劉一鋒, 鄭倫舉, 邱楠生*, 賈京坤, 常青
1 中國石油大學(北京)油氣資源與探測國家重點實驗室, 北京 102249 2 中國石油大學(北京)盆地與油藏研究中心, 北京 102249 3 中國石化勘探開發(fā)研究院無錫石油地質(zhì)研究所, 江蘇無錫 214151
?
川中古隆起超壓分布與形成的地溫場因素
劉一鋒1,2, 鄭倫舉3, 邱楠生1,2*, 賈京坤1,2, 常青1,2
1 中國石油大學(北京)油氣資源與探測國家重點實驗室, 北京 102249 2 中國石油大學(北京)盆地與油藏研究中心, 北京 102249 3 中國石化勘探開發(fā)研究院無錫石油地質(zhì)研究所, 江蘇無錫 214151
溫度和壓力是沉積盆地兩個重要的物理場,溫度影響著超壓的形成和分布.本文根據(jù)鉆孔實測溫度和壓力數(shù)據(jù)分析了川中古隆起現(xiàn)今壓力與溫度的關系;在實驗室對封閉流體進行了多組溫-壓關系實驗;利用等效鏡質(zhì)體反射率和包裹體測溫數(shù)據(jù)恢復了川中古隆起不同井區(qū)在白堊紀抬升之前的最大古地溫,并在此基礎上分析了溫度降低對研究區(qū)超壓的影響;最后探討了生烴增壓和欠壓實超壓形成過程中溫度的作用.研究結果表明,川中古隆起現(xiàn)今超壓層的壓力系數(shù)與溫度呈正相關關系;在絕對密封的條件下,當壓力大于15 MPa時,溫度每變化1 ℃,壓力變化1.076 MPa.川中地區(qū)不同井區(qū)自晚白堊世以來的差異性降溫是現(xiàn)今同一超壓層系超壓強度不同的主要因素,此外超壓層還應發(fā)生了流體的橫向壓力傳遞和泄漏.下古生界原油裂解形成超壓的時間是180~110 Ma;氣態(tài)烴伴生的鹽水包裹體均一溫度暗示了在90 Ma超壓發(fā)生調(diào)整.盆地模擬結果顯示溫度對上三疊統(tǒng)須家河組的欠壓實增壓影響微弱.
川中古隆起; 溫度; 超壓; 物理模擬
四川盆地在前震旦系基底形成以后,經(jīng)歷了復雜的構造—沉積演化歷史,大致上可分為克拉通盆地階段和前陸盆地階段.克拉通盆地階段以海相碳酸鹽巖沉積為主,前陸盆地階段則沉積了巨厚的陸相碎屑巖.多期構造運動造成現(xiàn)今盆地內(nèi)發(fā)育多個不整合面和多套地層缺失,白堊紀以來的構造抬升運動使侏羅系及其以下地層出露地表(鄧賓等,2009; Liu et al.,2012; 許海龍等,2012).川中古隆起位于四川盆地中部(圖1),屬于樂山—龍女寺鼻狀構造的一部分.在加里東期該地區(qū)處于隆起部位,印支—燕山期為向北傾的斜坡,現(xiàn)今東部抬升較高,向西逐漸傾伏(王宓君等,1989; 許海龍等,2012).作為一個長期繼承性發(fā)展的盆地內(nèi)大型正向構造單元,川中古隆起具有廣闊的油氣勘探前景(姚建軍等,2003; 魏國齊等,2010).目前已在震旦系、寒武系、三疊系和侏羅系發(fā)現(xiàn)多個商業(yè)油氣藏.
前人對川中古隆起的現(xiàn)今地層壓力狀態(tài)已經(jīng)做了大量研究,發(fā)現(xiàn)上三疊統(tǒng)至下寒武統(tǒng)多套地層都發(fā)育超壓(楊金俠等,2003; Liu et al.,2008; 謝增業(yè)等,2009; 徐國盛等,2009; 郝國麗等,2010).鉆井實測壓力顯示,古隆起上三疊統(tǒng)須家河組壓力系數(shù)在1.0~2.0之間,平面上由西北向南逐漸降低(謝增業(yè)等,2009; 郝國麗等,2010).磨溪—龍女寺構造帶下三疊統(tǒng)嘉陵江組壓力系數(shù)大多在2.0以上(徐國盛等,2009).川中地區(qū)震旦系主要為常壓—弱超壓,而寒武系—奧陶系則表現(xiàn)為明顯的超壓,壓力系數(shù)為1.0~1.82(Liu et al.,2008).盆地大地熱流發(fā)生多期演化(邱楠生等,2008; Zhu et al.,2010; 王瑋等,2011; 何麗娟等,2014),加之沉積層埋藏-抬升作用,使四川盆地地層溫度經(jīng)歷了復雜且劇烈的變化過程.地溫場對含油氣盆地超壓的形成和保存都有重要影響,但在我國相關研究開展較少.前人很早就發(fā)現(xiàn)溫度升高可以引起孔隙流體壓力增大(Barker,1972),但一些學者認為幾乎不存在絕對封閉的蓋層以及溫度升高引起的流體體積膨脹量非常小,所以水熱增壓通常不是主要的超壓機制(Luo and Vasseur,1992; Osborne and Swarbrick,1997).當含油氣盆地發(fā)生構造抬升時(在此過程中泥巖欠壓實、生烴作用、成巖作用等超壓機制幾乎全部停止),若異常壓力還能長時間保存,即從側面說明了封隔層的有效性,此時關于溫度對地層壓力的影響則不可忽略.如鄂爾多斯盆地,現(xiàn)今盆地內(nèi)的異常低壓就與構造抬升引起的溫度降低密切相關(許浩等,2012; 李士祥等,2013).四川盆地自白堊紀以來發(fā)生了全盆范圍的巨大抬升剝蝕,最大剝蝕量超過4000 m(鄧賓等,2009; 朱傳慶等,2009; Liu et al.,2012).溫度降低對四川盆地超壓的影響的相關研究目前尚屬空白.本文利用鉆孔溫壓數(shù)據(jù)厘清現(xiàn)今超壓層的溫度-壓力關系;利用物理模擬方法探究溫度對地層壓力的控制;結合地層的溫度演化史,探討溫度對川中古隆起超壓的差異性分布和形成過程的影響.
圖1 (a) 四川盆地氣田分布及剖面與研究井位置;(b) 研究區(qū)地震剖面(據(jù)許海龍等,2012)Fig.1 (a) Gas fields distribution and locations of the section and wells; (b) A seismic section in the study area(from Xu et al.,2012)
2.1 現(xiàn)今溫度場特征
基于鉆孔溫度資料和大量的巖石熱導率、生熱率測量數(shù)據(jù),關于盆地現(xiàn)今地溫場的分布特征已經(jīng)有了一定認識(謝曉黎和于匯津,1988; 韓永輝和吳春生,1993; 盧慶治等,2005; 徐明等,2011).四川盆地現(xiàn)今大地熱流平均值為53.2 mW·m-2,低于我國大陸地區(qū)平均大地熱流(63 mW·m-2),但比塔里木和準噶爾盆地的略高.四川盆地現(xiàn)今地溫梯度為17.7~33.4 ℃/km.由于基底埋深較淺,川中和川南地區(qū)的大地熱流(60~70 mW·m-2)和地溫梯度(24~30 ℃/km)都明顯高于川東北和川西北地區(qū)的(徐明等,2011).隨著川中古隆起深層鉆井數(shù)量增多,溫度資料進一步豐富.本文收集了來自威遠地區(qū)、磨溪—高石梯地區(qū)以及八角場地區(qū)代表鉆井的試井溫度(表1).寒武系龍王廟組和洗象池組以及上三疊統(tǒng)須家河組是川中地區(qū)主要的天然氣產(chǎn)層,溫度數(shù)據(jù)主要集中在上述層系.為了更好地反映溫度分布特征,將各層系實測溫度數(shù)據(jù)折算為該層系底界面溫度.受埋深控制,同一套地層的溫度差異較大,磨溪—高石梯地區(qū)寒武系底界面的溫度為136~146.5 ℃,在威遠地區(qū)寒武系底界面溫度僅為95 ℃;磨溪—高石梯地區(qū)上三疊統(tǒng)須家河組底界面溫度約為76.5~81.4 ℃,向西北方向溫度逐漸升高,八角場地區(qū)須家河組的底界溫度約為100 ℃.
表1 川中古隆起不同地區(qū)代表井溫度數(shù)據(jù)Table 1 Temperature data from bore holes in different position of the Central Paleo-Uplift in the Sichuan Basin
注:*底界溫度折算時取地溫梯度為2.5 ℃/km.
2.2 超壓分布與超壓成因
四川盆地是一個典型的超壓盆地,不少學者都曾對盆地內(nèi)超壓分布和成因機制進行過探討(王震亮等,2004; Liu et al.,2008; Tian et al.,2008; 郝國麗等,2010; 郭迎春等,2012).川中古隆起上三疊統(tǒng)須家河組、下三疊統(tǒng)嘉陵江組、下古生界寒武系和殘留的奧陶系的地層壓力都明顯高于靜水壓力,其中嘉陵江組的壓力系數(shù)接近2.0.上二疊統(tǒng)龍?zhí)督M泥巖雖無實際測壓數(shù)據(jù),但泥巖聲波時差的明顯異常也暗示了超高壓的存在.筆者根據(jù)實測壓力數(shù)據(jù)、鉆井泥漿、聲波測井等數(shù)據(jù),結合流體特征和蓋層分布,在磨溪—高石梯地區(qū)劃分出多個超壓系統(tǒng)(圖2),超壓發(fā)育深度大約在2000 m至5000 m;根據(jù)巖石物理性質(zhì),判斷上三疊統(tǒng)須家河組和上二疊統(tǒng)超壓主要為泥巖欠壓實導致;下三疊統(tǒng)和下古生界(寒武系和殘留的奧陶系)的超壓主要與原油裂解生氣導致的孔隙流體膨脹有關(圖2).橫向上,上三疊統(tǒng)須家河組在廣安—銅梁一線的東南地區(qū)為正常壓力,向西北方向超壓逐漸增大,八角場地區(qū)須家河組壓力系數(shù)達1.9(郝國麗等,2010);寒武系在威遠地區(qū)表現(xiàn)為靜水壓力,在磨溪—高石梯地區(qū)壓力系數(shù)達到了1.48~1.78(Liu et al.,2008).
2.3 現(xiàn)今地層壓力與溫度的關系
溫度和壓力作為盆地內(nèi)兩個重要的物理場,二者的耦合關系一直是學界關注的焦點.本文選取了溫壓測試數(shù)據(jù)較多的磨溪—高石梯地區(qū)、威遠地區(qū)的寒武系和磨溪—高石梯地區(qū)、八角場地區(qū)的上三疊統(tǒng)須家河組兩套超壓層進行典型分析(圖3).磨溪—高石梯地區(qū)寒武系平均地層溫度為140 ℃,地層壓力平均值為78.5 MPa;威遠地區(qū)(威28井)寒武系溫度為95 ℃,地層壓力30.1 MPa.寒武系溫-壓斜率為1.075 MPa/℃.磨溪—高石梯地區(qū)須家河組平均地層溫度為78.5 ℃,地層壓力平均值為32.3 MPa.八角場地區(qū)須家河組平均地層溫度為100 ℃,地層壓力平均值為59 MPa.須家河組溫-壓斜率為1.24 MPa/℃.綜上所述,川中地區(qū)寒武系和上三疊統(tǒng)須家河組地層壓力及壓力系數(shù)都與地層溫度有著良好的正相關性,其中須家河組地層壓力和壓力系數(shù)隨溫度增加的增大幅度更大.
圖2 (a) 磨溪—高石梯地區(qū)超壓系統(tǒng)劃分;(b) 寒武系與上三疊統(tǒng)須家河組超壓機制判別: 須家河組超壓由欠壓實所致;寒武系超壓由流體膨脹引起Fig.2 (a) Overpressure systems in the Moxi-Gaoshiti area; (b) Mechanisms for the Cambrian and Xujiahe overpressures: the Xujiahe Formation overpressure is caused by disequilibrium compaction and the Cambrian overpressure is mainly caused by fluid expansion
圖3 川中古隆起寒武系龍王廟組底界面和三疊系須家河組底界面地層溫壓特征Fig.3 Temperature and pressure characteristics of the bottom of the Cambrian Longwangmiao formation and the Upper Triassic Xujiahe formation in the Central Paleo-Uplift of the Sichuan Basin
良好的封閉條件是盆地內(nèi)異常壓力形成的前提.本文借助物理模擬實驗探索封閉條件下溫度與壓力的關系.實驗儀器如圖4所示,“PVT釜”(容積約250 mL)能承受高溫高壓,恒溫箱內(nèi)的加熱器可對“PVT釜”內(nèi)的溫度進行定量調(diào)節(jié).實驗中采用的恒壓增壓泵不僅將液體注入容器,還控制著“PVT釜”內(nèi)的初始壓力.攪拌器可以縮短系統(tǒng)的溫壓平衡時間.溫度和壓力感應計實時監(jiān)測釜內(nèi)溫壓變化,并通過電腦軟件自動記錄.為保證實驗過程中測得的每組溫壓數(shù)據(jù)均為系統(tǒng)平衡后的真實溫壓狀態(tài),設置的溫度變化速率緩慢(5 ℃/h).根據(jù)不同的初始溫壓條件,以勝利油田沙河街組地層水作為實驗流體,共完成了4組物理模擬實驗(圖5).1、2組實驗從高溫高壓狀態(tài)逐漸降溫;3、4組實驗從低溫低壓狀態(tài)逐漸升溫.四組實驗在溫度改變至預計溫度后都進行了逆向溫度變化,使溫度再次回到初始值.逆向變溫過程中壓力也沿著之前的變化路徑逆向恢復至初始壓力狀態(tài).
圖4 溫-壓關系物理模擬實驗儀器示意圖 溫度計T和T0分別監(jiān)測“PVT釜”和 恒溫箱的溫度;壓力計P測試釜內(nèi)壓力.Fig.4 Schematic diagram of the instrument for the temperature-pressure physical simulation experiment Temperatures in the “PVT Vessel” and the thermotank are monitored by thermometers T and T0; pressure in the “PVT Vessel” is monitored by the pressure meter (P).
實驗結果表明,當壓力大于15 MPa時,封閉系統(tǒng)內(nèi)的溫度-壓力近乎為相互平行的直線關系,斜率為1.076 MPa/℃;當壓力小于15 MPa時,壓力隨溫度的變化幅度明顯偏小(圖5).這是由于在低溫低壓時水的熱膨脹系數(shù)較小.從圖5中還可以看出在絕對封閉的條件下,埋深-抬升過程中溫度改變造成的壓力變化幅度遠大于相同深度變化時靜水壓力的變化;溫度變化引起的地層壓力變化幅度略小于同等埋深變化時靜巖壓力的改變量.
圖5 溫-壓關系物理模擬實驗結果 兩條虛線分別代表盆地內(nèi)靜巖壓力和靜水壓力與溫度的關系線(假設地表溫度為20 ℃,地溫梯度為3 ℃/100m);圓點處的 溫度和壓力值代表實驗端點的溫度和壓力.Fig.5 Results of the temperature-pressure relationship physic simulation experiment Two dashed lines represent temperature-lithostatic pressure and temperature-hydrostatic pressure relations respectively.
4.1 晚期降溫對超壓的影響
根據(jù)盆地沉積演化歷史分析,各地層在晚白堊世抬升前達到其所經(jīng)歷的最大古地溫.等效鏡質(zhì)體反射率(Requ)作為有機質(zhì)成熟度指標是目前國內(nèi)外盆地熱史研究中最常見和最成熟的古溫標參數(shù)(邱楠生等,2004).Requ用于恢復古地溫的最大優(yōu)勢是可以反映地層在地質(zhì)歷史中所經(jīng)歷的最高溫度.圖6為川中古隆起不同井區(qū)的3口典型井的Requ剖面.如圖所示八角場地區(qū)地層埋深最大;威遠地區(qū)地層埋深較淺,寒武系埋深小于3000 m;磨溪—高石梯地區(qū)地層埋深處于八角場和威遠地區(qū)之間.川中地區(qū)不同構造位置的埋深差異主要與晚白堊世以來的差異性抬升剝蝕有關.現(xiàn)今川中地區(qū)中、古生界的Requ值分布在0.99%~3.25%之間.
圖6 川中古隆起典型單井Ro剖面(井位見圖1)Fig.6 Ro vs. depth plot for three wells in the Central Paleo-Uplift of the Sichuan Basin (wells location are shown in Fig.1)
本文在利用Requ計算最大古地溫時采用平行化學反應模型(Easy%Ro),計算結果見表2.磨溪—高石梯地區(qū)三疊系和寒武系的最大古地溫分別略高于八角場地區(qū)三疊系的最大古地溫和威遠地區(qū)寒武系的最大古地溫.對比現(xiàn)今地溫,可得到白堊紀構造抬升所造成的溫度減小量;再結合物理模擬結果,即可計算溫度降低對超壓層壓力降低的貢獻(表2).降溫幅度差異使得八角場地區(qū)須家河組的壓力減小量小于磨溪—高石梯地區(qū)須家河組的壓力減小量,二者相差33.4 MPa;磨溪—高石梯地區(qū)寒武系的壓力減小量小于威遠地區(qū)寒武系的壓力減小量,二者相差30.1 MPa.因此,溫度降低是川中古隆起現(xiàn)今各超壓層系在不同井區(qū)壓力系數(shù)存在差異的主要原因.
此外,注意到八角場地區(qū)與磨溪—高石梯地區(qū)須家河組由溫度降低造成的壓力差(33.4 MPa)大于現(xiàn)今實際壓力差(約27 MPa),而威遠地區(qū)與磨溪—高石梯地區(qū)寒武系由溫度降低造成的壓力差(30.1 MPa)小于現(xiàn)今實際壓力差(約48 MPa).由于抬升前埋深基本相同(同一套地層的最大古地溫差異較小,見表2),可以認為川中地區(qū)在抬升前同一套地層的壓力狀態(tài)基本一致,從而排除抬升前就存在壓力差異的原因.須家河組實際壓力差偏小,說明在碎屑巖層系內(nèi)發(fā)生了流體橫向運移、壓力橫向傳遞.寒武系實際壓差偏大,可能是由于威遠隆起區(qū)大幅抬升后保存條件比磨溪—高石梯地區(qū)寒武系的保存條件差,發(fā)生了流體的部分泄漏,現(xiàn)今地層壓力已降低為靜水壓力.
表2 川中古隆起不同井區(qū)T3、∈溫度降低量 及其引起的壓力下降幅度Table 2 Temperature reduction and the corresponding pressure decrease for T3 and ∈ in different wells in the Central Paleo-Uplift of the Sichuan Basin
注:*溫度降低造成的壓力減小=降溫幅度×1.076 MPa/℃.
4.2 溫度對生烴增壓的控制
泥巖欠壓實在盆地超壓形成中具有重要意義.泥巖欠壓實(也稱不均衡壓實)形成異常高壓的根本原理是快速埋藏使泥巖孔隙快速減小,流體排出受滯并承擔了部分骨架壓力,從而形成超壓.欠壓實形成的超壓隨著埋深增大而增大,在埋深最大時超壓也達到最大.地下流體流動滿足達西定律:
(1)
其中
ρ=ρsc·exp[β(P-0.1)-α(T-25)],
(2)
μ=10n;
(3)
式中v為流體流速, m/s;K為滲透率, m2;μ為黏度, MPa·s; dh/dl為壓力差, MPa;ρ、ρsc分別為地下和地表時水的密度, kg·m-3;T為溫度, ℃;α=5×10-4℃-1,β=4.3×10-4MPa-1.公式(2)據(jù)(Bethke,1985).
根據(jù)式(2)和式(3)可以看出,溫度升高會造成地層水密度和黏度的減小,但黏度的減小幅度更加顯著;進而在滲透率和壓差都不變的情況下,造成流速的增大(式(1)).因此,溫度升高在欠壓實形成過程中起到負面的作用.但是,在欠壓實形成時滲透率快速降低至極小值,并成為影響流速和超壓形成的最關鍵因素.相比而言,溫度引起的密度和黏度變化對流體流速及超壓的影響可以忽略不計.本文通過盆地模擬結果也證明,即使川中古隆起上三疊統(tǒng)的溫度改變50 ℃,欠壓實超壓的變化也非常有限(超壓改變量小于1%).
5.1 沉積盆地現(xiàn)今溫-壓關系
沉積盆地現(xiàn)今溫度-壓力關系是漫長地質(zhì)歷史過程中多種作用的結果,分析現(xiàn)今溫度-壓力關系應深入考慮其所處的盆地環(huán)境和演化歷程.若把地下溫度和壓力作為一個整體并認為盆地是由一個個“封閉系統(tǒng)”組成,則每一個封閉系統(tǒng)內(nèi)溫度與壓力應保持線性關系(劉震等,2012):
圖7 GK1井埋藏史、原油裂解時間與磨溪—高石梯地區(qū)下古生界烴類伴生鹽水包裹體均一溫度Fig.7 Burial history and the time of oil cracking for Well GK1 and the homogenization temperature of aqueous inclusionswhich associated with hydrocarbon inclusions from the Lower Paleozoic in the Moxi-Gaoshiti area
(4)
式中P為壓力,MPa;T為溫度,℃;K為斜率,MPa/℃;L為常數(shù).進而得到系統(tǒng)內(nèi)的溫-壓斜率為
(5)
式中ΔP為壓力梯度,MPa/100 m;ΔT為地溫梯度, ℃/100 m.
對于淺部靜水壓力系統(tǒng),由于ΔP基本保持在1 MPa/100 m左右,系統(tǒng)內(nèi)溫-壓斜率K主要受地溫梯度的影響.不同沉積盆地的平均地溫梯度差異很大(1.5 ℃/100 m~4.5 ℃/100 m),對K產(chǎn)生的影響明顯.我國東部盆地地溫梯度(>3.5 ℃/100 m)明顯高于中西部盆地(<2.5 ℃/100 m),因此,東部盆地的淺層溫-壓斜率整體上應大于中西部盆地.對于深部有異常壓力發(fā)育的系統(tǒng),壓力梯度(0.8 MPa/100 m~2.2 MPa/100 m)和地溫梯度一起控制著現(xiàn)今溫-壓斜率.現(xiàn)今壓力梯度是地質(zhì)歷史復雜作用的結果,現(xiàn)今地溫梯度則是目前盆地熱背景的響應.
5.2 構造抬升時其他作用對壓力的影響
構造抬升引起上覆靜巖壓力減小,地層可能會產(chǎn)生彈性或非彈性形變.姜振學等(2007)通過物理模擬實驗顯示,天然砂巖的體積回彈量通常小于1%,且其中80%的回彈量都是集中在5~0 MPa的低壓階段.構造抬升可能會發(fā)生褶皺和裂縫等非彈性形變.川中古隆起遠離盆地邊緣,喜山期以整體抬升為主,發(fā)生褶皺變形不明顯.裂縫和斷裂對超壓體系的封閉能力會造成極大破壞,流體泄漏之后超壓也隨之消失.四川盆地發(fā)育的多套優(yōu)質(zhì)蓋層(見圖2左)在抬升剝蝕過程中沒有被破壞,是現(xiàn)今川中地區(qū)超壓以及氣藏得以保存的關鍵.裂縫產(chǎn)生的孔隙很小,即使在裂縫發(fā)育地層,裂縫孔隙度主要為0.01%~0.04%(昌倫杰等,2014),對超壓的影響有限.但裂縫會顯著提高地層的滲透率,超壓流體在超壓系統(tǒng)內(nèi)部流動速率及壓力傳遞效率提高.綜上所述,以碳酸鹽巖和致密砂巖為主的四川盆地,構造抬升造成的地層形變對現(xiàn)今仍舊埋藏較深的超壓系統(tǒng)的影響不是最主要的.
當孔隙流體為烴類(特別是氣態(tài)烴)時,其熱膨脹系數(shù)與地層水明顯不同,會改變圖5所示的溫-壓變化關系,甚至形成超壓(Katahara and Corrigan,2002).但是由于地層水是地層孔隙的主要流體(即便是川中古隆起須家河組天然氣產(chǎn)層的含水飽和度也在45%~96%(曾青高等,2009)),因此當溫度降低時,四川盆地的孔隙壓力仍舊是逐漸減小.
依據(jù)對川中古隆起溫壓場的上述分析,可以得出如下結論:
(1)川中古隆起現(xiàn)今發(fā)育多個超壓系統(tǒng).同一超壓層系在不同井區(qū)的壓力不同,例如威遠地區(qū)寒武系為常壓,磨溪—高石梯地區(qū)寒武系為超壓;磨溪—高石梯地區(qū)須家河組壓力系數(shù)小于八角場地區(qū)須家河組的壓力系數(shù).結合現(xiàn)今地溫場的分布特征,發(fā)現(xiàn)同一超壓層系的壓力值和超壓強度與溫度呈正相關性.
(2)物理模擬實驗結果顯示,在絕對封閉條件下流體壓力隨溫度改變而改變.當壓力大于15 MPa時,溫度-壓力關系近乎為線性關系(1.076 MPa/℃).分析川中古隆起溫度演化歷史,認為白堊紀以來差異性降溫是現(xiàn)今各井區(qū)超壓差異的關鍵.此外,現(xiàn)今壓力分布格局還應疊加了壓力橫向傳遞及流體散失的影響.
(3)溫度是川中古隆起生烴增壓的“外因”,根據(jù)古溫度恢復結果,結合包裹體測溫數(shù)據(jù),確定寒武系超壓形成于180~110 Ma,在構造抬升前(~90 Ma)發(fā)生壓力調(diào)整.溫度對于上三疊統(tǒng)須家河組的欠壓實超壓形成的影響可以忽略不計.
Barker C. 1972.Aquathermal pressuring-role of temperature in development of abnormal-pressure zones.AAPGBulletin, 56(10): 2068-2071.
Bethke C M. 1985. A numerical model of compaction-driven groundwater flow and heat transfer and its application to the paleohydrology of intracratonic sedimentary basins.JournalofGeophysicalResearch:SolidEarth, 90(B8): 6817-6828.
Chang L J, Zhao L B, Yang X J, et al. 2014. Application of industrial computed tomography (ICT) to research of fractured tight sandstone gas reservoirs.XinjiangPetroleumGeology(in Chinese), 35(4): 471-475.
Deng B, Liu S G, Liu S, et al. 2009. Restoration of exhumation thickness and its significance in Sichuan Basin, China.JournalofChengduUniversityofTechnology(Science&TechnologyEdition) (in Chinese), 36(6): 675-686.
Guo Y C, Pang X Q, Chen D X, et al. 2012. Evolution of continental formation pressure in the middle part of the Western Sichuan Depression and its significance for hydrocarbon accumulation.PetroleumExplorationandDevelopment(in Chinese), 39(4): 426-433.
Han Y H, Wu C S. 1993.Geothermal gradient and heat flow values of some deep wells in Sichuan Basin.OilandGasGeology(in Chinese), 14(1): 80-84.
Hao F, Guo T L, Zhu Y M, et al. 2008.Evidence for multiple stages of oil cracking and thermochemical sulfate reduction in the Puguang gas field, Sichuan Basin, China.AAPGBulletin, 92(5): 611-637.
Hao G L, Liu G D, XieZ Y, et al. 2010.Distribution and origin of abnormal pressure in Upper Triassic Xujiahe Formation reservoir in central and southern Sichuan.GlobalGeology(in Chinese), 29(2): 298-304.
He L J, Xu H H, Wang J Y. 2011. Thermal evolution and dynamic mechanism of the Sichuan Basin during the Early Permian-Middle Triassic.ScienceChina:EarthSciences, 54(12): 1948-1954.
He L J, Huang F, Liu Q Y, et al. 2014. Tectono-thermal evolution of Sichuan Basin in Early Paleozoic.JournalofEarthSciencesandEnvironment(in Chinese), 36(2): 10-17.
Huang F, Liu Q Y, He L J. 2012. Tectono-thermal modeling of the Sichuan Basin since the Late Himalayan Period.ChineseJournalofGeophysics(in Chinese), 55(11): 3742-3753,doi: 10.6038/j.issn.0001-5733.2012.11.021.
Jiang Z X, Tian F H, Xia S H. 2007. Physical simulation experiments of sandstone rebounding.ActaGeologicaSinica(in Chinese), 81(2): 244-249.
Katahara K W, Corrigan J D.2002. Effect of gas on poroelastic response to burial or erosion.∥Huffman A R, Bowers G L, eds. Pressure Regimesin Sedimentary Basins and their Prediction.AAPG Memoir 76, 73-78.
Li S X, Shi Z J, Liu X Y,et al. 2013. Quantitative analysis of the Mesozoic abnormal low pressure in Ordos Basin.PetroleumExplorationandDevelopment(in Chinese), 40(5): 528-533. Liu Z, Zhu W Q, Sun Q, et al. 2012. Characteristics of geotemperature-geopressure systems in petroliferous basins of China.ActaPetroleiSinica(in Chinese), 33(1): 1-17.
Liu S G, Wang H, Sun W, et al. 2008. Energy field adjustment and hydrocarbon phase evolution in Sinian-Lower Paleozoic Sichuan Basin.JournalofChinaUniversityofGeosciences, 19(6): 700-706.
Liu S G, Deng B, Li Z W, et al. 2012.Architecture of basin-mountain systems and their influences on gas distribution: A case study from the Sichuan basin, South China.JournalofAsianEarthSciences, 47(2): 204-215.
Lu Q Z, Hu S B, GuoT L, et al. 2005. The background of the geothermal field for formation of abnormal high pressure in the northeastern Sichuan basin.ChineseJournalofGeophysics(in Chinese), 48(5): 1110-1116, doi:10.3321/j.issn:0001-5733.2005.05.019.
Luo X R, Vasseur G. 1992. Contributions of compaction and aquathermal pressuring to geopressure and the influence of environmental conditions.AAPGBulletin, 76(10): 1550-1559.
Osborne M J, Swarbrick R E. 1997.Mechanisms for generating overpressure in sedimentary basins: a reevaluation.AAPGBulletin, 81(6): 1023-1041.
Qiu N S, Hu S B, He L J. 2004. Theory and Application of Thermal Regime Study in Sedimentary Basins (in Chinese). Beijing: Petroleum Industry Press,240.
Qiu N S, Qin J Z, McInnes B I A, et al. 2008.Tectonothermal evolution of the Northeastern Sichuan Basin: Constraints from apatite and zircon (U-Th)/He ages and vitrinite reflectance data.GeologicalJournalofChinaUniversities(in Chinese), 14(2): 223-230.
Tian H, Xiao X M, Wilkins R W T, et al. 2008.New insights into the volume and pressure changes during the thermal cracking of oil to gas in reservoirs: Implications for the in-situ accumulation of gas cracked from oils.AAPGBulletin, 92(2): 181-200.
Tian Y T, Zhu C Q, Xu M, et al. 2011. Post-Early Cretaceous denudation history of the northeastern Sichuan Basin: constraints from low-temperature thermochronology profiles.ChineseJournalofGeophysics(in Chinese), 54(3): 807-816, doi:10.3969/j.issn.0001-5733.2011.03.021.
Wang M J, Bao C, Li M J. 1989. Petroleum geology of Sichuan Basin (in Chinese).∥ZhaiG M ed. Petroleum Geology of China, Volume 10. Beijing: Petroleum Industry Press, 516.
Wang W, Zhou Z Y, Guo T L, et al. 2011. Early Cretaceous-paleocene Geothermal Gradients and Cenozoic Tectono-thermal History of Sichuan Basin.JournalofTongjiUniversity(Natural Science) (in Chinese), 39(4): 606-613.
Wang Z L, Sun M L, Zhang L K, et al. 2004. Evolution of abnormal pressure and model of gas accumulation in Xujiahe Formation, western Sichuan Basin.EarthScience-JournalofChinaUniversityofGeosciences(in Chinese), 29(4): 433-439.
Waples D W. 2000. The kinetics of in-reservoir oil destruction and gas formation: constraints from experimental and empirical data, and from thermodynamics.OrganicGeochemistry, 31(6): 553-575.
Wei G Q, Jiao G H, Yang W, et al. 2010.Hydrocarbon pooling conditions and exploration potential of Sinian-Lower Paleozoic gas reservoirs in the Sichuan Basin.NaturalGasIndustry(in Chinese), 30(12): 5-9.
Xie X L, Yu H J. 1988. The characteristics of the regional geothermal field in Sichuan Basin.JournalofChengduCollegeofGeology(in Chinese), 15(4): 110-117.
Xie Z Y, Yang W, Gao J Y, et al. 2009. The characteristics of fluid inclusion of Xujiahe Formation reservoirs in central-south Sichuan Basin and its pool-forming significance.BulletinofMineralogy,PetrologyandGeochemistry(in Chinese), 28(1): 48-52.
Xu G S, Meng Y Z, Zhao Y H, et al. 2009.The study of accumulation mechanism of natural gas in Jialingjiang Formation, Moxi-Longnüsi area in the middle of Sichuan Basin.PetroleumGeology&Experiment(in Chinese), 31(6): 576-582.
Xu H L, Wei G Q, Jia C Z, et al. 2012. Tectonic evolution of the Leshan-Longnüsipaleo-uplift and its control on gas accumulation in the Sinian strata, Sichuan Basin.PetroleumExplorationandDevelopment(in Chinese), 39(4): 406-416.
Xu H, Zhang J F, Tang D Z, et al. 2012. Controlling factors of underpressure reservoirs in the Sulige gas field, Ordos Basin.PetroleumExplorationandDevelopment(in Chinese), 39(1): 64-68.
Xu M, Zhu C Q, Tian Y T, et al. 2011. Borehole temperature logging and characteristics of subsurface temperature in the Sichuan Basin.ChineseJournalofGeophysics(in Chinese), 54(4): 1052-1060, doi:10.3969/j.issn.0001-5733.2011.04.020.
Yang J X, Gao S L, Wang Z L. 2003. Pore pressure characteristics and petroleum migration in the Upper Triassic Formation in the central-southern of the Sichuan Basin.GasExplorationandDevelopment(in Chinese), 26(2): 6-11.
Yao J J, Chen M J, Hua A G, et al. 2003.Formation of the gas reservoirs of the Leshan-Longnvsi Sinianpaleo-uplift in central Sichuan.PetroleumExplorationandDevelopment(in Chinese), 30(4): 7-9.Zeng Q G, Gong C M, Li J L, et al. 2009. Exploration achievements and potential analysis of gas reservoirs in the Xujiahe formation, central Sichuan Basin.NaturalGasIndustry(in Chinese), 29(6): 13-18.Zhu C Q, Xu M, Shan J N, et al. 2009. Quantifying the denudations of major tectonic events in Sichuan basin: Constrained by the paleothermal records.GeologyinChina(in Chinese), 36(6): 1268-1277.
Zhu C Q, Xu M, Yuan Y S, et al. 2010.Palaeogeothermal response and record of the effusing of Emeishan basalts in the Sichuan basin.ChineseScienceBulletin, 55(10): 949-956.
附中文參考文獻
昌倫杰, 趙力彬, 楊學君等. 2014. 應用 ICT 技術研究致密砂巖氣藏儲集層裂縫特征. 新疆石油地質(zhì), 35(4): 471-475.
鄧賓, 劉樹根, 劉順等. 2009. 四川盆地地表剝蝕量恢復及其意義. 成都理工大學學報(自然科學版), 36(6): 675-686.
郭迎春, 龐雄奇, 陳冬霞等. 2012. 川西坳陷中段陸相地層壓力演化及其成藏意義. 石油勘探與開發(fā), 39(4): 426-433.
韓永輝, 吳春生. 1993. 四川盆地地溫梯度及幾個深井的熱流值. 石油與天然氣地質(zhì), 14(1): 80-84.
郝國麗, 柳廣弟, 謝增業(yè)等. 2010. 川中—川南地區(qū)上三疊統(tǒng)須家河組氣藏異常壓力分布及成因. 世界地質(zhì), 29(2): 298-304.
何麗娟, 黃方, 劉瓊穎等. 2014. 四川盆地早古生代構造—熱演化特征. 地球科學與環(huán)境學報, 36(2): 10-17.
黃方, 劉瓊穎, 何麗娟. 2012. 晚喜山期以來四川盆地構造—熱演化模擬. 地球物理學報, 55(11): 3742-3753, doi: 10.6038/j.issn.0001-5733.2012.11.021.
姜振學, 田豐華, 夏淑華. 2007. 砂巖回彈物理模擬實驗. 地質(zhì)學報, 81(2): 244-249.
李士祥, 施澤進, 劉顯陽等. 2013. 鄂爾多斯盆地中生界異常低壓成因定量分析. 石油勘探與開發(fā), 40(5): 528-533.
劉震, 朱文奇, 孫強等. 2012. 中國含油氣盆地地溫—地壓系統(tǒng). 石油學報, 33(1): 1-17.
盧慶治, 胡圣標, 郭彤樓等. 2005. 川東北地區(qū)異常高壓形成的地溫場背景. 地球物理學報, 48(5): 1110-1116, doi:10.3321/j.issn:0001-5733.2005.05.019.
邱楠生, 胡圣標, 何麗娟. 2004. 沉積盆地熱體制研究的理論與應用. 北京: 石油工業(yè)出版社, 240.
邱楠生, 秦建中, McInnes B I A等. 2008. 川東北地區(qū)構造—熱演化探討——來自(U-Th)/He年齡和Ro的約束. 高校地質(zhì)學報, 14(2): 223-230.
田云濤, 朱傳慶, 徐明等. 2011. 晚白堊世以來川東北地區(qū)的剝蝕歷史——多類低溫熱年代學數(shù)據(jù)綜合剖面的制約. 地球物理學報, 54(3): 807-816, doi:10.3969/j.issn.0001-5733.2011.03.021.
王宓君, 包茨, 李懋鈞. 1989. 四川石油志. ∥翟光明. 中國石油地質(zhì)志: 卷十. 北京: 石油工業(yè)出版社, 516.
王瑋, 周祖翼, 郭彤樓等. 2011. 四川盆地古地溫梯度和中-新生代構造熱歷史. 同濟大學學報(自然科學版), 39(4): 606-613.
王震亮, 孫明亮, 張立寬等. 2004. 川西地區(qū)須家河組異常壓力演化與天然氣成藏模式. 地球科學—中國地質(zhì)大學學報, 29(4): 433-439.
魏國齊, 焦貴浩, 楊威等. 2010. 四川盆地震旦系-下古生界天然氣成藏條件與勘探前景. 天然氣工業(yè), 30(12): 5-9.
謝曉黎, 于匯津. 1988. 四川盆地區(qū)域地溫場的特征. 成都地質(zhì)學院學報, 15(4): 110-117.
謝增業(yè), 楊威, 高嘉玉等. 2009. 川中—川南地區(qū)須家河組流體包裹體特征及其成藏指示意義. 礦物巖石地球化學通報, 28(1): 48-52.
徐國盛, 孟昱璋, 趙異華等. 2009. 川中磨溪—龍女寺構造帶嘉陵江組天然氣成藏機理研究. 石油實驗地質(zhì), 31(6): 576-582.
許海龍, 魏國齊, 賈承造等. 2012. 樂山—龍女寺古隆起構造演化及對震旦系成藏的控制. 石油勘探與開發(fā), 39(4): 406-416.
許浩, 張君峰, 湯達禎等. 2012. 鄂爾多斯盆地蘇里格氣田低壓形成的控制因素. 石油勘探與開發(fā), 39(1): 64-68.
徐明, 朱傳慶, 田云濤等. 2011. 四川盆地鉆孔溫度測量及現(xiàn)今地熱特征. 地球物理學報, 54(4): 1052-1060, doi:10.3969/j.issn.0001-5733.2011.04.020.
楊金俠, 高勝利, 王震亮. 2003. 四川盆地中西部上三疊統(tǒng)地層壓力特征與油氣運聚. 天然氣勘探與開發(fā), 26(2): 6-11.
姚建軍, 陳孟晉, 華愛剛等. 2003. 川中樂山—龍女寺古隆起震旦系天然氣成藏條件分析. 石油勘探與開發(fā), 30(4): 7-9.
曾青高, 龔昌明, 李俊良等. 2009. 川中地區(qū)須家河組氣藏勘探成果及潛力分析. 天然氣工業(yè), 29(6): 13-18.
朱傳慶, 徐明, 單競男等. 2009. 利用古溫標恢復四川盆地主要構造運動時期的剝蝕量. 中國地質(zhì), 36(6): 1268-1277.
(本文編輯 胡素芳)
The effect of temperature on the overpressure distribution and formation in the Central Paleo-Uplift of the Sichuan Basin
LIU Yi-Feng1,2, ZHENG Lun-Ju3, QIU Nan-Sheng1,2*, JIA Jing-Kun1,2, CHANG Qing1,2
1StateKeyLaboratoryofPetroleumResourceandProspecting,ChinaUniversityofPetroleum,Beijing102249,China2ResearchCenterforBasinandReservoir,ChinaUniversityofPetroleum,Beijing102249,China3WuxiResearchInstituteofPetroleumGeology,SINOPEC,WuxiJiangsu214151,China
Temperature and pore pressure are two important physical fields in sedimentary basins. Some potential mechanisms of overpressure, such as aquathermal expansion, diagenesis and hydrocarbon generation, are related to temperature. Furthermore, temperature may control evolution and distribution characteristics of overpressure. The Sichuan Basin, located in southwest China, is a typical overpressuring basin. Combining physical simulation results with practical geological condition, the impact of temperature on overpressures in the Central Paleo-Uplift of the Sichuan Basin is analyzed.The measured temperature and pore pressure data, which were obtained from boreholes in different gas fields, were collected to analyze the present relationship between temperature and pressure. Physical simulation experiments were carried out in laboratory to study the temperature-pressure relationship in absolutely sealed condition. The Easy%Romodel for vitrinite reflectance and micro-thermometry of fluid inclusions were applied to reconstruct the maximum paleo-temperatures of various formations for different regions in the Central Paleo-Uplift. Based on the thermal history, the impacts of temperature on overpressures generation through oil cracking and disequilibrium compaction were discussed.Multiple overpressure systems exist vertically in the Central Paleo-Uplift in the Sichuan Basin and the main mechanisms for each overpressure system are different. According to petrophysical properties of overpressuring formations, the Upper Triassic overpressure is mainly generated by disequilibrium compaction and the Cambrian overpressure is mainly caused by gas generation, respectively. For the same overpressuring formation, overpressure is positively correlated with temperature in the lateral direction. The pressure-temperature gradient is 1.075 MPa/℃ for the Cambrian overpressure system and 1.24 MPa/℃ for the Upper Triassic overpressure system. Physical simulation experiment results show that fluid pressure is closely related to temperature in absolutely sealed condition. The pressure-temperature gradient is relatively small in low pressure phase and such relationship is almost linear as pressure is higher than 15 MPa, with gradient value about 1.076 MPa/℃. Formations in the Sichuan Basin have experienced high temperature and the values of Rofor the Cambrian Formation in the Central Paleo-Uplift are higher than 3%. Maximum temperatures reconstructed by Roand fluid inclusions indicate that, before the Later Cretaceous uplift, the Cambrian Formation was 225 ℃ in Moxi-Gaoshiti area and 208 ℃ in Weiyuan area and the Upper Triassic Formation was 158 ℃ in Moxi-Gaoshiti area and 148 ℃ in Bajiaochang area, respectively. Seals in the Sichuan Basin have very low porosity and permeability because of lithological character and intense compaction. Therefore, the overpressure systems could be deemed absolutely sealed. Combining the physical simulation experiments with temperature decrease since the Late Cretaceous, the pressure of the Cambrian Formation decreased 121.6 MPa in Weiyuan area and 91.5 MPa in Moxi-Gaoshiti area, and the pressure of the Upper Triassic Formation decreased 48 MPa in Bajiaochang area and 79 MPa in Moxi-Gaoshiti area. Maturity evolution of organic matter and hydrocarbon generation are mainly controlled by temperature. Oil cracking in the Cambrian reservoirs was mainly occurred during 180~110 Ma, and adjusted in 90 Ma. In this period, the Cambrian overpressure formed gradually. Based on basin modeling, the effect of temperature on disequilibrium compaction overpressure can be negligible. However, the Upper Triassic overpressure must also reach the maximum in 90Ma, because of the deepest burial depth reached in this period.Through this study, we can obtain the following conclusions: (1) Multiple overpressure systems caused by different mechanisms are developed in the Central Paleo-Uplift in the Sichuan Basin and positive correlations between pressure and temperature exist in each pressure systems. (2) When pressure is greater than 15 MPa, it would change 1.076 MPa for a temperature change of 1 ℃ in an absolutely sealed condition. The difference in temperature reduction can be regarded as the primary reason for various intensity of pressure within the Central Paleo-Uplift. Besides that, some degree of lateral transfer and leakage of pressure must occur. (3) Controlled by temperature, the Lower Paleozoic overpressure caused by oil cracking formed during 180~110 Ma and redistributed in 90 Ma. However, the effect of temperature on the Upper Triassic disequilibrium compaction overpressure generation is negligible.
Central Paleo-Uplift; Temperature; Overpressure; Physical modeling
10.6038/cjg20150715.
國家杰出青年基金項目 (41125010),國家“973”項目(2011CB201101) 和國家科技重大專項 (2011ZX05007-002)資助.
劉一鋒,男,1987年出生,博士研究生,主要從事含油氣盆地溫壓場和油氣成藏機理方面的研究. E-mail: liuyf1103@foxmail.com
*通訊作者 邱楠生,男,教授,主要從事沉積盆地熱體制、溫壓場以及油氣成藏機理等方面的研究.E-mail: qiunsh@cup.edu.cn
10.6038/cjg20150715
P314
2015-02-02,2015-05-06收修定稿
劉一鋒, 鄭倫舉, 邱楠生等.川中古隆起超壓分布與形成的地溫場因素.地球物理學報,58(7):2380-2390,
Liu Y F, Zheng L J, Qiu N S, et al. The effect of temperature on the overpressure distribution and formation in the Central Paleo-Uplift of the Sichuan Basin.ChineseJ.Geophys. (in Chinese),58(7):2380-2390,doi:10.6038/cjg20150715.