡溫壓,計算方法據(jù)Симонова(1979).TPl-Kf為二長平衡石溫度,計算方法據(jù)Putirka(2008). 角閃石40 Ar-39 Ar 年齡及封閉溫度引自Reiners and Brandon (2006). 黑云母40 Ar-39 Ar 年齡及封閉溫度引自Li et al. (2003)及Reiners and Brandon(2006);侵位深度按2.7km/kbar 的地壓梯度計算;艾山巖體侵位時的鋯石年齡及侵位壓力分別引自Goss et al. (2010)、孫豐月等(1995),對應(yīng)的郭家?guī)X巖體此時的溫度根據(jù)1kbar 的侵位壓力和2.7km/kbar 的地壓梯度計算,深度約在2.7km,以40℃/km 的地溫梯度計算,得到郭家?guī)X巖體與圍巖平衡溫度約100℃. 飽和水花崗巖固相線引自Luth et al. (1964). 巖體冷卻隆升路徑沿A-B-C 為理想結(jié)果,即巖體抬升過程中總是處于與圍巖溫度均衡狀態(tài)下,依據(jù)地溫梯度和礦物封閉溫度獲得的溫壓變化路徑;A-B’-C 則是極端的情況下,巖體韌性剪切作用后快速隆升到艾山巖體侵位時的1kbar 深度后,快速冷卻路徑. 因此,A-B-B’-C 組成的三角形區(qū)域內(nèi)為郭家?guī)X巖體冷卻抬升剝蝕的可能路徑區(qū)域Fig.6 Cooling and exhumation for the Guojialing granodiorites
不同深度上形成的礦體目前處于同一地殼層次上不僅說明成礦作用是多階段的,同時也進(jìn)一步佐證了成礦期間地殼發(fā)生過快速的隆升剝蝕作用。呂古賢(1997)曾對本區(qū)玲瓏和焦家金礦成礦深度和階段進(jìn)行過詳細(xì)研究,結(jié)果顯示本區(qū)金礦存在多階段且深度不同的礦體。盡管其采用的壓力校正方法獲得了相對較淺的成礦深度(約3.5 ~0.7km),但不同成礦階段的成礦深度存在明顯差距的特征有力的說明了成礦期地殼發(fā)生過快速隆升剝蝕。
郭家?guī)X巖體在10Myr 內(nèi)發(fā)生了大規(guī)模的隆升剝蝕(平均隆升剝蝕速率約1 ±0.1km/Myr),其機制可能與華北東部中生代巖石圈減薄導(dǎo)致的地殼淺部隆升、伸展及拆離有關(guān)(周新華等,2002;Zhai et al.,2002;Yang et al.,2003;Li and Santosh,2014)。膠西北金礦田多發(fā)育脆性斷裂帶中,其中賦存大量金礦體。它們的形成與地殼拆離和成礦流體上升并沿著這些脆性斷裂帶發(fā)生成礦作用緊密相關(guān)(范宏瑞等,2005;Yang et al.,2014a)。在伸展背景下,地殼的大規(guī)模水平拆離作用能夠造成上地殼巖石在極短的時間內(nèi)發(fā)生快速位移,并造成下覆地質(zhì)體快速減壓隆升和剝蝕作用。
另外,本文對郭家?guī)X巖體的氧逸度估算結(jié)果顯示,氧逸度值-18 ~-16 之間,而氧逸度的高低是控制Au 沉淀的重要因素,氧逸度的降低更有利于Au 的沉淀(Williams-Jones et al.,2009;Li et al.,2013)。金礦沉淀大致發(fā)生在-30 ~-23 之間(Gibert et al.,1998;Li et al.,2013)。因此,我們推測,在郭家?guī)X巖體固結(jié)晚期,排出的流體如果含礦則會在上覆地層中發(fā)生沉淀成礦。
(1)郭家?guī)X巖體在約130Ma 侵位,侵位溫度在726 ~800℃,固結(jié)溫度650 ~700℃,就位壓力在4 ~5kbar;固結(jié)后巖體冷卻至570 ~580℃,此時二長石溫度與圍巖溫度達(dá)到平衡;之后溫度降至500 ±50℃,隨后巖體冷卻到124Ma 的300±30℃左右;
(2)郭家?guī)X巖體在126 ~116Ma 期間發(fā)生了快速隆升剝蝕,隆升剝蝕量在10km 左右;其發(fā)生時間與中國東部中生代巖石圈減薄的峰期時限耦合,暗示膠東西部地殼快速隆升剝蝕是深部地質(zhì)過程的淺部響應(yīng)。
致謝 感謝中國地質(zhì)科學(xué)院地質(zhì)力學(xué)研究所呂古賢研究員和中國科學(xué)院地質(zhì)與地球物理所劉玄博士提出的修改建議;電子探針測試分析在中國地質(zhì)科學(xué)院電子探針實驗室完成,對陳振宇老師的大力幫助和指導(dǎo),表示感謝。
Abdel-Rahman AFM. 1994. Nature of biotites from alkaline,calcalkaline,and peraluminous magmas. Journal of Petrology,35(2):525 -541
Anderson JL and Smith DR. 1995. The effects of temperature and fO2on the Al-in-hornblende barometer. American Mineralogist,80:549-559
Anderson JL. 1996. Status of thermobarometry in granitic batholiths.Geological Society of America Special Papers,315:125 -138
Charles N,Augier R,Gumiaux C,Monié P,Chen Y,F(xiàn)aure M and Zhu RX. 2013. Timing,duration and role of magmatism in wide rift systems:Insights from the Jiaodong Peninsula (China,East Asia).Gondwana Research,24(1):412 -428
Chen G,Ding C,Xu LM,Zhang HR,Hu YX,Yang F,Li N,Mao XN and Li Y. 2013. Analysis on the thermal history and uplift process of Zijinshan intrusive complex in the eastern Ordos basin. Chinese Journal of Geophysics,56(1):78 -90
Chen GY,Sun DS,Zhou XR,Shao W,Gong RT and Shao Y. 1993.Genetic Mineralogy and Gold Mineralization of Guojialing Granodiorite in Jiaodong Region. Wuhan: Chinese University Geosciences Press,8 -219 (in Chinese)
Chen YJ,Pirajno F,Lai Y and Li C. 2004. Metallogenic time and tectonic setting of the Jiaodong gold province,eastern China. Acta Petrologica Sinica,20(4):907 - 922 (in Chinese with English abstract)
Deng J,Xu SL,F(xiàn)ang Y,Zhou XQ and Wai L. 1996. The Tectonic Systems and Gold Metallogenic Dynamics in the Northwestern Jiaodong,China. Beijing:Geological Publishing House,1 -98 (in Chinese)
Deng J,Zhai YS,Yang LQ,Xiao RG and Sun ZS. 1999. Tectonic evolution and dynamics of metallogenic system-an example from the gold ore deposits-concentrated area in Jiaodong,Shandong,China.Earth Science Frontiers,6(2):315 -323 (in Chinese with English abstract)
Dodson MH. 1973. Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology,40(3):259 -274
Eugster HP and Wones DR. 1962. Stability relations of the ferruginous biotite,annite. Journal of Petrology,3(1):82 -125
Fan HR,Zhai MG,Xie YH and Yang JH. 2003. Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit,Jiaodong gold province,China. Mineralium Deposita,38(6):739 -750
Fan HR,Hu FF,Yang JH,Shen K and Zhai MG. 2005. Fluid evolution and large-scale gold metallogeny during Mesozoic tectonic transition in the eastern Shandong province. Acta Petrologica Sinica,21(5):1317 -1328 (in Chinese with English abstract)
Fan HR,Hu FF,Yang KF,Wen BJ and Liu X. 2014. Ore-forming fluids and ore genesis in the world-class Mesozoic gold province,Jiaodong Peninsula,eastern China. Acta Geologica Sinica,88(Suppl.2):1089 -1091
Foster MD. 1960. Interpretation of the Composition of Trioctahedral Micas. New York:US Government Printing Office,11 -39
Gibert F,Pascal ML and Pichavant M. 1998. Gold solubility and speciation in hydrothermal solutions:Experimental study of the stability of hydrosulphide complex of gold (AuHS)at 350 to 450℃and 500bars. Geochimica et Cosmochimica Acta,62(17):2931-2947
Goss SC,Wilde SA,Wu FY and Yang JH. 2010. The age,isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane,Shandong Province,North China Craton. Lithos,120(3 -4):309 -326
Guan K,Luo ZK,Miao LC and Huang JZ. 1998. SHRIMP in zircon chronology for Guojialing suite granite in Zhaoye,Jiaodong district.Scientia Geologica Sinica,33(3):318 - 328 (in Chinese with English abstract)
Guo P,Santosh M and Li SR. 2013. Geodynamics of gold metallogeny in the Shandong Province,NE China:An integrated geological,geophysical and geochemical perspective. Gondwana Research,24(3 -4):1172 -1202
Hart SR. 1964. The petrology and isotopic-mineral age relations of a contact zone in the Front Range,Colorado. The Journal of Geology,72(5):493 -525
Helmy HM,Ahmed AF,El Mahallawi MM and Ail SM. 2004. Pressure,temperature and oxygen fugacity conditions of calc-alkaline granitoids,Eastern Desert of Egypt,and tectonic implications.Journal of African Earth Sciences,38(3):255 -268
Henry DJ,Guidotti CV and Thomson JA. 2005. The Ti-saturation surface for low-to-medium pressure metapelitic biotites:Implications for geothermometry and Ti-substitution mechanisms. American Mineralogist,90(2 -3):316 -328
Holland T and Blundy J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry.Contributions to Mineralogy and Petrology,116(4):433 -447
Hou ML,Jiang YH,Jiang SY,Ling HF and Zhao KD. 2007. Contrasting origins of Late Mesozoic adakitic granitoids from the northwestern Jiaodong Peninsula,East China:Implications for crustal thickening to delamination. Geological Magazine,144(4):619 -631
Hu FF,F(xiàn)an HR,Jiang XH,Li XC,Yang KF and Mernagh T. 2013.Fluid inclusions at different depths in the Sanshandao gold deposit,Jiaodong Peninsula,China. Geofluids,13(4):528 -541
Huang WL and Wyllie PJ. 1975. Melting reactions in the system to 35 kilobars,dry and with excess water. The Journal of Geology,83(6):737 -748
Jiang N,Chen JZ,Guo JH and Chang GH. 2012. In situ zircon U-Pb,oxygen and hafnium isotopic compositions of Jurassic granites from the North China craton:Evidence for Triassic subduction of continental crust and subsequent metamorphism-related18O depletion. Lithos,142 -143:84 -94
Leake BE,Woolley AR,Arps CES et al. 1997. Nomenclature of amphiboles:Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. The Canadian Mineralogist,35:219 -246
Li GM,Cao MJ,Qin KZ,Evans JN,McInnes BIA and Liu YS. 2014.Thermal-tectonic history of the Baogutu porphyry Cu deposit,West Junggar as constrained from zircon U-Pb,biotite Ar/Ar and zircon/apatite (U-Th)/He dating. Journal of Asian Earth Sciences,79:741 -758
Li JW,Vasconcelos PM,Zhang J,Zhou MF,Zhang XJ and Yang FH.2003.40Ar/39Ar constraints on a temporal link between gold mineralization,magmatism,and continental margin transtension in the Jiaodong gold province,eastern China. The Journal of Geology,111(6):741 -751
Li QL,Chen FK,Yang JH and Fan HR. 2008. Single grain pyrite Rb-Sr dating of the Linglong gold deposit,eastern China. Ore Geology Reviews,34(3):263 -270
Li SR and Santosh M. 2014. Metallogeny and craton destruction:Records from the North China Craton. Ore Geology Reviews,56:376 -414 Li XC,F(xiàn)an HR,Santosh M,Hu FF,Yang KF and Lan TG. 2013.Hydrothermal alteration associated with Mesozoic granite-hosted gold mineralization at the Sanshandao deposit,Jiaodong Gold Province,China. Ore Geology Reviews,53:403 -421
Lin W,Monié P,F(xiàn)aure M,Sch?rer U,Shi YH,Breton NL and Wang QC. 2011. Cooling paths of the NE China crust during the Mesozoic extensional tectonics:Example from the south-Liaodong peninsula metamorphic core complex. Journal of Asian Earth Sciences,42(5):1048 -1065
Lin WW and Yin XL. 1998. The forming physicochemical conditions of Linglong granitic complex and its geological significance. Acta Geoscientia Sinica,19(1):40 - 49 (in Chinese with English abstract)
Liu X,F(xiàn)an HR,Evans NJ,Batt GE,McInnes BIA,Yang KF and Qin KZ. 2014. Cooling and exhumation of the Mid-Jurassic porphyry copper systems in Dexing City,SE China:Insights from geo-and thermochronology. Mineralium Deposita,49(7):809 -819
Liu ZJ,Wang JP,Zheng DW,Liu JJ,Liu J and Fu C. 2010.Exploration prospect and post-ore denudation in the northwestern Jiaodong Gold Province,China:Evidence from apatite fission track thermochronology. Acta Petrologica Sinica,26(12):3597 -3611(in Chinese with English abstract)
Lu LN,F(xiàn)an HR,Hu FF,Yang KF and Lan TG. 2011. Emplacement depth of the Guojialing granodiorites from the northwestern Jiaodong Peninsula, eastern China: Evidences from hornblende thermobarometry and fluid inclusions. Acta Petrologica Sinica,27(5):1521 -1532 (in Chinese with English abstract)
Luth WC,Jahns RH and Tuttle OF. 1964. The granite system at pressures of 4 to 10 kilobars. Journal of Geophysical Research,69(4):759 -773
Lü GX. 1997. Study and estimate of depths of the formation of the Linglong and Jiaojia gold deposits,Shandong. Science China(Series D),27(4):337 -342 (in Chinese)
Lü GX,Guo T,Shu B,Shen YK,Liu DJ and Zhou GF. 2006.Geological characteristics of rock-controlling and ore-controlling structures in the Jiaodong gold ore concentration area. Acta Geoscientica Sinica,27(5):471 -478 (in Chinese with English abstract)
Ma CQ,Yang KG,Tang ZH,Long Y,Ehlers C and Lindroos A. 1995.Formation and differential rock uplift-exhumation of high-pressure metamorphic terrane in Dabie mountains,central China:Evidence from igneous rocks. Earth Science,20(5):515 -520 (in Chinese with English abstract)
Nachit H,Ibhi A,Abia EH and Ohoud MB. 2005. Discrimination between primary magmatic biotites,reequilibrated biotites and neoformed biotites. Comptes Rendus Geoscience,337(16):1415 -1420
Putirka KD. 2008. Thermometers and barometers for volcanic systems.Reviews in Mineralogy and Geochemistry,69(1):61 -120
Qiu YM,Groves DI,McNaughton NJ,Wang LG and Zhou TH. 2002.Nature,age,and tectonic setting of granitoid-hosted,orogenic gold deposits of the Jiaodong Peninsula,eastern North China craton,China. Mineralium Deposita,37(3 -4):283 -305
Qu XM and Wang HN. 1997. Dynamic study on the crustal-mantle magma mixing and emplacement mechanism of Guojialing granite.Scientia Geologica Sinica,32(4):445 - 454 (in Chinese with English abstract)
Reiners PW and Brandon MT. 2006. Using thermochronology to understand orogenic erosion. Annual Review Earth Planetary Sciences,34:419 -466
Schmit MW. 1992. Amphibole composition in tonalite as a function of pressure:An experimental calibration of the Al-in-hornblende barometer. Contribution to Mineralogy and Petrology,110(2 -3):304 -310
Schmidt MW and Thompson AB. 1996. Epidote in calc-alkaline magmas:An experimental study of stability,phase relationships,and the role of epidote in magmatic evolution. American Mineralogist,81:462 -474
Sial AN,Toselli AJ,Saavedra J,Parada MA and Ferreira VP. 1999.Emplacement,petrological and magnetic susceptibility characteristics of diverse magmatic epidote-bearing granitoid rocks in Brazil,Argentina and Chile. Lithos,46(3):367 -392
Song MC,Xu JX and Wang PC. 2009. Tectonic Framework and Tectonic Evolution of the Shandong Province. Beijing:Geological Publishing House,1 -272 (in Chinese)
Song MC,Li SZ,Santosh M et al. 2015. Types,characteristics and metallogenesis of gold deposits in the Jiaodong Peninsula,Eastern North China Craton. Ore Geology Reviews,65:612 -625
Sun FY,Shi ZL and Feng BZ. 1995. Gold Ore Geology,Lithogenesis and Mantle-Derived C-H-O Fluids in Jiaodong Penisula,Eastern China. Changchun:Jilin People’s Press,32 -56 (in Chinese)
Wang LG,Qiu YM,McNaughton NJ,Groves DI,Luo ZK,Huang JZ,Miao LC and Liu YK. 1998. Constraints on crustal evolution and gold metallogeny in the northwestern Jiaodong Peninsula,China,from SHRIMP U-Pb zircon studies of granitoids. Ore Geology Reviews,13(1 -5):275 -291
Wang ZL,Yang LQ,Deng J et al. 2014. Gold-hosting high Ba-Sr granitoids in the Xincheng gold deposit,Jiaodong Peninsula,East China:Petrogenesis and tectonic setting. Journal of Asian Earth Sciences,95:274 -299
Watson EB and Harrison TM. 1983. Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters,64(2):295 -304
Wen BJ,F(xiàn)an HR,Santosh M,Hu FF,Pirajno F and Yang KF. 2014.Genesis of two different types of gold mineralization in the Linglong gold field,China:Constrains from geology,fluid inclusions and stable isotope. Ore Geology Reviews,65(3):643 -658
Whitney DL and Evans BW. 2010. Abbreviations for names of rockforming minerals. American Mineralogist,95(1):185 -187
Williams-Jones AE,Bowell RJ and Migdisov AA. 2009. Gold in solution. Elements,5(5):281 -287
Wones DR and Eugster HP. 1965. Stability of biotite:Experiment,theory,and application. American Mineralogist,50 (9):1228-1272
Wones DR. 1989. Significance of the assemblage titanite + magnetite +quartz in granitic rocks. American Mineralogist,74(7 -8):744-749
Xu JF and Shen BY. 1989. On the granitoid related to gold mineralization in Jiaodong block. Geology of Shandong,5(2):1 - 125 (in Chinese with English abstract)
Yang JH and Zhou XH. 2000. The Rb-Sr isochron of ore and pyrite subsamples from Linglong gold deposit,Jiaodong Peninsula,eastern China and their geological significance. Chinese Science Bulletin,45(24):2272 -2277
Yang JH and Zhou XH. 2001. Rb-Sr,Sm-Nd,and Pb isotope systematics of pyrite:Implications for the age and genesis of lode gold deposits. Geology,29(8):711 -714
Yang JH,Wu FY and Wilde SA. 2003. A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton:An association with lithospheric thinning. Ore Geology Reviews,23(3 -4):125 -152
Yang JH,Zhu MF,Liu W and Zhai MG. 2003. Geochemistry and petrogenesis of Guojialing granodiorites from the northwestern Jiaodong Peninsula,eastern China. Acta Petrologica Sinica,19(4):692 -700 (in Chinese with English abstract)
Yang JH,Wu FY,Shao JA,Wide SA,Xie LW and Liu XM. 2006.Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt,North China. Earth and Planetary Science Letters,246(3):336 -352
Yang KF,F(xiàn)an HR,Santosh M,Hu FF,Wilde SA,Lan TG,Lu LN and Liu YS. 2012. Reactivation of the Archean lower crust:Implications for zircon geochronology, elemental and Sr-Nd-Hf isotopic geochemistry of Late Mesozoic granitoids from northwestern Jiaodong Terrane,the North China Craton. Lithos,146 -147:112 -127 Yang LQ,Deng J,Goldfarb RJ,Zhang J,Gao BF and Wang ZL. 2014a.40Ar/39Ar geochronological constraints on the formation of the Dayingezhuang gold deposit:New implications for timing and duration of hydrothermal activity in the Jiaodong gold province,China. Gondwana Research,25(4):1469 -1483
Yang LQ,Deng J,Wang ZL,Zhang L,Guo LN,Song MC and Zheng XL. 2014. Mesozoic gold metallogenic system of the Jiaodong gold province,eastern China. Acta Petrologica Sinica,30(9):2447 -2467 (in Chinese with English abstract)
Yang QY,Santosh M,Shen JF and Li SR. 2014b. Juvenile vs. recycled crust in NE China:Zircon U-Pb geochronology,Hf isotopes and an integrated model for Mesozoic gold mineralization in the Jiaodong Peninsula. Gondwana Research,25(4):1445 -1468
Yang WT,Yang JH,Wang XF and Du YS. 2014c. Uplift-denudation history of the Qinling orogen:Constrained from the detrital-zircon UPb geochronology. Journal of Asian Earth Sciences,89:54 -65
Yu XF,Li HK and Shan W. 2012. Study on coupling between Yanshannian tectonic thermal events and gold mineralization in Jiaodong ore concentrating area in Shandong Province. Acta Geologica Sinica,86(12):1946 -1956 (in Chinese with English abstract)
Zhai MG,Cong BL,Guo JH,Liu WJ,Li YG and Wang QC. 2000. Sm-Nd geochronology and petrography of garnet pyroxene granulites in the northern Sulu region of China and their geotectonic implication.Lithos,52(1):23 -33
Zhai MG,Yang JH,F(xiàn)an HR,Miao LC and Li YG. 2002. A large-scale cluster of gold deposits and metallogenesis in the eastern North China Craton. International Geology Review,44(5):458 -476
Zhang J,Zhao ZF,Zheng YF and Deng MN. 2010. Postcollisional magmatism:Geochemical constraints on the petrogenesis of Mesozoic granitoids in the Sulu orogen,China. Lithos,119(3):512 -536
Zhang SH,Zhao Y and Song B. 2006. Hornblende thermobarometry of the Carboniferous granitoids from the Inner Mongolia Paleo-uplift:Implications for the tectonic evolution of the northern margin of North China block. Mineralogy and Petrology,87(1 -2):123 -141
Zhao GC,Wilde SA,Cawood PA and Lu LZ. 1999. Thermal evolution of two types of mafic granulites from the North China Craton:Implications for both mantle plume and collisional tectonics.Geological Magazine,136(3):223 -240
Zhou XH,Yang JH and Zhang LC. 2003. Metallogenesis of superlarge gold deposits in Jiaodong region and deep processes of subcontinental lithosphere beneath North China Craton in Mesozoic. Science in China (Series D),46(Suppl.1):14 -25
Симонова Л И. 1979. Темноцветные минералы-индикаторы глубины кристаллизации гранитоидов (на примере интрузивов Кураминской зоны,Средняя Азия). Геохимия,(9):1307-1322
ΠeрчукЛЛ HykM. 1973. Tepmoдинамигeckий peжимг Убиного петрогенезиса. Hayka
附中文參考文獻(xiàn)
陳光遠(yuǎn),孫岱生,周珣若,邵偉,宮潤潭,邵岳. 1993. 膠東郭家?guī)X花崗閃長巖成因礦物學(xué)與金礦化. 武漢:中國地質(zhì)大學(xué)出版社,8 -219
陳衍景,Pirajno F,賴勇,李超. 2004. 膠東礦集區(qū)大規(guī)模成礦時間和構(gòu)造環(huán)境. 巖石學(xué)報,20(4):907 -922
鄧軍,徐守禮,方云,周顯強,萬麗. 1996. 膠東西北部構(gòu)造體系及金成礦動力學(xué). 北京:地質(zhì)出版社,1 -98
鄧軍,翟裕生,楊立強,肖榮閣,孫忠實. 1999. 構(gòu)造演化與成礦系統(tǒng)動力學(xué)——以膠東金礦集中區(qū)為例. 地學(xué)前緣,6(2):315-323
范宏瑞,胡芳芳,楊進(jìn)輝,沈昆,翟明國. 2005. 膠東中生代構(gòu)造體制轉(zhuǎn)折過程中流體演化和金的大規(guī)模成礦. 巖石學(xué)報,21(5):1317 -1328
關(guān)康,羅鎮(zhèn)寬,苗來成,黃佳展. 1998. 膠東招掖郭家?guī)X型花崗巖鋯石SHRIMP 年代學(xué)研究. 地質(zhì)科學(xué),33(3):318 -328
林文蔚,殷秀蘭. 1998. 玲瓏花崗質(zhì)雜巖體形成的物理化學(xué)條件及其地質(zhì)意義. 地球?qū)W報,19(1):40 -49
柳振江,王建平,鄭德文,劉家軍,劉俊,付超. 2010. 膠東西北部金礦剝蝕程度及找礦潛力和方向——來自磷灰石裂變徑跡熱年代學(xué)的證據(jù). 巖石學(xué)報,26(12):3597 -3611
陸麗娜,范宏瑞,胡芳芳,楊奎鋒,藍(lán)廷廣. 2011. 膠西北郭家?guī)X花崗閃長巖侵位深度:來自角閃石溫壓計和流體包裹體的證據(jù).巖石學(xué)報,27(5):1521 -1532
呂古賢. 1997. 山東玲瓏金礦田和焦家金礦田成礦深度的測算與研究方法. 中國科學(xué)(D 輯),27(4):337 -342
呂古賢,郭濤,舒斌,申玉科,劉杜鵑,周國發(fā). 2006. 膠東金礦集中區(qū)構(gòu)造控巖控礦地質(zhì)特征研究. 地球?qū)W報,27(5):471 -478
馬昌前,楊坤光,唐仲華,龍昱,Ehlers C,Lindroos A. 1995. 華中大別山高壓變質(zhì)地體的形成和差異巖石隆升-剝蝕:來自火成巖的證據(jù). 地球科學(xué),20(5):515 -520
曲曉明,王鶴年. 1997. 郭家?guī)X巖體殼慢巖漿混合作用與侵位機制的動力學(xué)研究. 地質(zhì)科學(xué),32(4):445 -454
宋明春,徐軍祥,王沛成. 2009. 山東省大地構(gòu)造格局和地質(zhì)構(gòu)造演化. 北京:地質(zhì)出版社,1 -272
孫豐月,石準(zhǔn)立,馮本智. 1995. 膠東金礦地質(zhì)及幔源C-H-O 流體分異成巖成礦. 長春:吉林人民出版社,32 -56
徐金方,沈步云. 1989. 膠北地塊與金礦有關(guān)的花崗巖類的研究. 山東地質(zhì),5(2):1 -125
楊進(jìn)輝,朱美妃,劉偉,翟明國. 2003. 膠東地區(qū)郭家?guī)X花崗閃長巖的地球化學(xué)特征及成因. 巖石學(xué)報,19(4):692 -700
楊立強,鄧軍,王中亮,張良,郭林楠,宋明春,鄭小禮. 2014. 膠東中生代金成礦系統(tǒng). 巖石學(xué)報,30(9):2447 -2467
于學(xué)峰,李洪奎,單偉. 2012. 山東膠東礦集區(qū)燕山期構(gòu)造熱事件與金礦成礦耦合探討. 地質(zhì)學(xué)報,86(12):1946 -1956
周新華,楊進(jìn)輝,張連昌. 2002. 膠東大型金礦的形成與中生代華北大陸巖石圈深部過程. 中國科學(xué)(D 輯),32(增刊):11 -20