段辛樂(lè), 喬憲鳳, 陳茂華
西北農(nóng)林科技大學(xué)植物保護(hù)學(xué)院,農(nóng)業(yè)部西北黃土高原作物有害生物綜合治理重點(diǎn)實(shí)驗(yàn)室,陜西 楊凌 712100
?
蘋(píng)果蠹蛾抗藥性研究進(jìn)展
段辛樂(lè), 喬憲鳳, 陳茂華*
西北農(nóng)林科技大學(xué)植物保護(hù)學(xué)院,農(nóng)業(yè)部西北黃土高原作物有害生物綜合治理重點(diǎn)實(shí)驗(yàn)室,陜西 楊凌 712100
摘要:蘋(píng)果蠹蛾是世界各國(guó)高度關(guān)注的嚴(yán)重危害蘋(píng)果生產(chǎn)的外來(lái)有害生物。該蟲(chóng)于20世紀(jì)50年代在我國(guó)首次報(bào)道,目前是我國(guó)一類(lèi)進(jìn)境檢疫性有害生物,正嚴(yán)重威脅我國(guó)蘋(píng)果主產(chǎn)區(qū)的水果生產(chǎn)安全。蘋(píng)果蠹蛾以幼蟲(chóng)鉆蛀到果實(shí)內(nèi)部為害,防治難度高,對(duì)其主要采用化學(xué)農(nóng)藥、交配干擾和蘋(píng)果蠹蛾顆粒體病毒進(jìn)行防治。由于農(nóng)藥的長(zhǎng)期大量使用,蘋(píng)果蠹蛾已對(duì)有機(jī)磷、氨基甲酸酯、擬除蟲(chóng)菊酯、昆蟲(chóng)生長(zhǎng)調(diào)節(jié)劑、阿維菌素和蘋(píng)果蠹蛾顆粒體病毒等不同類(lèi)型的殺蟲(chóng)劑產(chǎn)生了抗藥性。本文總結(jié)了國(guó)內(nèi)外有關(guān)蘋(píng)果蠹蛾抗藥性現(xiàn)狀和抗藥性機(jī)理方面的研究,并分析了其對(duì)幾種農(nóng)藥產(chǎn)生抗性的主要原因,同時(shí)結(jié)合國(guó)外蘋(píng)果蠹蛾防治和抗藥性相關(guān)研究,以及其在我國(guó)發(fā)生與防治的現(xiàn)狀,提出該蟲(chóng)抗藥性治理策略,即及時(shí)對(duì)我國(guó)疫區(qū)蘋(píng)果蠹蛾的抗藥性現(xiàn)狀進(jìn)行監(jiān)測(cè),在此基礎(chǔ)上,注意科學(xué)地使用化學(xué)農(nóng)藥,并結(jié)合農(nóng)業(yè)防治和生物防治等措施對(duì)該蟲(chóng)進(jìn)行綜合治理。
關(guān)鍵詞:蘋(píng)果蠹蛾; 抗藥性; 抗性機(jī)理; 抗性治理
蘋(píng)果蠹蛾Cydiapomonella(L.),又稱(chēng)蘋(píng)果小卷蛾,屬鱗翅目Lepidoptera卷蛾科Tortricidae,是為害蘋(píng)果、梨、桃等多種核果類(lèi)和仁果類(lèi)果樹(shù)的重要蛀果害蟲(chóng)之一,被我國(guó)和其他許多國(guó)家列為國(guó)際重點(diǎn)檢疫對(duì)象(萬(wàn)方浩等,2005)。蘋(píng)果蠹蛾被認(rèn)為起源于歐洲大陸中部地區(qū)(Shel′Deshova,1967),19世紀(jì)50年代初首次在我國(guó)新疆的庫(kù)爾勒地區(qū)被發(fā)現(xiàn),隨后迅速擴(kuò)散至整個(gè)新疆地區(qū),目前在甘肅、內(nèi)蒙古、寧夏和黑龍江等地區(qū)均有蘋(píng)果蠹蛾的發(fā)生危害,并有逐漸向我國(guó)蘋(píng)果優(yōu)勢(shì)產(chǎn)區(qū)擴(kuò)散的趨勢(shì)(秦曉輝等,2006; 張潤(rùn)志等,2012; 張學(xué)祖,1957; 趙星民,2011)。
蘋(píng)果蠹蛾對(duì)環(huán)境的適應(yīng)能力較強(qiáng),其幼蟲(chóng)為蛀果危害,防治難度高(林偉麗等,2007; 楊富銀等,2009; 翟小偉等,2009; 張耀榮和蔣銀荃,2001; 周昭旭等,2008)。目前,化學(xué)防治是治理該蟲(chóng)的主要方法,但化學(xué)藥劑的使用不僅造成果品品質(zhì)下降,而且殺蟲(chóng)劑的長(zhǎng)期大量使用會(huì)導(dǎo)致蘋(píng)果蠹蛾的抗藥性,同時(shí)抗性種群對(duì)其他不同類(lèi)型的殺蟲(chóng)劑存在交互抗性,這可能是導(dǎo)致近年來(lái)蘋(píng)果蠹蛾嚴(yán)重發(fā)生的主要原因之一。據(jù)國(guó)際殺蟲(chóng)劑抗性行動(dòng)委員會(huì)(Insecticide Resistance Action Committee,IRAC)統(tǒng)計(jì),蘋(píng)果蠹蛾在全球范圍內(nèi)已經(jīng)對(duì)有機(jī)磷、氨基甲酸酯和菊酯類(lèi)等不同作用機(jī)理的60多種農(nóng)藥產(chǎn)生抗性 (IRAC,2014)。蘋(píng)果蠹蛾是我國(guó)的重要入侵害蟲(chóng),目前在我國(guó)的局部地區(qū)發(fā)生,因此,我國(guó)關(guān)于蘋(píng)果蠹蛾對(duì)殺蟲(chóng)劑的抗性報(bào)道相對(duì)較少。已有研究顯示,我國(guó)蘋(píng)果蠹蛾可能從中亞或俄羅斯遠(yuǎn)東地區(qū)傳入(李玉婷,2013; Menetal.,2013),其入侵我國(guó)的種群可能帶有一定的抗性基因(Yangetal.,2014)。因此,及時(shí)開(kāi)展蘋(píng)果蠹蛾抗性治理工作,延緩其抗藥性產(chǎn)生,是該蟲(chóng)綜合治理面臨的重要問(wèn)題。本文將介紹國(guó)內(nèi)外有關(guān)蘋(píng)果蠹蛾的抗藥性現(xiàn)狀、抗性機(jī)制和抗性治理等方面的研究進(jìn)展,旨在為制定有效的蘋(píng)果蠹蛾抗性治理策略提供依據(jù)。
1蘋(píng)果蠹蛾的抗藥性現(xiàn)狀
最早用于蘋(píng)果蠹蛾防治的藥劑是砷酸鹽,但其很快對(duì)該類(lèi)藥劑產(chǎn)生了抗性(Hough,1928)。20世紀(jì)40年代,DDT被用于蘋(píng)果蠹蛾的防治中,但其在短時(shí)間內(nèi)對(duì)DDT也產(chǎn)生了抗性(Cutwright,1954)。Barnes & Moffitt (1963)對(duì)美國(guó)加利福尼亞州不同地區(qū)的蘋(píng)果蠹蛾田間種群抗藥性檢測(cè)發(fā)現(xiàn),該地區(qū)田間種群對(duì)DDT已經(jīng)產(chǎn)生4倍左右的抗性,且該蟲(chóng)對(duì)DDT的抗性種群在之后的10年間快速擴(kuò)散。隨后谷硫磷、伏殺硫磷和對(duì)硫磷等有機(jī)磷農(nóng)藥被廣泛用于該蟲(chóng)的防治之中。Welteretal.(1991)在加利福尼亞州調(diào)查發(fā)現(xiàn),蘋(píng)果蠹蛾成蟲(chóng)和幼蟲(chóng)對(duì)谷硫磷產(chǎn)生了4~7倍的抗藥性。Bushetal.(1993)研究發(fā)現(xiàn),在加州北部地區(qū)果園的蘋(píng)果蠹蛾對(duì)對(duì)硫磷產(chǎn)生8倍抗性。同時(shí),蘋(píng)果蠹蛾對(duì)有機(jī)磷農(nóng)藥的抗性先后在美國(guó)、澳大利亞、南非、法國(guó)、以色列、智利、西班牙、瑞士和捷克(Blomefield,1994; Croft & Riedl,1991; Reuvenyetal.,2001; Reyesetal.,2004; Sauphanoretal.,1998; Stará & Kocourek,2007; Thwaiteetal.,1993)等國(guó)家被報(bào)道,且這些抗性種群與部分藥劑之間存在一定的交互抗性,這加大了蘋(píng)果蠹蛾的防治難度。Dunley & Welter (2000)報(bào)道,蘋(píng)果蠹蛾抗谷硫磷種群對(duì)二嗪農(nóng)、亞胺硫磷和DDT存在交互抗性;Reyes & Sauphanor (2008)發(fā)現(xiàn),谷硫磷抗性種群對(duì)甲基阿維菌素、多殺菌素、噻蟲(chóng)啉和毒死蜱存在交互抗性。Bouvier (1998)報(bào)道了蘋(píng)果蠹蛾對(duì)溴氰菊酯的抗藥性;Sauphanoretal.(2000)監(jiān)測(cè)發(fā)現(xiàn),法國(guó)地區(qū)的蘋(píng)果蠹蛾對(duì)溴氰菊酯的抗性倍數(shù)高達(dá)139倍,且該種群對(duì)除蟲(chóng)脲具有23.5倍的抗性。在美國(guó)加利福尼亞地區(qū),蘋(píng)果蠹蛾2個(gè)抗谷硫磷田間種群R-LO和R-CL分別對(duì)甲氰菊酯、高氰戊菊酯具有1.42、4.82和1.94、8.64倍的抗性(Dunley & Welter,2000)。Mota-Sanchezetal.(2008)研究發(fā)現(xiàn),在美國(guó)的密歇根州,蘋(píng)果蠹蛾對(duì)高效氯氟氰菊酯和茚蟲(chóng)威已經(jīng)產(chǎn)生6~10倍的抗性,且對(duì)谷硫磷、亞胺硫磷和蟲(chóng)酰肼均有一定的抗性;Grigg-McGuffinetal.(2014)對(duì)加拿大安大略和魁北克的27個(gè)蘋(píng)果蠹蛾田間種群連續(xù)3年的監(jiān)測(cè)發(fā)現(xiàn),其對(duì)谷硫磷、噻蟲(chóng)啉和甲氧蟲(chóng)酰肼已產(chǎn)生抗性。
阿維菌素、多殺菌素、蘋(píng)果蠹蛾顆粒體病毒(CpGV)及昆蟲(chóng)生長(zhǎng)調(diào)節(jié)和抑制劑作為高效安全的生物農(nóng)藥,也被廣泛應(yīng)用到蘋(píng)果蠹蛾的防治中。Coxetal.(1995)發(fā)現(xiàn),阿維菌素對(duì)蘋(píng)果蠹蛾具有較好的防治效果;但Reyes & Sauphanor (2008)研究表明,蘋(píng)果蠹蛾室內(nèi)抗性種群的不同蟲(chóng)態(tài)對(duì)阿維菌素均有不同程度的抗性;Charmillotetal.(2002)研究發(fā)現(xiàn),瑞士蘇黎世地區(qū)的蘋(píng)果蠹蛾已對(duì)多殺菌素產(chǎn)生低倍抗性;Huber (1974)通過(guò)室內(nèi)汰選,使蘋(píng)果蠹蛾室內(nèi)種群對(duì)CpGV產(chǎn)生10倍左右的抗性;2005年,法國(guó)和德國(guó)發(fā)現(xiàn)了對(duì)CpGV高達(dá)1000倍抗性的蘋(píng)果蠹蛾田間種群 (Fritschetal.,2005; Sauphanoretal.,2006)。蘋(píng)果蠹蛾在很多歐洲國(guó)家對(duì)CpGV產(chǎn)生了高水平抗性(Asser-Kaiseretal.,2007; Schmittetal.,2013)。2003~2008年,對(duì)德國(guó)7個(gè)經(jīng)濟(jì)果園中蘋(píng)果蠹蛾的CpGV抗性水平監(jiān)測(cè)發(fā)現(xiàn),在持續(xù)用CpGV-M汰選1~3年后,蘋(píng)果蠹蛾種群的抗性水平均提高了20多倍,并且發(fā)現(xiàn)一個(gè)抗性水平高達(dá)1百萬(wàn)倍的抗性種群;在沒(méi)有病毒的選擇壓力下,蘋(píng)果蠹蛾對(duì)CpGV的抗性能夠穩(wěn)定遺傳,且與敏感種群相比,抗性種群在繁殖力和生殖力方面不存在適合度代價(jià)(Undorf-Spahnetal.,2012)。除蟲(chóng)脲作為常用殺蟲(chóng)劑的替代品,在20世紀(jì)中期運(yùn)用到蘋(píng)果蠹蛾的綜合防治中,但之后在意大利(Riedl & Zenger,1994; Waldner,1993)、法國(guó)(Sauphanoretal.,1997)以及瑞士Charmillotetal.(1999)監(jiān)測(cè)到蘋(píng)果蠹蛾抗除蟲(chóng)脲田間種群;Reuveny & Cohen (2004)發(fā)現(xiàn),以色列的蘋(píng)果蠹蛾抗性種群對(duì)幾丁質(zhì)合成抑制劑(除蟲(chóng)脲、雙苯氟脲和伏蟲(chóng)隆)、保幼激素類(lèi)藥劑(吡丙醚和苯氧威)和蛻皮激素類(lèi)殺蟲(chóng)劑(甲氧蟲(chóng)酰)具有抗性。Ioriattietal.(2007)發(fā)現(xiàn),意大利北部地區(qū)的蘋(píng)果蠹蛾田間種群對(duì)蟲(chóng)酰肼表現(xiàn)出一定的抗藥性。Stará & Kocourek (2007)研究顯示,捷克地區(qū)的蘋(píng)果蠹蛾田間種群對(duì)除蟲(chóng)脲、伏蟲(chóng)隆以及苯氧威產(chǎn)生3.38~14.21倍的抗性,且各抗性種群對(duì)不同藥劑存在交互抗性。
2蘋(píng)果蠹蛾抗藥性機(jī)理
昆蟲(chóng)抗藥性的產(chǎn)生是農(nóng)藥選擇的結(jié)果,而昆蟲(chóng)行為和生理生化的改變是抗性產(chǎn)生的直接原因,昆蟲(chóng)抗藥性機(jī)理大致可分為行為抗性、代謝抗性和靶標(biāo)抗性(唐振華,1993)。已有研究表明,蘋(píng)果蠹蛾的抗性機(jī)理主要與代謝抗性和靶標(biāo)抗性有關(guān)(Brun-Baraleetal.,2005; Cassanellietal.,2006; Reyesetal.,2009)。代謝抗性是指由于解毒酶活性增高或酶量增加而導(dǎo)致的抗性,如羧酸酯酶(Carboxylesterase,CarE)、谷胱甘肽轉(zhuǎn)移酶(Glutathione transferase,GST)和多功能氧化酶(Multifunctional oxidase,MFO)等代謝酶的變化導(dǎo)致的抗藥性;靶標(biāo)抗性是由于殺蟲(chóng)劑作用靶標(biāo)敏感度降低而產(chǎn)生的抗性,包括乙酰膽堿酯酶(Acetylcholinesterase,AChE)和鈉離子通道(Sodium ion channel,SC)等靶標(biāo)位點(diǎn)的改變。昆蟲(chóng)抗藥性的產(chǎn)生可能是多個(gè)因子共同作用的結(jié)果,不同抗性種群由于用藥種類(lèi)、次數(shù)、頻率以及種群生物學(xué)背景的差異,可能產(chǎn)生不同的抗藥性機(jī)制,在很多情況下,多種抗藥性機(jī)制可能同時(shí)存在于一些抗藥性種群中。
酯酶(Esterase,EST)是昆蟲(chóng)體內(nèi)一類(lèi)能催化酯鍵水解的重要代謝酶,具有代謝有機(jī)磷和氨基甲酸酯類(lèi)藥劑中酯鍵的能力。Bushetal.(1993)發(fā)現(xiàn),美國(guó)北卡羅來(lái)納州果園內(nèi)蘋(píng)果蠹蛾對(duì)對(duì)硫磷產(chǎn)生抗性與其酯酶活性變化有關(guān);Bouvieretal.(1998)指出,法國(guó)東南部果園的蘋(píng)果蠹蛾田間種群對(duì)溴氰菊酯產(chǎn)生一定的抗藥性,但該種群的酯酶活性卻與相對(duì)敏感種群無(wú)差異;而在美洲和歐洲其他地區(qū)發(fā)現(xiàn),蘋(píng)果蠹蛾有機(jī)磷抗性種群的酯酶活性增強(qiáng)(Sauphanoretal.,2000; Soleoetal.,2004);Soleoetal.(2008)通過(guò)診斷劑量研究發(fā)現(xiàn),阿根廷4個(gè)地區(qū)的蘋(píng)果蠹蛾對(duì)谷硫磷有不同程度抗性,且4個(gè)地區(qū)所有蘋(píng)果蠹蛾幼蟲(chóng)的酯酶活性是室內(nèi)敏感種群的3.5、4.5、3.25和5倍,表明酯酶活性與蘋(píng)果蠹蛾對(duì)谷硫磷的抗性有關(guān)。Rodríguezetal.(2010)研究發(fā)現(xiàn),西班牙不同地區(qū)11個(gè)蘋(píng)果蠹蛾田間種群對(duì)谷硫磷、毒死蜱和伏殺硫磷都有抗性,各田間種群內(nèi)酯酶的活性均高于室內(nèi)敏感種群。Reyesetal.(2011)采用聚丙烯酰胺凝膠電泳對(duì)2個(gè)室內(nèi)蘋(píng)果蠹蛾抗性種群的酯酶同工酶分析,發(fā)現(xiàn)抗性種群存在同工酶EST1和EST4,且同工酶EST2的量均高于敏感種群,而Raz抗性種群中同工酶EST6的含量均高于其他種群,酯酶表達(dá)量上升導(dǎo)致蘋(píng)果蠹蛾對(duì)谷硫磷和除蟲(chóng)脲的抗藥性,且各同工酶表達(dá)量的變化與藥劑種類(lèi)相關(guān)。Yangetal.(2014)發(fā)現(xiàn),在歐洲蘋(píng)果蠹蛾種群中CarE的CpCE-1存在N232A和W233L突變位點(diǎn),并推測(cè)這2個(gè)位點(diǎn)都可能與蘋(píng)果蠹蛾對(duì)有機(jī)磷的抗性相關(guān)。
GST在昆蟲(chóng)外源化合物生物轉(zhuǎn)化、藥物代謝和保護(hù)昆蟲(chóng)免受過(guò)氧化作用損害中具有極其重要的作用,是昆蟲(chóng)體內(nèi)主要的殺蟲(chóng)劑解毒酶。Bushetal.(1993)報(bào)道,蘋(píng)果蠹蛾抗藥性與GST相關(guān);Bouvieretal.(1998)發(fā)現(xiàn),蘋(píng)果蠹蛾對(duì)溴氰菊酯抗性水平與其體內(nèi)GST的活性成正比;Reyesetal.(2009)對(duì)全世界不同地區(qū)蘋(píng)果蠹蛾抗性種群的酶活測(cè)定發(fā)現(xiàn),希臘、阿根廷和厄瓜多爾種群對(duì)殺蟲(chóng)劑的抗性水平與GST含量有關(guān),且與用藥水平呈正相關(guān);Voudourisetal.(2011)通過(guò)測(cè)定希臘不同地區(qū)38個(gè)蘋(píng)果蠹蛾抗性種群的酶活發(fā)現(xiàn),所有種群的GST活性平均為敏感種群的1.8倍;Liuetal.(2014)研究發(fā)現(xiàn),經(jīng)過(guò)毒死蜱和高效氯氟氰菊酯誘導(dǎo)后,蘋(píng)果蠹蛾體內(nèi)CpGSTd1的表達(dá)量上調(diào),說(shuō)明CpGSTd1能夠有效降解高效氯氟氰菊酯。
MFO是參與昆蟲(chóng)體內(nèi)殺蟲(chóng)劑和其他內(nèi)、外源化合物代謝的主要解毒酶系。Sauphanoretal.(1997)報(bào)道了法國(guó)不同地區(qū)蘋(píng)果蠹蛾對(duì)溴氰菊酯的抗性與MFO有關(guān),其中增效劑PBO對(duì)溴氰菊酯的增效倍數(shù)為7.0倍,且抗性種群的MFO活性均高于敏感種群;在法國(guó)、瑞士、西班牙、葡萄牙和捷克的蘋(píng)果蠹蛾抗除蟲(chóng)脲種群中,也發(fā)現(xiàn)MFO的活性增強(qiáng)與其抗藥性相關(guān)(Reyesetal.,2009; Sauphanoretal.,1998);希臘的蘋(píng)果蠹蛾田間抗性種群的MFO活性為敏感種群的6.3倍(Voudourisetal.,2011);Reyesetal.(2009)對(duì)法國(guó)蘋(píng)果蠹蛾田間種群和室內(nèi)選育種群研究發(fā)現(xiàn),各抗性種群的MFO活性均高于敏感種群,并且部分田間種群的MFO活性遠(yuǎn)高于室內(nèi)選育種群;Rodríguezetal.(2011)利用診斷劑量研究發(fā)現(xiàn),蘋(píng)果蠹蛾7個(gè)田間種群的幼蟲(chóng)對(duì)氟蟲(chóng)脲、谷硫磷和亞胺硫磷的抗性與MFO活性上升相關(guān),并認(rèn)為L(zhǎng)C90和MFO活性可以作為檢測(cè)蘋(píng)果蠹蛾幼蟲(chóng)對(duì)這3種藥劑抗性水平的指標(biāo);Yangetal.(2013)研究發(fā)現(xiàn),經(jīng)過(guò)毒死蜱和高效氯氟氰菊酯誘導(dǎo),蘋(píng)果蠹蛾3齡幼蟲(chóng)體內(nèi)的總P450酶活性顯著增強(qiáng),且P450基因CYP9A61上調(diào)2.2和3.47倍,推斷該基因在蘋(píng)果蠹蛾抗性產(chǎn)生過(guò)程中可能會(huì)起一定作用。
昆蟲(chóng)體內(nèi)的AChE是有機(jī)磷和氨基甲酸酯類(lèi)藥劑的作用靶標(biāo)。昆蟲(chóng)的AChE基因發(fā)生突變,不僅能夠引起其產(chǎn)物結(jié)構(gòu)的變化,而且可以造成其表達(dá)量的變化,從而導(dǎo)致抗藥性的產(chǎn)生。Reuveny & Cohen (2004)研究發(fā)現(xiàn),蘋(píng)果蠹蛾田間種群AChE對(duì)底物的親和力下降,但對(duì)有機(jī)磷和氨基甲酸酯類(lèi)藥劑的敏感性未發(fā)生改變;Cassanellietal.(2006)研究發(fā)現(xiàn),與室內(nèi)相對(duì)敏感種群相比,蘋(píng)果蠹蛾Raz抗性種群對(duì)谷硫磷和西維因具有6.67和130.28倍的抗性,酶活測(cè)定表明,Raz種群AChE對(duì)2種藥劑的敏感性下降1.7和14倍,并在該種群的AChE cydpom-ace1內(nèi)檢測(cè)到一個(gè)F399V單核苷酸突變,該突變位點(diǎn)位于cydpom-ace1的活性區(qū)域,其可能導(dǎo)致AChE敏感性下降;Reyesetal.(2011)研究發(fā)現(xiàn),蘋(píng)果蠹蛾谷硫磷抗性種群的AChE對(duì)谷硫磷和對(duì)氧磷的敏感性下降3.2和21.2倍,而該種群AChE對(duì)毒死蜱的敏感性增強(qiáng),導(dǎo)致其對(duì)毒死蜱產(chǎn)生負(fù)交互抗性,這說(shuō)明AChE敏感性改變是導(dǎo)致蘋(píng)果蠹蛾對(duì)不同藥劑產(chǎn)生抗性的原因之一。
SC是DDT、茚蟲(chóng)威以及擬除蟲(chóng)菊酯類(lèi)藥劑的主要作用靶標(biāo)位點(diǎn)。研究表明,昆蟲(chóng)對(duì)擬除蟲(chóng)菊酯、茚蟲(chóng)威等藥劑的高抗性與SC基因突變密切相關(guān),這類(lèi)抗性被稱(chēng)為擊倒抗性(knockdown resistance,kdr)。Brun-Baraleetal.(2005)以基因組DNA為模板,通過(guò)PCR擴(kuò)增,獲得了蘋(píng)果蠹蛾4個(gè)種群的SC 1752 bp的同源基因片段,通過(guò)序列比對(duì)發(fā)現(xiàn),蘋(píng)果蠹蛾溴氰菊酯抗性種群的SC存在kdr突變位點(diǎn)L1014F;對(duì)法國(guó)阿維尼翁地區(qū)蘋(píng)果蠹蛾kdr突變頻率檢測(cè)發(fā)現(xiàn),該地區(qū)所有種群中均存在該抗性基因型,而采用化學(xué)防治果園的抗性基因型純合子比例為56%,表明SC突變與蘋(píng)果蠹蛾對(duì)菊酯類(lèi)藥劑的抗性產(chǎn)生密切相關(guān)。Reyesetal.(2009)對(duì)不同地區(qū)蘋(píng)果蠹蛾田間種群抗藥性的檢測(cè)發(fā)現(xiàn),大多數(shù)種群中都存在kdr突變位點(diǎn)L1014F,在美國(guó)威爾克斯種群中,該突變位點(diǎn)的檢測(cè)率達(dá)到100%。
Asser-Kaiseretal.(2011)將CpGV-M注射到蘋(píng)果蠹蛾CpGV抗性個(gè)體體內(nèi)后,運(yùn)用定量PCR的方法在抗性種群體內(nèi)未檢測(cè)到CpGV病毒;但通過(guò)對(duì)CpGV進(jìn)行熒光標(biāo)記發(fā)現(xiàn),導(dǎo)致蘋(píng)果蠹蛾對(duì)CpGV產(chǎn)生抗性的原因是CpGV雖能夠侵入抗性個(gè)體,但其在抗性個(gè)體的細(xì)胞內(nèi)不能復(fù)制。Gebhardtetal.(2014)發(fā)現(xiàn),蘋(píng)果蠹蛾對(duì)CpGV的抗性與病毒毒株中某些基因的變異相關(guān),對(duì)CpGV-M毒株具有高抗性的蘋(píng)果蠹蛾CpRR1抗性種群,能夠被其他CpGV毒株(I12、S、E2和I07)所侵染;通過(guò)比較CpGV不同毒株的基因組發(fā)現(xiàn),CpGV-M毒株在pe38基因上有24 bp核苷酸的repeat,該repeat導(dǎo)致在CpGV-M的pe38基因中8個(gè)氨基酸的插入;當(dāng)敲除pe38基因上插入的8個(gè)氨基酸后,CpGV-M不能感染蘋(píng)果蠹蛾的任何種群;而將CpGV-S毒株的pe38基因敲入CpGV-M中替代其pe38基因后,CpGV-M能夠感染CpRR1種群。但是,目前蘋(píng)果蠹蛾對(duì)不同毒株響應(yīng)存在差異的具體分子機(jī)制還不明確。
3蘋(píng)果蠹蛾抗性治理
抗性監(jiān)測(cè)是制定抗性治理方案的依據(jù),也是評(píng)估整個(gè)抗性治理效果的有效手段(趙善歡,2000)?,F(xiàn)階段我國(guó)對(duì)蘋(píng)果蠹蛾的研究主要集中于其動(dòng)態(tài)監(jiān)測(cè)、防控,遏制其疫情發(fā)展等方面,而關(guān)于蘋(píng)果蠹蛾的抗性監(jiān)測(cè)、抗性機(jī)理和綜合治理的研究較少。由于蘋(píng)果蠹蛾在世界各地都對(duì)不同類(lèi)型的農(nóng)藥產(chǎn)生抗性,其在入侵我國(guó)時(shí)可能攜帶一定的抗性基因頻率。因此,通過(guò)對(duì)我國(guó)疫區(qū)蘋(píng)果蠹蛾抗性水平的監(jiān)測(cè),能夠推測(cè)其抗性動(dòng)態(tài)變化和分布。此外,應(yīng)該加強(qiáng)蘋(píng)果蠹蛾對(duì)新使用藥劑的抗性監(jiān)測(cè)及抗性風(fēng)險(xiǎn)評(píng)估,以及蘋(píng)果蠹蛾對(duì)常用藥劑的抗性機(jī)理和抗性遺傳方式等的研究;同時(shí),昆蟲(chóng)對(duì)殺蟲(chóng)劑的敏感性是一種不可更新的資源,因此應(yīng)當(dāng)盡早建立我國(guó)蘋(píng)果蠹蛾敏感種群和敏感毒力基線。通過(guò)蘋(píng)果蠹蛾分子生態(tài)學(xué)研究可以明確不同地區(qū)蘋(píng)果蠹蛾種群之間的基因流動(dòng)情況,這對(duì)于明確抗性基因在種群中的擴(kuò)散與交流具有重要意義,而且對(duì)于蘋(píng)果蠹蛾的抗性治理和綜合防治也具有重要作用。
在化學(xué)防治過(guò)程中,要綜合考慮蘋(píng)果蠹蛾的田間抗性水平、用藥歷史及用藥量等因素,同時(shí)結(jié)合田間抗性監(jiān)測(cè)結(jié)果,確定防治指標(biāo),選擇最佳的施藥時(shí)間和方法,做到有目的性和針對(duì)性的用藥,從而降低藥劑的選擇壓力。例如,通過(guò)采用歷期預(yù)測(cè)法和物候預(yù)測(cè)法,對(duì)歷年果園內(nèi)蘋(píng)果蠹蛾各蟲(chóng)態(tài)發(fā)育歷期的調(diào)查,并結(jié)合當(dāng)?shù)氐膶?shí)際氣候條件,預(yù)測(cè)當(dāng)年蘋(píng)果蠹蛾各代成蟲(chóng)的發(fā)生高峰期,同時(shí)結(jié)合蘋(píng)果、梨等寄主的開(kāi)花、結(jié)果等生物學(xué)特征,推算蘋(píng)果蠹蛾幼蟲(chóng)的蛀果高峰期,確定最佳的防治適期(何樹(shù)文等,2014)。對(duì)于蘋(píng)果蠹蛾已經(jīng)產(chǎn)生抗性的藥劑,應(yīng)當(dāng)限制或停止使用,并結(jié)合蘋(píng)果蠹蛾的發(fā)生規(guī)律和藥劑的持效期,選擇無(wú)公害的農(nóng)藥進(jìn)行防治;采用不同作用機(jī)理的藥劑交替或混和使用,從而降低殺蟲(chóng)劑選擇壓力,延緩或避免害蟲(chóng)抗藥性產(chǎn)生。在農(nóng)藥輪用和混用時(shí),需要考慮不同類(lèi)型農(nóng)藥的聯(lián)合作用效果以及交互抗性的問(wèn)題。如有機(jī)磷和氨基甲酸酯類(lèi)與生長(zhǎng)調(diào)節(jié)類(lèi)藥劑交替使用或混用,可以起到很好的防治效果。研究發(fā)現(xiàn),利用蘋(píng)果蠹蛾對(duì)不同藥劑之間的負(fù)交互抗性,可以進(jìn)行抗性治理(Reyes & Sauphanor,2008)。生物農(nóng)藥如甲氨基阿維菌素苯甲酸鹽、蘇云金芽孢桿菌、CpGV與化學(xué)藥劑合理輪用或混用,以及增效劑和昆蟲(chóng)引誘劑與殺蟲(chóng)劑混用,也能夠起到很好的防治效果(李北興等,2013; 楊建強(qiáng)等,2011; Laceyetal.,2004)。此外,某些植物的粗提物對(duì)蘋(píng)果蠹蛾的取食具有一定的抑制作用,如銀杏粗提物中的銀杏酸、銀杏內(nèi)酯B、白果內(nèi)酯、黃花蒿粗提物、青蒿素和桉油素對(duì)蘋(píng)果蠹蛾幼蟲(chóng)的取食具有抑制作用(Durdenetal.,2011; Pszczolkowskietal.,2011)。今后要加快新型藥劑的篩選、開(kāi)發(fā)研制以及示范推廣,為制定農(nóng)藥科學(xué)的輪用方案以及相關(guān)農(nóng)藥企業(yè)的生產(chǎn)提供理想藥劑品種。
在蘋(píng)果蠹蛾綜合防治中,可采取農(nóng)業(yè)措施與其他防治措施相結(jié)合。如加強(qiáng)果園田間管理,及時(shí)清理蛀果和果樹(shù)老翹皮,可以減少蘋(píng)果蠹蛾的越冬、越夏場(chǎng)所以及蟲(chóng)源;還可以利用束草、布環(huán)等營(yíng)造適合蘋(píng)果蠹蛾化蛹和越夏、越冬的場(chǎng)所,并結(jié)合化學(xué)防治,誘殺蘋(píng)果蠹蛾老熟幼蟲(chóng)。在蘋(píng)果蠹蛾越冬代成蟲(chóng)的產(chǎn)卵盛期前,可以通過(guò)果實(shí)套袋阻止該蟲(chóng)蛀果為害,同時(shí)防止幼蟲(chóng)隨蛀果越冬。此外,可以采用性信息素、黑光燈和誘捕器誘殺蘋(píng)果蠹蛾成蟲(chóng)(石磊等,2009; 朱虹昱等,2012a);利用迷向防治技術(shù),可以提高蘋(píng)果園中蘋(píng)果蠹蛾雄蟲(chóng)的誘捕量,且蛀果率和樹(shù)干結(jié)繭量顯著下降(朱虹昱等,2012b)。昆蟲(chóng)不育技術(shù)(SIT)已被加拿大和美國(guó)(Calkinsetal.,2000)等國(guó)家應(yīng)用于蘋(píng)果蠹蛾的防治中,并取得了理想的防治效果(Vreysenetal.,2010);同時(shí),充分利用和保護(hù)蘋(píng)果蠹蛾天敵,如鳥(niǎo)類(lèi)、蜘蛛、寄生蜂、真菌以及線蟲(chóng)等,能夠顯著降低果園中蘋(píng)果蠹蛾的蛀果率(王蘭等,2011)。這些農(nóng)業(yè)防治和物理防治措施都能夠減少田間農(nóng)藥的使用量,從而降低田間農(nóng)藥對(duì)蘋(píng)果蠹蛾的抗性選擇壓力,起到延緩抗性產(chǎn)生和發(fā)展的目的。此外,CpGV對(duì)蘋(píng)果蠹蛾有很高的毒力(Eberleetal.,2008),我國(guó)發(fā)現(xiàn)2種CpGV(CypoGV-zy和CpGV-CJ01),對(duì)蘋(píng)果蠹蛾均有較好的防治效果(申建茹等,2012; 鄭春寒等,2011);昆蟲(chóng)病原線蟲(chóng)(EPNs)能夠很好地防治蘋(píng)果蠹蛾越冬幼蟲(chóng)(Lacey & Unruh,2005)。在實(shí)際生產(chǎn)中,應(yīng)該結(jié)合當(dāng)?shù)靥O(píng)果蠹蛾發(fā)生規(guī)律以及抗藥性水平,制定詳細(xì)的綜合防治策略。
4總結(jié)
蘋(píng)果蠹蛾抗藥性的產(chǎn)生,除了與大面積長(zhǎng)期頻繁地使用化學(xué)農(nóng)藥有關(guān)外,還與所用化學(xué)藥劑類(lèi)型或種類(lèi)單一有關(guān)。由于各類(lèi)藥劑的作用方式和作用機(jī)理各不相同,蘋(píng)果蠹蛾抗性產(chǎn)生的原因也不盡相同,但解毒酶代謝作用增強(qiáng)和靶標(biāo)敏感性降低是蘋(píng)果蠹蛾對(duì)化學(xué)農(nóng)藥產(chǎn)生抗性的主要機(jī)制(IRAC,2014)。在蘋(píng)果蠹蛾疫區(qū),應(yīng)建立準(zhǔn)確有效的抗性監(jiān)測(cè)體系,對(duì)我國(guó)蘋(píng)果蠹蛾的抗性現(xiàn)狀進(jìn)行評(píng)估;在防治適期采用以化學(xué)防治為主,農(nóng)業(yè)防治、生物防治多種手段相結(jié)合的方法,降低藥劑的選擇壓力,同時(shí)注意藥劑的合理輪用和混用;此外,應(yīng)加強(qiáng)蘋(píng)果蠹蛾抗性機(jī)理的研究,及時(shí)提出科學(xué)的抗性治理與綜合防治策略。
參考文獻(xiàn)
何樹(shù)文, 達(dá)世彩, 高宜明, 伍東, 王澤浩. 2014. 蘋(píng)果蠹蛾測(cè)報(bào)與防治適期確定方法研究. 現(xiàn)代農(nóng)業(yè)科技, (5): 169.
李北興, 王凱, 管磊. 2013. 在殺蟲(chóng)劑中添加梨酯微膠囊防治蘋(píng)果蠹蛾. 世界農(nóng)藥, (4): 40-45.
李玉婷. 2013. 基于線粒體基因標(biāo)記的我國(guó)蘋(píng)果蠹蛾遺傳多樣性與入侵來(lái)源分析. 楊陵: 西北農(nóng)林科技大學(xué).
林偉麗, 于江南, 薛光華. 2007. 蘋(píng)果蠹蛾空間分布型及數(shù)學(xué)消長(zhǎng)模型研究. 新疆農(nóng)業(yè)大學(xué)學(xué)報(bào), 30(1): 40-43.
秦曉輝, 馬德成, 張煜, 李廣華, 王培. 2006. 蘋(píng)果蠢蛾在我國(guó)西北發(fā)生危害情況. 植物檢疫, 20(2): 95-96.
申建茹, 劉萬(wàn)學(xué), 萬(wàn)方浩, 張芬琴. 2012. 蘋(píng)果蠹蛾顆粒體病毒CpGV-CJ01的分離和鑒定. 應(yīng)用昆蟲(chóng)學(xué)報(bào), 49(1): 96-103.
石磊, 陳明, 羅進(jìn)倉(cāng). 2009. 3種性誘捕器誘捕蘋(píng)果蠹蛾效果比較及成蟲(chóng)的時(shí)序動(dòng)態(tài)變化. 甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào), 44(2): 115-117.
唐振華. 1993. 昆蟲(chóng)抗藥性及其治理. 北京: 農(nóng)業(yè)出版社.
萬(wàn)方浩, 鄭小波, 郭建英. 2005. 重要農(nóng)林外來(lái)人侵物種的生物學(xué)與控制. 北京: 科學(xué)出版社.
王蘭, 馮宏祖, 郭文超, 張輝, 楊力, 許建軍. 2011. 蘋(píng)果蠹蛾消長(zhǎng)動(dòng)態(tài)及果園中赤眼蜂釋放技術(shù)研究. 新疆農(nóng)業(yè)科學(xué), 48(2): 261-265.
楊富銀, 陳明, 羅進(jìn)倉(cāng), 周昭旭. 2009. 不同食料對(duì)蘋(píng)果蠹蛾生長(zhǎng)發(fā)育和繁殖的影響. 植物保護(hù), 35(5): 62-64.
楊建強(qiáng), 趙驍, 嚴(yán)勇敢, 張雅林, 馮紀(jì)年. 2011. 7種藥劑對(duì)蘋(píng)果蠹蛾的防治效果. 西北農(nóng)業(yè)學(xué)報(bào), 20(9): 194-196.
翟小偉, 劉萬(wàn)學(xué), 徐洪富, 萬(wàn)方浩, 蒲崇建. 2009. 蘋(píng)果蠹蛾卵在梨園中的分布特性和空間格局. 植物保護(hù)學(xué)報(bào), 36(4): 343-348.
張耀榮, 蔣銀荃. 2001. 蘋(píng)果蠹蛾生物學(xué)特性及綜合防治. 中國(guó)森林病蟲(chóng), (1): 21-23.
張學(xué)祖. 1957. 蘋(píng)果蠹蛾(CarpocapsapomonellaL.)在我國(guó)的新發(fā)現(xiàn). 昆蟲(chóng)學(xué)報(bào), 7(4): 467-472.
趙善歡. 2000. 植物化學(xué)保護(hù). 3版. 北京: 中國(guó)農(nóng)業(yè)出版社.
趙星民. 2011. 北方寒地蘋(píng)果蠹蛾發(fā)生規(guī)律及綜合防治研究. 植物檢疫, 25(1): 87-88.
鄭春寒, 劉強(qiáng), 李堅(jiān), 董昆, 馮紀(jì)年, 張雅林, 王敦. 2011. 蘋(píng)果蠹蛾顆粒體病毒張掖株(CypoGV-zy)的室內(nèi)毒力測(cè)定. 西北林學(xué)院學(xué)報(bào), 26(3): 121-123.
周昭旭, 羅進(jìn)倉(cāng), 陳明. 2008. 蘋(píng)果蠹蛾的生物學(xué)特性及消長(zhǎng)動(dòng)態(tài). 植物保護(hù), 34(4): 111-114.
張潤(rùn)志, 王福祥, 張雅林, 陳漢杰, 羅進(jìn)倉(cāng), 王勤英, 劉萬(wàn)學(xué), 艾尼瓦爾·木沙, 蒲崇建, 嚴(yán)勇敢, 郭靜敏, 劉星月, 陳繼光, 張?jiān)龇?楊森, 許建軍, 崔艮中, 徐婧. 2012. 入侵生物蘋(píng)果蠹蛾監(jiān)測(cè)與防控技術(shù)研究——公益性行業(yè)( 農(nóng)業(yè)) 科研專(zhuān)項(xiàng)( 200903042) 進(jìn)展. 應(yīng)用昆蟲(chóng)學(xué)報(bào), 49(1): 37-42.
朱虹昱, 杜磊, 徐婧, 劉偉, 張潤(rùn)志. 2012a. 蘋(píng)果蠹蛾誘芯性信息素含量變化及其有效時(shí)間. 應(yīng)用昆蟲(chóng)學(xué)報(bào), 49(1): 114-120.
朱虹昱, 劉偉, 崔艮中, 張?jiān)龈#?張潤(rùn)志. 2012b. 蘋(píng)果蠹蛾迷向防治技術(shù)效果初報(bào). 應(yīng)用昆蟲(chóng)學(xué)報(bào), 49(1): 121-129.
Asser-Kaiser S, Fritsch E, Undorf-Spahn K, Kienzle J, Eberle K E, Gund N A, Reineke A, Zebitz C P W, Heckel D G, Huber J and Jehle J A. 2007. Rapid emergence of baculovirus resistance in codling moth due to dominant, sex-linked inheritance.Science, 317: 1916-1918.
Asser-Kaiser S, Radtke P, El-Salamouny S, Winstanley D and Jehle J A. 2011. Baculovirus resistance in codling moth (CydiapomonellaL.) caused by early block of virus replication.Virology, 410: 360-367.
Barnes M M and Moffitt H R. 1963. Technique for testing insecticide deposits with newly hatched codling moth larvae.JournalofEconomicEntomology, 56: 722-725.
Blomefield T. 1994. Codling moth resistance: is it here, and how do we manage it?DeciduousFruitGrower, 44: 130-132.
Bouvier J C, Cuany A, Monier C, Brosse V and Sauphanor B. 1998. Enzymatic diagnosis of resistance to deltamethrin in diapausing larvae of the codling moth,Cydiapomonella(L.).ArchivesofInsectBiochemistryandPhysiology, 39(2): 55-64.
Brun-Barale A, Bouvier J C, Pauron D, BergéJ B and Sauphanor B. 2005. Involvement of a sodium channel mutation in pyrethroid resistance inCydiapomonellaL., and development of a diagnostic test.PestManagementScience, 61: 549-554.
Bush M, Abdel-Aal Y and Rock G. 1993. Parathion resistance and esterase activity in codling moth (Lepidoptera: Tortricidae) from North Carolina.JournalofEconomicEntomology, 86: 660-666.
Calkins C O, Knight A L, Richardson G and Bloem K A. 2000. Area-wide population suppression of codling moth∥Tan K H.Area-wideControlofFruitFliesandOtherInsectPests. Penerbit Universiti Sains Malaysia, PulauPinang, 215-219.
Cassanelli S, Reyes M, Rault M, Manicardi G C and Sauphanor B. 2006. Acetylcholinesterase mutation in an insecticide-resistant population of the codling moth (CydiapomonellaL.).InsectBiochemistryandMolecularBiology, 36: 642-653.
Charmillot P J, Parsquier D, Sauphanor B, Bourvier J C and Oliver R. 1999. Carpocapse des pommes: premier cas de resistance au diubenzuron en Suisse.RevuesuissedeViticulture,Arboriculture,Horticulture, 31: 129-132.
Charmillot P J, Pasquier D, Dessimoz S, Genini M and Olivier R. 2002. Résistance du carpocapseCydiapomonellaaux insecticides: tests par application topique sur des larves diapausantes collectées en automne 2001.RevuesuissedeViticulture,Arboriculture,Horticulture, 34: 247-251.
Cox D L, Knight A L, Biddinger D J, Lasota J A, Pikounis B, Hull L A and Dybas R A. 1995. Toxicity and field efficacy of avermectins against codling moth (Lepidoptera: Tortricidae) on apples.JournalofEconomicEntomology, 88: 708-715.
Croft B A and Riedl H W. 1991. Chemical control and resistance to pesticides of the codling moth∥Van Der Geest L P S and Evenhuis H H.TortricidPests:TheirBiology,NaturalEnemiesandControl. Elsevier, Amsterdam, The Netherlands, 371-387.
Cutwright C R. 1954. A codling moth population resistant to DDT.JournalofEconomicEntomology, 47: 189-190.
Dunley E D and Welter S C. 2000. Correlated insecticide cross-resistance in azinphosmethyl resistant codling moth (Lepidoptera: Tortricidae).JournalofEconomicEntomology, 93: 955-962.
Durden K, Sellars S, Cowell B, Brown J J and Pszczolkowski M A. 2011. Artemisia annua extracts, artemisinin and 1, 8-cineole, prevent fruit infestation by a major, cosmopolitan pest of apples.PharmaceuticalBiology, 49: 563-568.
Eberle K E, Asser-Kaiser S, Sayed S M, Nguyen H T and Jehle J A. 2008. Overcoming the resistance of codling moth against conventionalCydiapomonellagranulovirus (CpGV-M) by a new isolate CpGV-I12.JournalofInvertebratePathology, 98: 293-298.
Fritsch E, Undorf-Spahn K, Kienzle J, Zebitz C P W and Huber J. 2005. Apfelwickler granulovirus: erste hinweise auf unterschiede in der empfindlichkeit lokaler apfelwickler-populationen.NachrichtenblattdesDeutschenPflanzenschutzdienstes, 57: 29-34.
Gebhardt M M, Eberle K E, Radtke P and Jehle J A. 2014. Baculovirus resistance in codling moth is virus isolate-dependent and the consequence of a mutation in viral gene pe38.ProceedingsoftheNationalAcademyofSciences, 111: 15711-15716.
Grigg-McGuffin K, Scott I M, Bellerose S, Chouinard G, Cormier D and Scott-Dupree C. 2014. Susceptibility in field populations of codling moth,Cydiapomonella(L.) (Lepidoptera: Tortricidae), in Ontario and Quebec apple orchards to a selection of insecticides.PestManagementScience, 71: 234-242.
Hough W S. 1928. Relative resistance to arsenical poisoning of two codling moth strains.JournalofEconomicEntomology, 21: 325-329.
Huber J. 1974.SelektioneinerResistenzgegenperoraleInfektionmiteinemGranulosisvirusbeieinemLaborstammdesApfelwicklers,LaspeyresiapomonellaL. ETH Zürich, Dissertation no. 5044.
IRAC (Insecticide Resistance Action Committee). 2014.TheDatabaseofPestsforInformationonBiology,Distribution,ResistanceStatusandAvailableResourceonIRACandThird-partyWebsites. http:∥www.irac-online.org/pests/cydia-pomonella/.
Ioriatti C, Tasin M, Charmillot P J, Reyes M and Sauphanor B. 2007. Early detection of resistance to tebufenozide in field populations ofCydiapomonellaL.: methods and mechanisms.JournalofAppliedEntomology, 131: 453-459.
Lacey L A, Arthurs S P, Thomson D, Fritts R J and Granatstein D. 2004. Codling moth granulovirus and insect specific nematodes for control of codling moth in the Pacific Northwest.TilthProducersQuarterly, 13: 10-12.
Lacey L A and Unruh T R. 2005. Biological control of codling moth (Cydiapomonella, Lepidoptera: Tortricidae) and its role in integrated pest management, with emphasis on entomopathogens.Vedalia, 12(1): 33-60.
Liu J, Yang X Q and Zhang Y L. 2014. Characterization of a lambda-cyhalothrin metabolizing glutathione S-transferase CpGSTd1 fromCydiapomonella(L.).AppliedMicrobiologyandBiotechnology, 98: 8947-8962.
Men Q L, Chen M H, Zhang Y L and Feng J N. 2013. Genetic structure and diversity of a newly invasive species, the codling moth,Cydiapomonella(L.) (Lepidoptera: Tortricidae) in China.BiologicalInvasions, 15: 447-458.
Mota-Sanchez D, Wise J C, Poppen R V, Gut L J and Hollingworth R M. 2008. Resistance of codling moth,Cydiapomonella(L.) (Lepidoptera: Tortricidae), larvae in Michigan to insecticides with different modes of action and the impact on field residual activity.PestManagementScience, 64: 881-890.
Pszczolkowski M A, Durden K, Sellars S, Cowell B and Brown J J. 2011. Effects of Ginkgo biloba constituents on fruit-infesting behavior of codling moth (Cydiapomonella) in apples.JournalofAgriculturalandFoodChemistry, 59: 10879-10886.
Reuveny H, Oppenheim D, Dunkelblum E and Akunis O. 2001. Control of codling moth (Cydiapomonella) by mating disruption and monitoring the pest population levels under these conditions.AlonHanotea, 55: 143-147.
Reuveny H and Cohen E. 2004. Resistance of the codling mothCydiapomonella(L.) (Lep: Tortricidae) to pesticides in Israel.JournalofAppliedEntomology, 128: 645-651.
Reyes M, Bouvier J C, Boivin T, Sauphanor B and Fuentes-Contreras E. 2004. Susceptibilidad a insecticidas y actividad enzimtica deCydiapomonellaL. (Lepidoptera: Tortricidae) proveniente de tres huertos de manzano de la regin del Maule, Chile.AgriculturaTécnica, 64: 229-237.
Reyes M and Sauphanor B. 2008. Resistance monitoring in codling moth: a need for standardization.PestManagementScience, 64: 945-953.
Reyes M, Franck P, Olivares J, Margaritopoulos J, Knight A and Sauphanor B. 2009. Worldwide variability of insecticide resistance mechanisms in the codling moth,CydiapomonellaL.(Lepidoptera: Tortricidae).BulletinofEntomologicalResearch, 99: 359-369.
Reyes M, Collange B, Rault M, Casanelli S and Sauphanor B. 2011. Combined detoxification mechanisms and target mutation fail to confer a high level of resistance to organophosphates inCydiapomonella(L.) (Lepidoptera: Tortricidae).PesticideBiochemistryandPhysiology, 99: 25-32.
Riedl H and Zelger R. 1994. Erste ergebnisse der untersuchungen zur resistenz des apfelwicklers gegenüber diflubenzuron.Obstbau-Weinbau, 94: 107-109.
Rodríguez M A, Bosch D, Sauphanor B and Avilla J. 2010. Susceptibility to organophosphate insecticides and activity of detoxifying enzymes in Spanish populations ofCydiapomonella(Lepidoptera: Tortricidae).JournalofEconomicEntomology, 103: 482-491.
Rodríguez M A, Bosch D and Avilla J. 2011. Resistance of Spanish codling moth (Cydiapomonella) populations to insecticides and activity of detoxifying enzymatic systems.EntomologiaExperimentalisetApplicata, 138: 184-192.
Sauphanor B, Cuany A, Bouvier J C, Brosse V, Amichot M and Bergé J B. 1997. Mechanism of resistance to deltamethrin inCydiapomonella(L.) (Lepidoptera: Tortricidae).PesticideBiochemistryandPhysiology, 58: 109-117.
Sauphanor B, Bouvier J C and Brosse V. 1998. Spectrum of insecticide resistance inCydiapomonella(Lepidoptera: Tortricidae) in south-eastern France.JournalofEconomicEntomology, 91: 1225-1231.
Sauphanor B, Bouvier J C, Beslay D, Bosch D and Avilla J. 2000.MechanismsofAzinphos-methylResistanceinAStrainofCydiapomonellafromSouthernEurope. CR 21st Internat Cong Entomol, Iguassu, Brazil.
Sauphanor B, Berling M, Toubon J F, Reyes M, Delnatte J and Allemoz P. 2006. Carpocapse des pommes. Cas de résistance au virus de la granulose en verges biologique.Phytoma-LaDéfensedesVégétaux, 590: 24-27.
Schmitt A, Bisutti I L, Ladurner E, Benuzzi M, Sauphanor B, Kienzle J and Jehle J A. 2013. The occurrence and distribution of resistance of codling moth toCydiapomonellagranulovirus in Europe.JournalofAppliedEntomology, 137: 641-649.
Shel′Deshova G G. 1967. Ecological factors determining distribution of the codling mothLaspeyresiapomonellaL. (Lepidoptera, Tortricidae) in the northern and southern hemispheres.EntomologicalReview, 46: 349-361.
Thwaite W G, Williams D G and Hately A M. 1993. Extent and significance of azinphos-methyl resistance in codling moth in Australia.PestControlandSustainableAgriculture, 93: 166-168.
Undorf-Spahn K, Fritsch E, Huber J, Kienzle J, Zebitz C P and Jehle J A. 2012. High stability and no fitness costs of the resistance of codling moth toCydiapomonellagranulovirus (CpGV-M).JournalofInvertebratePathology, 111: 136-142.
Voudouris C C, Sauphanor B, Franck P, Reyes M, Mamuris Z, Tsitsipis J A and Margaritopoulos J T. 2011. Insecticide resistance status of the codling mothCydiapomonella(Lepidoptera: Tortricidae) from Greece.PesticideBiochemistryandPhysiology, 100: 229-238.
Vreysen M J B, Carpenter J E and Marec F. 2010. Improvement of the sterile insect technique for codling mothCydiapomonella(Linnaeus) (Lepidoptera Tortricidae) to facilitate expansion of field application.JournalofAppliedEntomology, 134: 165-181.
Waldner W. 1993. Rückblick und vorschau auf die bek?mpfung des apfelwicklers.Obstbau-Weinbau, 12: 355-357.
Welter S C, Varela L and Freeman R. 1991. Codling moth resistance to azinphos-methyl in California.ResistantPestManagementNewsletter, 3: 12.
Yang X Q, Li X C and Zhang Y L. 2013. Molecular cloning and expression of CYP9A61: a chlorpyrifos-ethyl and lambda-cyhalothrin-inducible cytochrome P450 cDNA fromCydiapomonella.InternationalJournalofMolecularSciences, 14: 24211-24229.
Yang X Q, Liu J Y, Li X C, Chen M H and Zhang Y L. 2014. A key amino acid associated with acephate detoxification byCydiapomonellacarboxylesterase based on molecular dynamics with alanine scanning and site-directed mutagenesis.JournalofChemicalInformationandModeling, 54: 1356-1370.
(責(zé)任編輯:楊郁霞)
Research advances concerning insecticide resistance in the codling moth,Cydiapomonella(L.)
Xin-le DUAN, Xian-feng QIAO, Mao-hua CHEN*
KeyLaboratoryofCropPestIntegratedPestManagementontheLoessPlateauofMinistryofAgriculture,
CollegeofPlantProtection,NorthwestA&FUniversity,Yangling,Shaanxi712100,China
Abstract:The codling moth, Cydia pomonella, is one of the most important pest insects in fruit orchards worldwide as well as an important invasive species in different regions of the world. In China, C. pomonella was first reported in the 1950ie-s and was considered a serious invasive species, threatening the safety of fruit production. As the larvae of codling moth bear into the fruit, it is difficult to control this pest. Chemical insecticides, mating disruption and the virus CpGV were the main control methods. In different regions of the world, C. pomonella had developed resistance to different types of insecticides including organophosphates, carbamates, pyrethroids, insect growth regulators, abamectin and CpGV. In this paper, the status of insecticide resistance, knowledge on the development insecticide resistance, the resistance mechanisms and the main reasons causing resistance in the codling moth to different types of insecticides throughout the world were reviewed. Additionally, we propose integrated management strategies for the control of this pest in China, which includes proper use of chemical insecticides, as well as the application of agricultural and biological control methods based on the resistance monitoring.
Key words:Cydia pomonella; insecticide resistance; resistance mechanism; resistance management
DOI:10. 3969/j.issn.2095-1787.2015.01.002
通訊作者*(Author for correspondence), E-mail: mdyxnd@163.com
作者簡(jiǎn)介:阿衣巴提·托列吾, 男(哈薩克族), 碩士研究生。 研究方向: 農(nóng)業(yè)害蟲(chóng)及其治理。 E-mail: bota1314@126.com
基金項(xiàng)目:新疆科技廳計(jì)劃項(xiàng)目(201130102-3); 自治區(qū)重點(diǎn)學(xué)科森林培育資助
收稿日期(Received): 2014-11-04接受日期(Accepted): 2015-02-05