劉貽燦 王程程 張品剛,2 聶佳珍
LIU YiCan1,WANG ChengCheng1,ZHANG PinGang1,2 and NIE JiaZhen1
1. 中國(guó)科學(xué)院殼幔物質(zhì)與環(huán)境重點(diǎn)實(shí)驗(yàn)室,中國(guó)科學(xué)技術(shù)大學(xué)地球和空間科學(xué)學(xué)院,合肥 230026
2. 安徽省煤田地質(zhì)局勘查研究院,合肥 230088
1. CAS Key Laboratory of Crust-Mantle Materials and Environments,School of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026,China
2. Exploration Institute of Anhui Coalfield Geology Bureau,Hefei 230088,China
2015-03-22 收稿,2015-05-28 改回.
大陸地殼的形成與演化一直是前寒武紀(jì)地質(zhì)學(xué)研究的重點(diǎn)(Windley,1973;Dewey and Windley,1981;Mclennan and Taylor,1982;Jahn et al.,1984;Taylor and McLennan,1985;Rogers and Santosh,2003;Griffin et al.,2004;Zhai,2014)。而大陸地殼的形成,一般歸結(jié)于活動(dòng)大陸邊緣和板內(nèi)兩個(gè)典型的板塊構(gòu)造位置(Rudnick,1995)。其中,板內(nèi)的大陸生長(zhǎng)通常與地幔柱的巖漿板底墊托作用(Magmatic underplating)有關(guān),而板緣的大陸生長(zhǎng)則主要通過(guò)俯沖增生和弧-陸碰撞來(lái)實(shí)現(xiàn)的。而且,匯聚大陸邊緣通常被認(rèn)為是下地殼增生(包括幔源巖漿板底墊托作用和板塊俯沖增生)的主要場(chǎng)所(Weber et al.,2002)。此外,幕式地殼生長(zhǎng)已經(jīng)被越來(lái)越多的研究者所認(rèn)識(shí)(McCulloch and Bennett,1994;Condie,1998),而早前寒武紀(jì)被認(rèn)為是大陸地殼生長(zhǎng)的關(guān)鍵時(shí)期,并且主要集中于幾個(gè)峰期如3.6Ga、2.7Ga、2.5Ga 和1.9 ~1.8Ga 等(McCulloch and Bennett,1994;Condie,1998,2000;Condie et al.,2011)。
麻粒巖包體和麻粒巖地體是透視下地殼形成與演化的重要窗口(Weber et al.,2002)。大多數(shù)麻粒巖被認(rèn)為是在缺乏流體條件下變質(zhì)形成的(Harley,1989;Pattison et al.,2003)。其中,高壓麻粒巖以石榴子石+單斜輝石+斜長(zhǎng)石+石英(變基性巖)和石榴子石+ 藍(lán)晶石+ 鉀長(zhǎng)石+ 石英(變泥質(zhì)巖和長(zhǎng)英質(zhì)巖石)等峰期礦物組合為主要特征(Yardley,1989;O’Brien and R?tzler,2003;Pattison,2003;Kotková and Harley,2010)。而石榴麻粒巖是高壓麻粒巖中一種重要巖石類(lèi)型,代表了高級(jí)的變基性巖,又稱(chēng)高壓基性麻粒巖。但是,高壓石榴麻粒巖不同于榴輝巖的是其礦物組合中含有斜長(zhǎng)石和/或貧硬玉分子的單斜輝石,而中-低壓麻粒巖不同于高壓麻粒巖的主要特征是其礦物組合中常含有斜方輝石,但是高壓麻粒巖在峰期之后減壓過(guò)程中可能會(huì)形成以后成合晶冠狀體形式存在的斜方輝石,表現(xiàn)為低壓麻粒巖相退變質(zhì)作用(Zhao et al.,2001)。高壓麻粒巖出露相當(dāng)廣泛,從古元古代(如華北恒山雜巖;Zhao et al.,2001)到新生代(如喜馬拉雅山脈;Liu and Zhong,1997)的諸多大陸碰撞造山帶中均有報(bào)道。在特定地帶鑒定出高壓麻粒巖有助于增強(qiáng)對(duì)涉及大陸碰撞及有關(guān)下地殼演化過(guò)程的認(rèn)識(shí),而對(duì)高壓麻粒巖相變質(zhì)作用的巖石學(xué)觀察和年代學(xué)測(cè)定對(duì)進(jìn)一步理解變質(zhì)作用和下地殼演化之間的關(guān)系至關(guān)重要。但是,獲得精確的前寒武紀(jì)高壓麻粒巖相變質(zhì)作用的時(shí)代往往比較困難。這種困難主要來(lái)自于后期多階段變質(zhì)作用疊加與改造以及相關(guān)過(guò)程導(dǎo)致的礦物間同位素體系(尤其是Sm-Nd和Rb-Sr)的重置或不平衡,因此影響了人們對(duì)巖石的形成過(guò)程和構(gòu)造背景的認(rèn)識(shí)。然而,鋯石是一種十分常見(jiàn)的難熔礦物,具有很低的Pb 擴(kuò)散速率和很好的保存放射性成因Pb 的能力(Cherniak and Watson,2003),能夠保存多期巖漿和變質(zhì)年齡記錄,特別是對(duì)于涉及復(fù)雜變質(zhì)過(guò)程的高級(jí)變質(zhì)巖來(lái)說(shuō),是U-Pb 定年的理想礦物(Gebauer et al.,1997;Hermann et al.,2001;Rubatto et al.,2001;M?ller et al.,2002;Corfu et al.,2003;Hermann and Rubatto,2003;Liu et al.,2006,2011b),從而為揭示前寒武紀(jì)變質(zhì)基底的形成和演化過(guò)程提供了重要年代學(xué)手段(Griffin et al.,2004;Liu et al.,2009,2013b)。此外,鋯石的Lu-Hf 同位素體系,優(yōu)于U-Pb 同位素體系,具有很強(qiáng)的抗蝕變等有關(guān)地質(zhì)過(guò)程的干擾和影響(Amelin et al.,2000;Cherniak and Watson,2003;Gerdes and Zeh,2009;Zeh et al.,2010),因而保留了初始的Hf 同位素比值并且可以用來(lái)示蹤源區(qū)性質(zhì)和巖石成因(Griffin et al.,2004;Woodhead et al.,2004)。因此,根據(jù)鋯石U-Pb 年齡和Hf 同位素分析數(shù)據(jù)就可以有效地提供可靠的、很詳細(xì)的有關(guān)前寒武紀(jì)地殼形成和變質(zhì)演化過(guò)程的時(shí)代及巖石成因方面信息或制約(Vervoort and Blichert-Toft,1999;Amelin et al.,2000;Griffin et al.,2000,2004;Andersen et al.,2002;Condie et al.,2005;Iizuka et al.,2005;Hawkesworth and Kemp,2006;Wu et al.,2006;Gerdes and Zeh,2009;Kemp et al.,2009;Zeh et al.,2009)。
近三十年來(lái),眾多研究者對(duì)華北陸塊前寒武紀(jì)變質(zhì)地體(或麻粒巖地體)和下地殼包體巖石開(kāi)展了大量的巖石學(xué)、大地構(gòu)造學(xué)、地球化學(xué)和地質(zhì)年代學(xué)等諸方面研究,并在其形成和演化上獲得了一些重要進(jìn)展。其中,Zhao et al. (2000,2005)將華北陸塊變質(zhì)基底劃分為東部陸塊、西部陸塊及分割東、西部陸塊的中部造山帶。而且,東、西部陸塊被認(rèn)為是沿中部造山帶在~1.85Ga 完成克拉通拼合(Zhao et al.,2000,2005;Guo et al.,2002,2005;Wilde et al.,2002;Kr?ner et al.,2005;Wilde and Zhao,2005;Hou et al.,2006;Wan et al.,2006)。拼合完成之后,在1.85 ~1.6Ga 期間,克拉通內(nèi)部和邊緣經(jīng)歷了一系列的伸展和裂解事件(Zhai et al.,2000;Zhai and Liu,2003;Peng et al.,2005,2008;Hou et al.,2006,2008;Lu et al.,2008)。值得注意的是,已報(bào)道的古元古代高壓麻粒巖相變質(zhì)作用主要來(lái)自于中部造山帶(Zhai et al.,1993,2000;Zhao et al.,2000,2001,2005;Guo et al.,2002,2005;Zhai and Liu,2003;Kr?ner et al.,2005),而東部陸塊已在膠東/膠北(劉文軍等,1998;Zhou et al.,2004;Tang et al.,2007;劉平華等,2010,2012;Tam et al.,2011;Li et al.,2012;劉福來(lái)等,2012)、信陽(yáng)(Zheng et al.,2003,2004a,b)和蚌埠-宿州(Liu et al.,2009,2013b)等地區(qū)有陸續(xù)報(bào)道。但是,對(duì)華北陸塊古元古代高壓麻粒巖相變質(zhì)作用的構(gòu)造背景還存在兩種不同的解釋:一種觀點(diǎn)認(rèn)為這些高壓麻粒巖形成于東、西部陸塊拼合(Zhao et al.,2000,2005;Guo et al.,2002,2005;Wilde et al.,2002)或“膠-遼-吉古元古代構(gòu)造帶”(Zhao et al.,2001,2012;Luo et al.,2004;Li and Zhao,2007;Liu et al.,2014a)的碰撞-造山環(huán)境中;另一種觀點(diǎn)則認(rèn)為它們是與哥倫比亞超大陸裂解有關(guān)的、古元古代地幔柱活動(dòng)的產(chǎn)物(Zhai et al.,2000;Zhai and Liu,2003;Zheng et al.,2003;Peng et al.,2005,2008;Liu et al.,2009,2013b)。也許是不同地點(diǎn)或構(gòu)造帶高壓麻粒巖具有不同的成因過(guò)程與機(jī)制。此外,根據(jù)華北陸塊內(nèi)部和北部的麻粒巖包體和變質(zhì)地體巖石研究表明,華北陸塊在前寒武紀(jì)發(fā)生過(guò)幕式地殼生長(zhǎng),主要峰期集中在2.7Ga 和2.5Ga(Jahn et al.,2008;Zheng et al.,2009;Jiang et al.,2010,2013;Diwu et al.,2011;Liu et al.,2011a,2012a,2013a;Wan et al.,2011,2013;Zhai and Santosh,2011;Zhang,2012;Zhang et al.,2012;Zhao and Zhai,2013)。此外,已發(fā)表的Pb 同位素研究結(jié)果(Zhu,1991;涂湘林等,1993;張理剛,1995;張國(guó)輝等,1998;張本仁等,2002)表明,華北陸塊前寒武紀(jì)變質(zhì)基底/下地殼巖石通常具有特征性的低放射成因Pb 同位素組成,一方面指示其形成于古老的太古代(-古元古代?),另一方面明顯區(qū)別于揚(yáng)子/華南前寒武紀(jì)變質(zhì)基底/下地殼巖石的高放射成因Pb 同位素組成。
關(guān)于華北陸塊的形成與演化,雖然受到廣泛關(guān)注并日益引起國(guó)內(nèi)外研究者的興趣,但是大部分研究都集中于華北內(nèi)部、北部和東、西陸塊結(jié)合帶或中部造山帶,而東南緣前寒武紀(jì)地殼的形成與演化方面研究尚顯得較薄弱。華北東南緣霍邱、蚌埠及相鄰地區(qū)出露的變質(zhì)基底(五河雜巖和霍邱雜巖)和深源下地殼包體巖石無(wú)疑為這一研究提供了極好的天然實(shí)驗(yàn)室。
最近的研究結(jié)果顯示,五河雜巖中的變基性巖經(jīng)歷了1.80 ~1.90Ga 的高壓麻粒巖相變質(zhì)作用(Guo and Li,2009;Liu et al.,2009;Wang et al.,2013a)。徐州-宿州一帶中生代閃長(zhǎng)斑巖中深源包體的巖石學(xué)、年代學(xué)和巖石地球化學(xué)研究(Xu et al.,2002,2004,2006,2009;Guo and Li,2009;Liu et al.,2009,2013b;Wang et al.,2012)表明,它們包括前寒武紀(jì)下地殼包體和古生代幔源包體,而下地殼包體大部分形成于2.5 ~2.6Ga 和部分形成于~2.1Ga 并經(jīng)過(guò)~1.8Ga 高壓麻粒巖相變質(zhì)作用,少數(shù)晚太古代下地殼包體還經(jīng)歷了~2.5Ga 或~2.1Ga 麻粒巖相變質(zhì)作用。此外,五河雜巖中變基性巖表現(xiàn)為兩類(lèi)高、低放射成因Pb 同位素組成(Wang et al.,2013a),而高放射成因Pb 同位素成分的成因解釋仍存在爭(zhēng)議(劉貽燦和王安東等,2012;劉貽燦等,2015;Wang et al.,2012)、尚需要更多的證據(jù)和數(shù)據(jù)加以查明。而且,研究區(qū)前寒武紀(jì)變質(zhì)基底和下地殼包體巖石是否都經(jīng)歷了部分熔融作用以及部分熔融與變質(zhì)交代的過(guò)程和期次等是亟待解決的重要科學(xué)問(wèn)題。
為了揭示華北東南緣前寒武紀(jì)下地殼(尤其是變質(zhì)基底)的形成和演化過(guò)程,本文根據(jù)作者等近年來(lái)對(duì)蚌埠地區(qū)出露的五河雜巖和宿州夾溝中生代閃長(zhǎng)斑巖中深源下地殼包體巖石的研究成果和進(jìn)展,結(jié)合已發(fā)表的、來(lái)自鉆孔巖芯或礦區(qū)的有關(guān)霍邱雜巖及相關(guān)巖石的研究成果,系統(tǒng)總結(jié)了華北東南緣前寒武紀(jì)下地殼巖石的高壓麻粒巖相變質(zhì)、部分熔融以及幕式地殼生長(zhǎng)與多期改造方面的證據(jù),并提出了目前存在的相關(guān)科學(xué)問(wèn)題和未來(lái)擬開(kāi)展的研究工作設(shè)想與展望。
華北陸塊是世界上最古老、最大的克拉通地塊之一,保存有>3.6Ga 的古老地殼物質(zhì)(Liu et al.,1992;Zheng et al.,2004a,b;Wu et al.,2008;Zhang et al.,2012)。地質(zhì)位置上,西接早古生代祁連造山帶,北鄰?fù)砉派?三疊紀(jì)天山-內(nèi)蒙-大興安嶺造山帶;在南部,秦嶺-大別-蘇魯造山帶把華北和華南(揚(yáng)子)板塊分開(kāi)(圖1)?;谀甏鷮W(xué)、巖石組合、構(gòu)造演化和P-T-t 軌跡的不同,華北克拉通被劃分為東部陸塊、西部陸塊及夾于其中的中部造山帶(Zhao et al.,2000,2001;Kusky and Li,2003;Zhai and Liu,2003)。本文研究區(qū)位于華北東南緣,距蘇魯造山帶西端的郯-廬斷裂帶以西約100km,距大別造山帶北端大約300km (圖1)。區(qū)內(nèi)變形的新元古代和古生代蓋層,以及前寒武紀(jì)變質(zhì)基底巖石中分布一些中生代閃長(zhǎng)斑巖(如夾溝等)和花崗巖(如荊山、涂山等)。涉及的前寒武紀(jì)變質(zhì)基底主要零星分布于霍邱、蚌埠及相鄰地區(qū),包括“五河雜巖”和“霍邱雜巖”,并且“五河雜巖”常被中生代含石榴子石花崗巖所侵入(圖2a);而中生代閃長(zhǎng)斑巖中含有大量下地殼和地幔包體/捕虜體(Xu et al.,2002,2004,2006;Guo and Li,2009;Liu et al.,2009,2013b;Wang et al.,2012)的徐州-宿州地區(qū)則無(wú)變質(zhì)基底出露。目前,中生代花崗巖類(lèi)已經(jīng)被廣泛深入研究并取得了一些重要進(jìn)展(Xu et al.,2005;徐祥等,2005;楊德彬等,2005,2008;王安東等,2009;Yang et al.,2010;Liu et al.,2012b;Wang et al.,2013b;Li et al.,2014)。其中,懷遠(yuǎn)-鳳陽(yáng)地區(qū)的荊山、涂山和老山等地發(fā)育的含石榴子石花崗巖體已經(jīng)被證明是由華南三疊紀(jì)俯沖陸殼巖石在160Ma 左右發(fā)生部分熔融形成的(Xu et al.,2005;王安東等,2009;Wang et al.,2013b;Li et al.,2014),而另一部分花崗閃長(zhǎng)巖/閃長(zhǎng)斑巖則是由華北加厚鎂鐵質(zhì)下地殼巖石在110 ~130Ma 發(fā)生部分熔融形成的(楊德彬等,2005,2008;Yang et al.,2010;Liu et al.,2012b)。
圖1 華北東南緣五河雜巖及相鄰地區(qū)地質(zhì)簡(jiǎn)圖Fig.1 Simplified geological map of the Wuhe Complex and adjacent parts of the southeastern margin of the North China Block
圖2 華北東南緣前寒武紀(jì)變質(zhì)巖的野外產(chǎn)出形式(據(jù)劉貽燦和王安東,2012)(a)變質(zhì)地體中變基性巖與中生代含石榴花崗巖的侵入接觸關(guān)系;(b)中生代閃長(zhǎng)斑巖中的下地殼包體Fig. 2 Photographs showing the field occurrence of the Precambrian metamorphic rocks at the southeastern margin of the North China Block (after Liu and Wang,2012)
圖3 華北東南緣五河雜巖的野外照片(a)變基性巖的部分熔融與混合巖化作用(據(jù)劉貽燦等,2015);(b)糜棱巖化花崗片麻巖Fig. 3 Photographs showing the field occurrence of the Wuhe complex at the southeastern margin of the North China Block
華北陸塊東南緣前寒武紀(jì)下地殼變質(zhì)巖,以高級(jí)變質(zhì)地體(或麻粒巖地體)和(麻粒巖)捕虜體或包體形式存在(圖2)。變質(zhì)地體/基底主要分布于霍邱和蚌埠地區(qū),包括原“霍邱群”(或霍邱雜巖)及“五河群”和“鳳陽(yáng)群”(或五河雜巖)等。其中,霍邱雜巖主要由白云斜長(zhǎng)片麻巖/TTG 片麻巖、石英巖、云母片巖、大理巖、條帶狀鐵建造(BIF)和斜長(zhǎng)角閃巖等,但地表大多已被第四紀(jì)覆蓋;五河雜巖中主要含有石榴斜長(zhǎng)角閃巖/榴閃巖、石榴麻粒巖、異剝鈣榴巖、石榴斜長(zhǎng)角閃片麻巖與花崗片麻巖/TTG 片麻巖、云母片巖、大理巖和變質(zhì)砂巖等不同類(lèi)型的變質(zhì)巖。五河雜巖與中生代花崗巖類(lèi)的侵入接觸關(guān)系(圖2a)常??梢栽谝巴饴额^上看見(jiàn)。下地殼包體主要產(chǎn)于夾溝(圖2b)、班井和利國(guó)等中生代閃長(zhǎng)斑巖中,巖石類(lèi)型豐富、多樣,主要有含石榴斜長(zhǎng)角閃巖、榴閃巖、石榴角閃石巖、石榴麻粒巖、含石榴角閃斜長(zhǎng)片麻巖和花崗片麻巖等。有限的早期區(qū)調(diào)資料顯示五河雜巖的形成時(shí)代為晚太古代-早元古代(安徽省地質(zhì)局區(qū)域地質(zhì)調(diào)查隊(duì),1979①安徽省地質(zhì)局區(qū)域地質(zhì)調(diào)查隊(duì). 1979. 1∶20 萬(wàn)蚌埠幅區(qū)域地質(zhì)調(diào)查報(bào)告;安徽省地質(zhì)礦產(chǎn)局,1987,1997)。深變質(zhì)的麻粒巖相巖石(麻粒巖相地體)主要出露于蚌埠一帶。也就是說(shuō),研究區(qū)前寒武紀(jì)變質(zhì)基底巖石主要出露于蚌埠及相鄰地區(qū)(即五河雜巖分布區(qū))(圖1),由變質(zhì)的鎂鐵質(zhì)和長(zhǎng)英質(zhì)火成巖以及表殼巖系所組成,并伴生有古元古代片麻狀鉀長(zhǎng)花崗巖和中生代花崗巖類(lèi),因此常被稱(chēng)為“蚌埠隆起”。該區(qū)變質(zhì)基底的主要巖石類(lèi)型有黑云斜長(zhǎng)片麻巖、黑云二長(zhǎng)片麻巖、角閃斜長(zhǎng)片麻巖、石榴斜長(zhǎng)角閃巖、榴閃巖、石榴麻粒巖、灰色TTG 片麻巖、石英/云母片巖類(lèi)、變質(zhì)砂巖、不純大理巖類(lèi)和變形變質(zhì)侵入體(變質(zhì)鉀長(zhǎng)花崗巖)等。
野外調(diào)查表明,五河雜巖中變基性巖(石榴斜長(zhǎng)角閃巖)已發(fā)生明顯部分熔融(這已被巖相學(xué)研究所證實(shí),見(jiàn)后文)、甚至混合巖化作用,表現(xiàn)為強(qiáng)烈的面理化和含有淺色體(leucosome)(圖3a),并有時(shí)呈構(gòu)造透鏡體或巖塊產(chǎn)于不純的大理巖中(劉貽燦等,2015),兩者之間為構(gòu)造接觸關(guān)系,反映了它們?cè)瓗r性質(zhì)的不同以及可能具有不同的形成與演化歷史,它們的原巖分別為基性巖和不純灰?guī)r。而且,不同類(lèi)型的變質(zhì)巖都經(jīng)歷了強(qiáng)烈的構(gòu)造變形、甚至糜棱巖化(劉貽燦等,2015)(圖3b)。
最近,楊曉勇等(2012)認(rèn)為“霍邱群”的最高變質(zhì)相為高角閃巖相;王娟等(2014)根據(jù)蒙城鉆孔中石榴斜長(zhǎng)角閃巖的巖石學(xué)研究,認(rèn)為五河雜巖經(jīng)歷了“高壓角閃巖相變質(zhì)作用(T =671 ~700℃和P =0.82 ~0.95GPa)”。然而,Liu et al. (2009)根據(jù)鳳陽(yáng)一帶石榴斜長(zhǎng)角閃巖以及夾溝變基性巖包體的巖石學(xué)研究,證明它們的峰期變質(zhì)礦物組合為石榴子石+單斜輝石+斜長(zhǎng)石+金紅石+石英等,結(jié)合傳統(tǒng)的礦物對(duì)溫壓計(jì)估算結(jié)果,認(rèn)為它們形成于高壓麻粒巖相變質(zhì)條件下(T=800 ~860℃和P=1.1 ~1.2GPa)。因此,研究區(qū)前寒武紀(jì)變質(zhì)基底巖石的峰期變質(zhì)條件和P-T-t 軌跡方面研究尚顯得不足或缺乏。但是,已有研究結(jié)果表明,至少一部分前寒武紀(jì)變質(zhì)巖經(jīng)歷了高壓麻粒巖相變質(zhì)作用。
五河雜巖中變基性巖的代表性顯微照片,如圖4 所示。石榴斜長(zhǎng)角閃巖主要由石榴子石、斜長(zhǎng)石和角閃石,以及少量單斜輝石、石英、榍石和微量金紅石等礦物組成。石榴子石在成分上是均一的,為鐵鋁榴石-鎂鋁榴石-鈣鋁榴石固溶體,錳含量較低。斜長(zhǎng)石有三種產(chǎn)出形式(Liu et al.,2009):以包裹體形式產(chǎn)于石榴子石中(An =49%);以后成合晶形式與綠色角閃石共生(An =22%);以基質(zhì)形式產(chǎn)出(An =47% ~51%)。富鈦的、棕色角閃石通常以包裹體形式產(chǎn)于斜長(zhǎng)石或基質(zhì)中,TiO2含量高達(dá)3.82%;而產(chǎn)于基質(zhì)中或與斜長(zhǎng)石共生產(chǎn)于后成合晶中的綠角閃石(圖4a)幾乎不含Ti?;|(zhì)中殘留的單斜輝石為透輝石。石榴麻粒巖的主要礦物組合為石榴子石+單斜輝石+斜長(zhǎng)石+石英+Ti-角閃石(金紅石(圖4b),這種礦物組合指示其經(jīng)歷了高壓麻粒巖相變質(zhì)作用(Yardley,1989;O’Brien and R?tzler,2003;Pattison,2003)。榴閃巖主要由石榴子石、角閃石、斜長(zhǎng)石和石英等組成,石榴子石在成分上相對(duì)均一,類(lèi)似于石榴斜長(zhǎng)角閃巖中石榴子石組成;角閃石有兩期,分別為早期的棕色高鈦角閃石和晚期的綠色低鈦角閃石(圖4c,d),這些特征暗示榴閃巖也經(jīng)歷了類(lèi)似的高壓麻粒巖相變質(zhì)作用及后期角閃巖相和綠片巖相變質(zhì)作用疊加(Liu et al.,2009)。
近期的巖石學(xué)研究還表明,鳳陽(yáng)一帶不純大理巖中主要礦物有方解石、石英、單斜輝石、角閃石、榍石、磷灰石、不透明礦物(鈦鐵礦/磁鐵礦),以及少量黑云母、斜長(zhǎng)石和鉀長(zhǎng)石(劉貽燦等,2015)。其中,鉀長(zhǎng)石主要為微斜長(zhǎng)石,而且有些顆粒的核、邊部有熔蝕形成的蠕蟲(chóng)狀石英集合體或者表現(xiàn)為微斜長(zhǎng)石和石英的交生體,說(shuō)明巖石曾經(jīng)歷部分熔融(Zhou et al.,2004)或代表早期熔體的結(jié)晶產(chǎn)物(Vernon and Collins,1988;Holness and Sawyer,2008),因而證明大理巖經(jīng)歷了部分熔融作用(這也與其共生的石榴斜長(zhǎng)角閃巖中發(fā)現(xiàn)有部分熔融證據(jù)相吻合,見(jiàn)后文)。結(jié)合大理巖中1.83 ~1.85Ga 變質(zhì)鋯石區(qū)的石英+單斜輝石+斜長(zhǎng)石+金紅石等礦物包體組合(劉貽燦等待發(fā)表資料),由此證明大理巖類(lèi)似于石榴斜長(zhǎng)角閃巖(Liu et al.,2009)和石榴麻粒巖(Wang et al.,2013a)等變基性巖,同樣經(jīng)歷了古元古代高壓麻粒巖相變質(zhì)作用。
圖4 華北東南緣五河雜巖中變基性巖的顯微照片(據(jù)劉貽燦等,2015)(a)石榴子石中石英包裹體以及斜長(zhǎng)石+角閃石交生體,石榴斜長(zhǎng)角閃巖;(b)石榴子石+單斜輝石+斜長(zhǎng)石,石榴麻粒巖;(c)石榴子石中的斜長(zhǎng)石包體及早期富Ti 角閃石(Hbl1)和晚期角閃石(Hbl2),榴閃巖;(d)早期富Ti 角閃石(Hbl1)和晚期角閃石(Hbl2)以及斜長(zhǎng)石的綠簾石化,石榴斜長(zhǎng)角閃巖. Grt-石榴子石;Cpx-單斜輝石;Rt-金紅石;Ttn-榍石;Hbl-角閃石;Pl-斜長(zhǎng)石;Ilm-鈦鐵礦;Ep-綠簾石Fig.4 Photomicrographs of the meta-basic rocks in the Wuhe complex at the southeastern margin of the North China Block (after Liu et al.,2015)
與不純大理巖共生的石榴斜長(zhǎng)角閃巖的石榴子石中發(fā)現(xiàn)有多相固體包裹體(劉貽燦等,2015),主要由鉀長(zhǎng)石、斜長(zhǎng)石、石英和黑云母的交生體構(gòu)成,表現(xiàn)為“納米花崗巖(nanogranite)”(Cesare et al.,2009;Sawyer et al.,2011;Ferrero et al.,2012;Groppo et al.,2012)。這種位于石榴子石變斑晶核部的“納米花崗巖(nanogranite)”常被解釋為石榴子石在峰期變質(zhì)生長(zhǎng)期間伴隨有部分熔融作用產(chǎn)生的熔體并結(jié)晶形成的(Groppo et al.,2012;Bartoli et al.,2013)。結(jié)合該石榴斜長(zhǎng)角閃巖的峰期變質(zhì)時(shí)代為1.83Ga(Liu et al.,2009),因此,證明了研究區(qū)變質(zhì)基底巖石經(jīng)歷了古元古代部分熔融作用,并且可能接近于峰期高壓麻粒巖相變質(zhì)時(shí)代,至于確切時(shí)代有待于進(jìn)一步限定。但是,古元古代晚期(~1.8Ga)部分熔融作用是否引起混合巖化作用,以及研究區(qū)變質(zhì)基底巖石是否經(jīng)歷了更早期(晚太古代末期)和稍晚的部分熔融與混合巖化作用,尚需要進(jìn)一步巖石學(xué)和年代學(xué)方面研究。如果發(fā)生過(guò)混合巖化作用,必定能找到對(duì)應(yīng)的巖石學(xué)和年代學(xué)證據(jù)即同期的淺色體和暗色體,否則,僅表現(xiàn)為局部的部分熔融作用。結(jié)合野外觀察(圖3a)和前文所述,至少在局部發(fā)生了混合巖化作用,至于混合巖化時(shí)代和過(guò)程即是與~1.8Ga 部分熔融作用有關(guān)、還是與燕山期巖漿作用有關(guān),尚需進(jìn)一步深入研究與限定。
因此,五河雜巖中不同類(lèi)型的變質(zhì)巖,它們大多數(shù)都含有石榴子石、單斜輝石、金紅石、斜長(zhǎng)石和石英等峰期礦物組合,指示形成于高壓麻粒巖相條件下(Liu et al.,2009)。而且,基于巖相學(xué)和礦物之間相互關(guān)系觀察,至少可以區(qū)分出峰期高壓麻粒巖相(石榴子石+斜長(zhǎng)石+單斜輝石+石英+金紅石±富Ti 角閃石)變質(zhì)礦物組合,以及后期角閃巖相(斜長(zhǎng)石+綠角閃石+鈦鐵礦+榍石)和綠片巖相(綠泥石+方解石+ 磁鐵礦)等退變質(zhì)礦物組合(Liu et al.,2009,2013b)(圖4)。礦物組合與初步的溫壓計(jì)算結(jié)果表明,高壓麻粒巖相變質(zhì)階段溫度、壓力分別為800 ~860℃和1.0 ~1.2GPa(Liu et al.,2009),這也與夾溝中生代閃長(zhǎng)斑巖中下地殼包體巖石及其變質(zhì)鋯石的溫壓估算(Liu et al.,2009;Wang et al.,2012)一致。
華北東南緣前寒武紀(jì)變質(zhì)巖經(jīng)歷了復(fù)雜的多階段變質(zhì)演化與改造。除了高壓麻粒巖相、角閃巖相和綠片巖相變質(zhì)作用以及部分熔融和綠簾石化作用外,還遭受了碳酸鹽交代作用、含水熔/流體交代作用和綠泥石化作用等。巖相學(xué)觀察(Liu et al.,2009;劉貽燦等,2015)表明,鳳陽(yáng)一帶與大理巖相共生的石榴斜長(zhǎng)角閃巖經(jīng)歷了多期交代作用,其中:(1)石榴子石中多相礦物包裹體指示了碳酸鹽交代、角閃巖相變質(zhì)和綠泥石化,即石英和方解石位于中心、而邊部有角閃石和綠泥石等蝕變礦物,也就是說(shuō),前者指示早期存在含碳酸鹽的熔體或者近于峰期變質(zhì)之后即發(fā)生含碳酸鹽的熔/流體交代作用,而后者則指示晚期的角閃巖相變質(zhì)和綠泥石蝕變;(2)石榴子石斑晶的裂隙中分布有鉀長(zhǎng)石+石英+斜長(zhǎng)石+角閃石+黑云母等礦物,指示了峰期之后的熔/流體活動(dòng)和交代作用。此外,研究區(qū)異剝鈣榴巖的成因也與鈣質(zhì)交代作用有關(guān)(Coleman,1977;Li et al.,2004;Ferrando et al.,2010)。
很顯然,鳳陽(yáng)一帶石榴斜長(zhǎng)角閃巖在高溫條件下經(jīng)歷了含碳酸鹽的熔/流體交代作用,并且可能發(fā)生在1.83 ~1.85Ga,這為其高放射成因Pb 同位素成分的成因解釋提供了新的重要證據(jù)(劉貽燦等,2015):因?yàn)椴患兇罄韼r與其共生的石榴斜長(zhǎng)角閃巖具有一致的峰期高壓麻粒巖相變質(zhì)時(shí)代、共同經(jīng)歷了古元古代高溫變質(zhì)、部分熔融與含碳酸鹽的熔/流體交代作用,而含碳酸鹽的熔/流體通常具有高的Pb含量和高放射成因Pb 同位素組成(Othman et al.,1989);相比較,那些未發(fā)現(xiàn)含碳酸鹽的熔/流體交代作用的變基性巖則仍顯示華北前寒武紀(jì)變質(zhì)地體或下地殼巖石的低放射成因Pb 成分。這不同于作者等(劉貽燦和王安東,2012;Wang et al.,2012,2013a)的以前解釋即“因?yàn)?.1Ga 大洋俯沖與變質(zhì)作用的強(qiáng)烈影響而造成靠近俯沖帶的下地殼底部巖石發(fā)生Pb 同位素均一化并形成高放射成因Pb 同位素組成”。但是,無(wú)論何種解釋?zhuān)叻派涑梢騊b 同位素成分的成因都與含碳酸鹽的熔/流體交代作用有關(guān)。顯然,仍需要更多的數(shù)據(jù)和證據(jù)加以查證。另外,我們不僅在五河雜巖變質(zhì)巖中觀察到峰期高壓麻粒巖相變質(zhì)及稍后期間的熔/流體活動(dòng),而且在夾溝下地殼包體巖石中也同樣觀察到峰期變質(zhì)之后的熔/流體活動(dòng)與交代作用(Liu et al.,2013b;圖5)。
然而,部分熔融以及多期變質(zhì)交代作用常導(dǎo)致礦物之間的Fe-Mg 交換或重置(Frost and Chacko,1989;Pattison et al.,2003),這為研究區(qū)前寒武紀(jì)變質(zhì)巖的溫度、壓力計(jì)算與確定帶來(lái)了巨大困難和挑戰(zhàn)。而且礦物之間Fe-Mg 交換的封閉溫度(Closure temperature)低于麻粒巖相峰期變質(zhì)溫度(Frost and Chacko,1989;Harley,1989;Spear and Florence,1992;Pattison et al.,2003)。因此,已獲得的高壓麻粒巖相階段的變質(zhì)溫度范圍較大(660 ~894℃)(Liu et al.,2009;Wang et al.,2012,2013a;王娟等,2014),而最高變質(zhì)溫度仍可能代表峰期變質(zhì)溫度的最小估計(jì)值(Davis et al.,2003;Kotková and Harley,2010;Liu et al.,2015)。這也與變基性巖的鋯石學(xué)研究結(jié)果一致(Liu et al.,2009,2013b;Wang et al.,2012,2013a),即已定年的變基性巖中鋯石主要為變質(zhì)鋯石、很少有巖漿鋯石殘留。前人研究也表明,高溫(特別是>900℃)部分熔融作用有可能使難熔的礦物相(如鋯石)完全溶解,因而造成大陸碰撞造山帶和麻粒巖地體高級(jí)變質(zhì)巖(特別是變基性巖)中常很少保留有早期巖漿鋯石、而大多數(shù)表現(xiàn)為近于圓形的變質(zhì)鋯石(Hermann and Rubatto,2003;Klavera et al.,2015)。據(jù)此推斷,研究區(qū)前寒武紀(jì)變質(zhì)基底巖石有可能經(jīng)歷了超高溫變質(zhì)作用。實(shí)際上,宿州夾溝變基性下地殼包體巖石的石榴子石中針狀金紅石出溶體(Liu et al.,2009;圖6)也指示其可能發(fā)生過(guò)超高溫變質(zhì)作用(Gou et al.,2014)。因此,超高溫變質(zhì)作用也許比目前認(rèn)識(shí)的更普遍(Ague et al.,2013),但是,由于大多數(shù)經(jīng)歷過(guò)復(fù)雜變質(zhì)演化的下地殼巖石都遭受了強(qiáng)烈的退變質(zhì)作用和糜棱巖化作用的影響并使早期超高溫條件下形成的礦物(組合)及有關(guān)證據(jù)消失,而不易于被識(shí)別(De Roever et al.,2003)。
圖5 華北東南緣夾溝下地殼包體中石榴斜長(zhǎng)角閃巖的背散射圖像(據(jù)Liu et al.,2013b)鉀長(zhǎng)石和斜長(zhǎng)石沿單斜輝石的裂隙分布. Cpx-單斜輝石;Pl-斜長(zhǎng)石;Hbl-角閃石;Kfs-鉀長(zhǎng)石Fig.5 A back scattered electron (BSE)image of garnetbearing amphibolite from lower-crust xenoliths at Jiagou in the southeastern margin of the North China Block (after Liu et al.,2013b)
正如前文所述,華北陸塊是一個(gè)古老的克拉通并經(jīng)歷了復(fù)雜的演化過(guò)程,為此,我們根據(jù)作者等的最新研究進(jìn)展以及已發(fā)表的有關(guān)華北東南緣前寒武紀(jì)變質(zhì)地體和下地殼包體巖石的鋯石U-Pb 年代學(xué)和Lu-Hf 同位素與Sr-Nd-Pb 同位素分析數(shù)據(jù),探討了華北東南緣前寒武紀(jì)下地殼變質(zhì)巖及相關(guān)巖石的成因和時(shí)代。
五河雜巖和霍邱雜巖以及下地殼包體的巖石類(lèi)型多樣,因而涉及的過(guò)程和巖石成因都很復(fù)雜?,F(xiàn)根據(jù)有限的已發(fā)表資料,對(duì)它們的巖石成因綜述如下。
圖6 華北東南緣夾溝變基性下地殼包體的顯微照片(據(jù)Liu et al.,2009)(a)具有針狀金紅石出溶體的石榴子石含有透輝石及其退變的角閃石包體;(b)具有針狀金紅石出溶體的石榴子石及金紅石退變?yōu)殚鞘?(c)具有針狀金紅石出溶體的石榴子石含有透輝石+石英包體. Grt-石榴子石;Di-透輝石;Rt-金紅石;Hbl-角閃石;Qz-石英;Ttn-榍石Fig.6 Photomicrographs of meta-basic lower-crust xenoliths from Jiagou at the southeastern margin of the North China Block (after Liu et al.,2009)
霍邱雜巖 根據(jù)來(lái)自礦區(qū)和鉆孔含鐵變質(zhì)巖系和有關(guān)巖石樣品的元素和Hf 同位素地球化學(xué)研究(邢鳳鳴和任思明,1984;Wan et al.,2010;楊曉勇等,2012;劉磊和楊曉勇,2013;Wang et al.,2014;Liu and Yang,2015;Liu et al.,2014b)表明,霍邱雜巖包括原巖屬于晚太古代海相-火山沉積型復(fù)理石-碧玉鐵質(zhì)建造以及2.75Ga 和2.56Ga 的兩期花崗巖類(lèi),伴生有古元古代混合巖化花崗巖,而且:(1)霍邱地區(qū)BIF 鐵礦及相關(guān)的斜長(zhǎng)角閃巖和大理巖形成于晚太古代弧后盆地;(2)晚太古代變質(zhì)巖還經(jīng)歷了1.8 ~1.9Ga 構(gòu)造-熱事件和變質(zhì)作用與混合巖化作用,并形成混合巖和高鉀花崗巖;(3)一部分TTG 片麻巖是由2.71 ~2.76Ga 加厚的鎂鐵質(zhì)下地殼巖石發(fā)生部分熔融形成的。但是,霍邱雜巖中不同成因和不同類(lèi)型變質(zhì)巖石的具體變質(zhì)演化過(guò)程、不同階段的P-T 條件(特別是峰期變質(zhì)條件)以及部分熔融與混合巖化作用的期次和時(shí)代等尚缺乏系統(tǒng)研究和限定。
五河雜巖 主要出露于蚌埠、懷遠(yuǎn)、鳳陽(yáng)及五河一帶(圖1)。巖石類(lèi)型主要有含石榴斜長(zhǎng)角閃巖、榴閃巖、石榴麻粒巖、異剝鈣榴巖和片麻巖(石榴斜長(zhǎng)角閃片麻巖、花崗片麻巖/TTG 片麻巖)以及云母片巖、大理巖和變質(zhì)砂巖以及古元古代片麻狀鉀長(zhǎng)花崗巖等。至于其具體的巖石成因,報(bào)道的資料較少。涂蔭玖(1994)根據(jù)微量元素和Sr 同位素研究認(rèn)為,TTG 片麻巖是由斜長(zhǎng)角閃巖在晚太古代(~2.5Ga)發(fā)生部分熔融作用形成的。楊德彬等(2009)根據(jù)鋯石U-Pb 定年以及元素和Hf-Nd 同位素研究,認(rèn)為五河雜巖分布區(qū)出露的片麻狀鉀長(zhǎng)花崗巖是在~2.1Ga 由原始巖漿起源于有少量古老(古元古代-晚太古代)地殼物質(zhì)涉入的新生下地殼的部分熔融形成的,屬于A 型花崗巖,形成于伸展的構(gòu)造背景下。Liu et al. (2013b)根據(jù)石榴斜長(zhǎng)角閃巖的Hf 同位素研究,認(rèn)為該變基性巖的原巖起源于與大洋板塊俯沖有關(guān)的島弧成因。Wang et al. (2013a)根據(jù)石榴麻粒巖和石榴斜長(zhǎng)角閃巖的Sr-Nd-Pb 同位素分析,認(rèn)為它們是形成于~2.5Ga 的鎂鐵質(zhì)下地殼并遭受了1.83 ~1.88Ga 高壓麻粒巖相變質(zhì)作用,而且,這些變基性巖表現(xiàn)為兩類(lèi)高、低放射成因Pb 同位素組成。其中,低放射成因Pb 同位素成分類(lèi)似于典型的華北前寒武紀(jì)下地殼巖石特點(diǎn),而高放射成因Pb 同位素成分與含碳酸鹽的熔/流體交代作用有關(guān)(劉貽燦等,2015)。但是,這些不同類(lèi)型、不同形成時(shí)代的前寒武紀(jì)變質(zhì)巖仍缺乏系統(tǒng)的元素和同位素地球化學(xué)方面研究,至于它們的巖石成因尚需更多的數(shù)據(jù)和證據(jù)給予查明和限定。
下地殼包體 夾溝中生代閃長(zhǎng)斑巖中不同類(lèi)型下地殼包體的變質(zhì)巖石學(xué)、元素和Hf 同位素地球化學(xué)等方面研究(Xu et al.,2006;Wang et al.,2012;Liu et al.,2013b)表明:(1)前寒武紀(jì)變質(zhì)巖主要包括原巖晚太古代(2.5 ~2.6Ga)島弧或弧后成因的基性巖(玄武巖/輝長(zhǎng)巖)和酸性巖石(花崗巖)以及古元古代(~2.1Ga)島弧成因的中酸性巖石(如安山巖等),證明至少在晚太古代(2.5 ~2.6Ga)即存在板塊構(gòu)造作用以及存在2.5 ~2.6Ga 和~2.1Ga 兩期與大洋板塊俯沖有關(guān)的島弧巖漿作用;(2)不同時(shí)代的前寒武紀(jì)變質(zhì)巖分別經(jīng)歷了不同程度的2.48 ~2.49Ga、~2.1Ga 和1.8 ~1.9Ga 麻粒巖相變質(zhì)作用以及390Ma 和176Ma 的變質(zhì)改造。其中,390Ma 和176Ma 分別與古生代(393 ±7Ma)巖漿熱事件和角閃巖相退變質(zhì)作用有關(guān)(Liu et al.,2009,2013b)。而且,不同類(lèi)型前寒武紀(jì)下地殼包體巖石類(lèi)似于前文所述的五河雜巖,也表現(xiàn)為兩類(lèi)高、低放射成因Pb 同位素組成(Xu et al.,2009;Wang et al.,2012;劉貽燦和王安東,2012),其高放射成因Pb 同位素成分同樣與含碳酸鹽的熔/流體交代作用有關(guān)(劉貽燦等,2015),這也與含碳酸鹽的熔/流體交代證據(jù)以及元素地球化學(xué)特點(diǎn)(Liu et al.,2013b,及未發(fā)表資料)相吻合。
因此,華北東南緣前寒武紀(jì)變質(zhì)巖涉及到不同形成時(shí)代和多種成因以及多階段演化與改造,包括2.7 ~2.8Ga 的鎂鐵質(zhì)和中酸性巖漿成因,但是其中主要還是與2.5 ~2.6Ga和~2.1Ga 兩期與大洋板塊俯沖有關(guān)的島弧巖漿作用及弧后盆地火山-沉積作用有關(guān),而且,經(jīng)歷了1.8 ~1.9Ga 高壓麻粒巖相變質(zhì)作用以及390Ma 和176Ma 的變質(zhì)改造或熱事件的影響。研究區(qū)前寒武紀(jì)下地殼巖石中的高放射成因Pb同位素成分的成因可能與含碳酸鹽的熔/流體交代作用有關(guān)。
最早,邢鳳鳴和任思明(1984)根據(jù)含鐵變質(zhì)巖系的Rb-Sr 全巖等時(shí)線(xiàn)年齡,認(rèn)為“霍邱群”的形成時(shí)代為2.75Ga。同時(shí),營(yíng)俊龍等(1984)根據(jù)變質(zhì)巖的鋯石U-Pb 和全巖的Rb-Sr 定年結(jié)果,認(rèn)為“霍邱群”的形成時(shí)代為2.7 ~2.8Ga;而角閃石和黑云母的K-Ar 年齡為~1.75Ga,指示變質(zhì)時(shí)代。之后,涂萌玖(1994)根據(jù)五河雜巖中TTG 片麻巖的單顆粒鋯石逐層蒸發(fā)法獲得的U-Pb 年齡為2.41 ~2.46Ga,并解釋為形成時(shí)代;莊子里、磨盤(pán)山和石門(mén)山一帶變形的變質(zhì)鉀長(zhǎng)花崗巖的形成時(shí)代為~2.1Ga(Guo and Li,2009;楊德彬等,2009),而沿面理分布的白云母的Ar-Ar 年齡為1734 ±3Ma并被解釋為韌性變形時(shí)代(徐祥等,2005);許文良等(2006)根據(jù)蚌埠隆起區(qū)獨(dú)山石榴斜長(zhǎng)輝石巖中鋯石LA-ICPMS UPb 年齡為1833 ±8Ma,認(rèn)為五河雜巖的形成時(shí)代為古元古代;Liu et al. (2009)對(duì)鳳陽(yáng)石榴斜長(zhǎng)角閃巖的鋯石SHRIMP U-Pb 定年和礦物包體研究表明,高壓麻粒巖相變質(zhì)時(shí)代為1839 ±31Ma,然而,其鋯石的Hf 模式年齡為2137 ±31Ma 以及εHf(t)為正值(Liu et al.,2013b)。Wan et al. (2010)根據(jù)鋯石SHRIMP U-Pb 定年結(jié)果,認(rèn)為“霍邱群”的形成時(shí)代為2.75 ~1.84Ga(包括2.75 和2.56Ga 形成的花崗巖類(lèi))并經(jīng)歷了~1.84Ga 的構(gòu)造熱事件和變質(zhì)作用;楊曉勇等(2012)根據(jù)“霍邱群”中斜長(zhǎng)角閃巖的鋯石LA-ICPMS U-Pb定年結(jié)果,認(rèn)為其形成時(shí)代為~2.8Ga;Wang et al.(2014)認(rèn)為霍邱雜巖中存在三期太古代的巖漿事件即~3.02Ga、~2.77Ga 和~2.71Ga,也就是說(shuō)至少包括三種原巖為太古代形成的變質(zhì)火成巖,而且,眼球狀鉀長(zhǎng)花崗巖中3262 ±35Ma(上交點(diǎn)年齡)繼承鋯石可能指示霍邱地區(qū)存在更早期的古太古代結(jié)晶基底。作者等的最新研究表明,五河雜巖中花崗片麻巖的最老原巖形成時(shí)代為2.83Ga。Xu et al. (2004,2006)、Liu et al. (2009,2013b)和Wang et al. (2012)根據(jù)夾溝中生代閃長(zhǎng)斑巖中大量下地殼和地幔包體的巖石學(xué)和鋯石U-Pb 年代學(xué)研究表明,前寒武紀(jì)下地殼包體至少包括形成時(shí)代為2.5 ~2.6Ga 和~2.1Ga 兩類(lèi)并分別經(jīng)歷了2.48~2.49Ga、~2.1Ga 和1.8 ~1.83Ga 麻粒巖相變質(zhì)作用。
圖7 華北東南緣前寒武紀(jì)變質(zhì)巖和花崗巖的鋯石U-Pb年齡累計(jì)曲線(xiàn)統(tǒng)計(jì)數(shù)據(jù)來(lái)自文獻(xiàn)Xu et al. (2006)、Guo and Li (2009)、Liu et al. (2009,2013b,2014b)、Wang et al. (2012,2013a)和楊曉勇等(2012),其中紅色曲線(xiàn)代表巖漿鋯石年齡,黑色曲線(xiàn)代表變質(zhì)鋯石年齡Fig.7 Accumulative curves of zircon U-Pb ages for the Precambrian metamorphic rocks and granites in the southeastern margin of the North China Block
根據(jù)鋯石陰極發(fā)光圖像可以看出,華北東南緣前寒武紀(jì)下地殼包體巖石經(jīng)歷了復(fù)雜的巖漿熱事件和多期變質(zhì)作用,大多數(shù)鋯石顯示核-幔-邊結(jié)構(gòu),包括典型的巖漿鋯石核和具有石榴子石+單斜輝石+金紅石+斜長(zhǎng)石等高壓麻粒巖相礦物組合的1.8 ~1.9Ga 變質(zhì)鋯石(Liu et al.,2009,2013b)以及具有高的(>800℃)Ti 溫度的2.48 ~2.49Ga 麻粒巖相變質(zhì)鋯石(Wang et al.,2012)。綜合不同類(lèi)型前寒武紀(jì)變質(zhì)巖和花崗巖的鋯石U-Pb 年齡結(jié)果統(tǒng)計(jì)顯示(圖7),研究區(qū)前寒武紀(jì)下地殼經(jīng)歷了多期構(gòu)造-熱事件和多階段變質(zhì)演化,至少包括2.7 ~2.8Ga、2.5 ~2.6Ga、2.1Ga、1.92Ga、1.82Ga 的巖漿熱事件以及2.5Ga、2.1Ga、1.84Ga、390Ma 和176Ma 的變質(zhì)事件。其中,強(qiáng)烈的1.83 ~1.85Ga 高壓麻粒巖相變質(zhì)作用可能是由于~1.9Ga 幔源巖漿底侵于下地殼底部而導(dǎo)致大規(guī)模地殼加熱和增厚引起的,這也與該時(shí)期華北克拉通存在廣泛的伸展、裂解(rifting)以及相關(guān)的鎂鐵質(zhì)巖漿侵位等相吻合(Zhai et al.,2000;Hou et al.,2006,2008;Peng et al.,2008;Liu et al.,2009,2013b)。至于該期麻粒巖相變質(zhì)作用是否與古元古代碰撞造山作用有關(guān)(Zhao et al.,2001,2012;Luo et al.,2004;Li and Zhao,2007;Zhao and Zhai,2013),還有待于詳細(xì)的巖石學(xué)和P-T軌跡研究而給予查明。但是,無(wú)論何種成因機(jī)制,也許正是由于1.83 ~1.85Ga 高溫(-超高溫?)高壓麻粒巖相變質(zhì)作用,引起部分熔融和混合巖化作用(圖3a;及前文所述),并形成了~1.82Ga 的花崗巖(Liu et al.,2014b)。
圖8 華北陸塊東南緣前寒武紀(jì)下地殼巖石的鋯石SHRIMP U-Pb 年齡和εHf(t)值(據(jù)Liu et al.,2013b)DM 和CHUR 分別代表虧損地幔和球粒隕石. 實(shí)心和空心符號(hào)分別代表不同樣品所對(duì)應(yīng)的原巖和變質(zhì)時(shí)代的εHf(t)值Fig.8 The relationship between SHRIMP U-Pb ages and εHf(t)values for the igneous core and metamorphic rim of zircons as identified by the cathodoluminescene (CL)images for the Precambrian lower-crustal rocks from the southeastern margin of the North China Block (after Liu et al.,2013b)
鋯石的U-Pb 年齡和Hf 同位素分析統(tǒng)計(jì)結(jié)果(圖8)表明,研究區(qū)前寒武紀(jì)下地殼經(jīng)歷了2.5Ga 和2.1Ga 的巖漿-熱事件。鑒于這兩期巖漿鋯石的εHf(t)值中有明顯的正值(+ 5 ~ + 12)以及Hf 模式年齡分別為2.7 ~2.8Ga 和~2.5Ga,反映它們的原巖來(lái)自于新生地殼,結(jié)合其原巖性質(zhì)和地球化學(xué)特點(diǎn),指示它們的巖石成因與兩期俯沖增生事件有關(guān),而且大多數(shù)都經(jīng)歷了1.83 ~1.85Ga 高壓麻粒巖相變質(zhì)作用(Liu et al.,2009,2013b)。因此,前寒武紀(jì)下地殼的形成時(shí)間≥2.1Ga,而1.8 ~1.9Ga 代表了一期垂向地殼增生時(shí)間,可能與哥倫比亞超大陸裂解引起的地幔柱活動(dòng)有關(guān)(Liu et al.,2009,2013b;Zhai and Santosh,2011)。此外,夾溝下地殼包體中2.7 ~2.8Ga 的繼承鋯石U-Pb 年齡(Wang et al.,2012;Liu et al.,2013b)、霍邱BIF 鐵礦建造中2.7 ~2.9Ga 的碎屑鋯石年齡(Liu and Yang,2015)以及來(lái)自霍邱雜巖中有形成時(shí)代為2.7 ~2.8Ga、鋯石Hf 模式年齡為~3.0Ga 和εHf(t)值中有+4 ~+6 的斜長(zhǎng)角閃巖(Wan et al.,2010;楊曉勇等,2012)和石榴黑云斜長(zhǎng)片麻巖(Wang et al.,2014),而且,霍邱雜巖中還存在原巖形成時(shí)代為2.7 ~2.8Ga 的變質(zhì)花崗巖類(lèi)巖石(Wan et al.,2010;Wang et al.,2014),結(jié)合作者等近期獲得的五河雜巖中花崗片麻巖鋯石U-Pb 年齡(形成時(shí)代為2.83Ga),因此,這些資料都暗示研究區(qū)還存在2.7 ~2.8Ga 的地殼生長(zhǎng)時(shí)期,這也是前人認(rèn)為的華北陸塊重要地殼生長(zhǎng)時(shí)期(見(jiàn)前文)。因此,華北東南緣前寒武紀(jì)下地殼經(jīng)歷了幕式地殼生長(zhǎng)(劉貽燦和王安東,2012;Liu et al.,2013b),這可能與其早前寒武紀(jì)一直位于華北陸塊的邊緣有關(guān)。
華北陸塊東南緣前寒武紀(jì)下地殼的形成與變質(zhì)演化過(guò)程方面的研究,尚存在一些分歧與問(wèn)題,有待于進(jìn)一步解決或查明的一些關(guān)鍵科學(xué)問(wèn)題列舉如下:
(1)前寒武紀(jì)變質(zhì)基底巖石的深熔/部分熔融作用期次及其時(shí)代與地球化學(xué)和巖石學(xué)效應(yīng)?
盡管已發(fā)現(xiàn)前寒武紀(jì)變質(zhì)基底巖石中存在部分熔融作用的巖相學(xué)證據(jù),但是,部分熔融的發(fā)生時(shí)代和條件以及效應(yīng)方面,尚需要鋯石學(xué)、變質(zhì)巖石學(xué)和地球化學(xué)等方面的綜合研究與查明。而且,如果發(fā)生了部分熔融作用,往往在鋯石上都有不同程度的記錄和表現(xiàn)(包括年齡、陰極發(fā)光圖像和微量元素等)(如,劉福來(lái)等,2012)。
(2)不同地點(diǎn)花崗片麻巖或TTG 片麻巖是否具有相同的時(shí)代和成因以及它們與古元古代片麻狀鉀長(zhǎng)花崗巖的成因聯(lián)系又如何?
TTG(Tonalite-Trondhjemite-Granodiorite)片麻巖是前寒武紀(jì)變質(zhì)地體或下地殼包體中常見(jiàn)的巖石類(lèi)型,通常被認(rèn)為是由玄武質(zhì)下地殼巖石部分熔融形成的(Reichardt and Weinberg,2012,及所引參考文獻(xiàn))。蚌埠、鳳陽(yáng)及五河一帶零星出露有不同類(lèi)型的TTG 片麻巖,那么,這些不同地點(diǎn)片麻巖是否都是晚太古代形成、還是古元古代形成的?如果有不同形成時(shí)代的花崗片麻巖(原巖為花崗巖類(lèi)),結(jié)合巖石學(xué)研究,將有助于確定部分熔融作用的期次與條件,進(jìn)而查明這些花崗片麻巖與古元古代片麻狀鉀長(zhǎng)花崗巖(圖1)的成因聯(lián)系。
(3)華北東南緣古元古代高壓麻粒巖相變質(zhì)作用的地球動(dòng)力學(xué)背景?以及前寒武紀(jì)下地殼巖石是否發(fā)生過(guò)超高溫變質(zhì)作用?
華北東南緣古元古代高壓麻粒巖相變質(zhì)作用的地球動(dòng)力學(xué)背景,也就是說(shuō)是與大陸裂解引起的幔源巖漿作用有關(guān)、還是與碰撞造山有關(guān),需要深入的變質(zhì)巖石學(xué)方面研究而予以查明。該問(wèn)題的探明,將有助于問(wèn)題(6)的解決。此外,根據(jù)前寒武紀(jì)下地殼捕虜體巖石中發(fā)現(xiàn)的石榴子石中針狀金紅石出溶體以及變基性巖中變質(zhì)鋯石特點(diǎn)以及不同類(lèi)型巖石中存在的部分熔融與混合巖化證據(jù)(圖3a)(劉貽燦等,2015)等(見(jiàn)前文),推斷研究區(qū)發(fā)生過(guò)超高溫變質(zhì)作用,但是,仍需要更多的巖石學(xué)證據(jù)(特別是尋找典型的超高溫礦物組合)和P-T 條件等方面來(lái)限定。
(4)霍邱雜巖的最高變質(zhì)作用是高壓麻粒巖相、還是高角閃巖相?以及變質(zhì)演化過(guò)程?
霍邱雜巖的變質(zhì)巖石學(xué)方面研究,目前還很少有文章涉及,尚需進(jìn)一步深入研究與探討,以查明其峰期變質(zhì)條件與最高變質(zhì)作用及P-T-t 軌跡。
(5)五河雜巖的巖石組成和確切形成時(shí)代及其形成和演化過(guò)程?
正如前文所述,五河雜巖的巖石類(lèi)型比較復(fù)雜,除了大量變基性巖外,還存在TTG 花崗片麻巖和大理巖等變質(zhì)表殼巖系,那么,它們的形成時(shí)代以及變質(zhì)演化過(guò)程(包括P-T-t軌跡),都是前期未解決的科學(xué)問(wèn)題。
(6)霍邱雜巖和五河雜巖與膠-遼-吉古元古代構(gòu)造帶的關(guān)系如何?
霍邱雜巖和五河雜巖是否屬于“膠-遼-吉古元古代構(gòu)造帶”(Zhao et al.,2001,2012;Luo et al.,2004;Li and Zhao,2007;Zhao and Zhai,2013;Liu et al.,2014a),主要還是取決于霍邱雜巖和五河雜巖的變質(zhì)P-T-t 軌跡的構(gòu)建以及不同變質(zhì)巖的原巖性質(zhì)和成因的查明。其中,關(guān)鍵是查明二者是否具有類(lèi)似的P-T-t 軌跡,以及華北東南緣前寒武紀(jì)變質(zhì)巖是否經(jīng)歷了古元古代高壓麻粒巖相峰期變質(zhì)之后的等溫減壓過(guò)程。
上述問(wèn)題的存在,顯然與該區(qū)研究程度較低有關(guān),它們的進(jìn)一步系統(tǒng)研究與解決,除了涉及前寒武紀(jì)下地殼變質(zhì)巖的原巖性質(zhì)、巖石成因與具體變質(zhì)演化過(guò)程的確定外,還將有助于查明研究區(qū)板塊構(gòu)造作用的最早發(fā)生時(shí)代與特點(diǎn)。因此,為了更好地理解華北陸塊東南緣前寒武紀(jì)下地殼的形成和演化過(guò)程,以及前寒武紀(jì)變質(zhì)作用和部分熔融過(guò)程中的元素和同位素行為,擬開(kāi)展變質(zhì)巖石學(xué)、巖石地球化學(xué)和同位素年代學(xué)等方面綜合研究。在巖石學(xué)研究方面,除了采用常規(guī)的方法外,還需要應(yīng)用現(xiàn)代巖石學(xué)分析方法,包括相平衡和P-T 視剖面圖(P-T pseudosection)以及鋯石中Ti 和金紅石中Zr 溫度計(jì)等方法來(lái)限定不同變質(zhì)階段的P-T 條件;在年代學(xué)方面,因前寒武紀(jì)變質(zhì)巖的多階段演化與多期改造的復(fù)雜性,重點(diǎn)需要加強(qiáng)鋯石學(xué)及U-Pb 年代學(xué)方面研究,對(duì)于不同成因、不同階段形成的變質(zhì)鋯石以及與部分熔融作用有關(guān)的鋯石,還需要結(jié)合其中礦物包裹體成分以及鋯石微量元素分析來(lái)幫助查明巖石的年代學(xué)意義;在元素和同位素地球化學(xué)方面,除了常規(guī)的元素分析外,還需要開(kāi)展Sr-Nd-Pb-Hf-Mg-Fe 等同位素分析,以便聯(lián)合示蹤與查明巖石成因以及不同變質(zhì)條件下的元素和同位素行為。
致謝 感謝兩位匿名審稿人提出的建設(shè)性修改意見(jiàn)!
Ague JJ,Eckert JO Jr,Chu X,Baxter EF and Chamberlain CP. 2013.Discovery of ultrahigh-temperature metamorphism in the Acadian orogen,Connecticut,USA. Geology,41(2):271 -274
Amelin Y,Lee DC and Halliday AN. 2000. Early-Middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochimica et Cosmochimica Acta,64(24):4205 -4225
Andersen T,Griffin WL and Pearson NJ. 2002. Crustal evolution in the SW part of the Baltic Shield:The Hf isotope evidence. Journal of Petrology,43(9):1725 -1747
Bartoli O,Tajcˇmanová L,Cesare B and Acosta-Vigil A. 2013. Phase equilibria constraints on melting of stromatic migmatites from Ronda(S. Spain):Insights on the formation of peritectic garnet. Journal of Metamorphic Geology,31(7):775 -789
Bureau of Geology and Mineral Resources of Anhui Province. 1987.Regional Geology of Anhui Province. Beijing:Geological Publishing House,1 -721 (in Chinese)
Bureau of Geology and Mineral Resources of Anhui Province. 1997.Stratigraphy (Lithostratic) of Anhui Province. Wuhan:China University of Geosciences Press,1 -271 (in Chinese)
Cesare B,F(xiàn)errero S,Salvioli-Mariani E,Pedron D and Cavallo A. 2009.“Nanogranite” and glassy inclusions: The anatectic melt in migmatites and granulites. Geology,37(7):627 -630
Cherniak DJ and Watson EB. 2003. Diffusion in zircon. Reviews in Mineralogy and Geochemistry,53(1):113 -143
Coleman RG. 1977. Ophiolites, Minerals and Rocks. Berlin/Heidelberg,Germany:Springer-Verlag
Condie KC. 1998. Episodic continental growth and supercontinents:A mantle avalanche connection?Earth and Planetary Science Letters,163(1 -4):97 -108
Condie KC. 2000. Episodic continental growth models:After thoughts and extensions. Tectonophysics,322(1 -2):153 -162
Condie KC,Beyer EE,Belousova E,Griffin WL and O’Reillyal SY.2005. U-Pb isotopic ages and Hf isotopic composition of single zircons:The search for juvenile Precambrian continental crust.Precambrian Research,139(1):42 -100
Condie KC,Bickford ME,Aster RC,Belousova E and Scholl DW.2011. Episodic zircon ages,Hf isotopic composition,and the preservation rate of continental crust. Geological Society of America Bulletin,123(5 -6):951 -957
Corfu G,Hancher JM,Hoskin PWO and Kinny P. 2003. Altas of zircon textures. Reviews in Mineralogy and Geochemistry,53(1):469-500
Davis WJ,Canil D,MacKenzie JM and Carbno GB. 2003. Petrology and U-Pb geochronology of lower crustal xenoliths and the development of a craton,Slave Province,Canada. Lithos,71(2 -4):541 -573
De Roever EWF,Lafon JM,Delor C,Cocherie A,Rossi P,Guerrrot C and Potrel A. 2003. The Bakhuis ultrahigh-temperature granulite belt (Suriname):I. Petrological and geochronological evidence for a counterclockwise P-T path at 2. 07 ~2. 05Ga. Géollogie de la France,2-3-4:175 -205
Dewey JF and Windley BF. 1981. Growth and differentiation of the continental crust. Philosophical Transactions of the Royal Society of London,Series A,301(1461):189 -206
Diwu CR,Sun Y,Guo AL,Wang HL and Liu XM. 2011. Crustal growth in the North China Craton at ~2.5Ga:Evidence from in situ zircon U-Pb ages,Hf isotopes and whole-rock geochemistry of the Dengfeng complex. Gondwana Research,20(1):149 -170
Ferrando S,F(xiàn)rezzotti ML,Orione P,Conte RC and Compagnoni R.2010. Late-Alpine rodingitization in the Bellecombe meta-ophiolites(Aosta Valley,Italian Western Alps):Evidence from mineral assemblages and serpentinization-derived H2-bearing brine.International Geology Review,52(10 -12):1220 -1243
Ferrero S,Bartoli O,Cesare B,Salviol-Mariani E,Acosta-Vigil A,Cavallo A,Groppo C and Battiston S. 2012. Microstructures of melt inclusions in anatectic metasedimentary rocks. Journal of Metamorphic Geology,30(3):303 -322
Frost BR and Chacko T. 1989. The granulite uncertainty principle:Limitations on thermobarometry in granulites. The Journal of Geology,97(4):435 -450
Gebauer D,Schertl HP,Brix M and Schreyer W. 1997. 35Ma old ultrahigh-pressure metamorphism and evidence for very rapid exhumation in the Dora Maira Massif,Western Alps. Lithos,41(1-3):5 -24
Gerdes A and Zeh A. 2009. Zircon formation versus zircon alteration:New insights from combined U-Pb and Lu-Hf in-situ LA-ICP-MS analyses,and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chemical Geology,261(3 -4):230 -243
Gou LL,Zhang CL,Zhang LF and Wang Q. 2014. Precipitation of rutile needles in garnet from sillimanite-bearing pelitic granulite from the Khondalite Belt,North China Craton. Chinese Science Bulletin,59(32):4359 -4366
Griffin WL,Peason NJ,Belousova E,Jackson SE,van Achterbergh E,O’Reilly SY and Shee SR. 2000. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta,64(1):133 -147
Griffin WL,Belousova EA,Shee SR,Pearson NJ and O’Reilly SY.2004. Archean crustal evolution in the northern Yilgarn Craton:UPb and Hf-isotope evidence from detrital zircons. Precambrian Research,131(3 -4):231 -282
Groppo C,Rolfo F and Indares A. 2012. Partial melting in the Higher Himalayan Crystallines of Eastern Nepal:The effect of decompression and implications for the‘channel flow’model. Journal of Petrology,53(5):1057 -1088
Guo JH,O’Brien PJ and Zhai MG. 2002. High-pressure granulites in the Sanggan area,North China Craton:Metamorphic evolution,P-T paths and geotectonic significance. Journal of Metamorphic Geology,20(8):741 -756
Guo JH,Sun M,Chen FK and Zhai MG. 2005. Sm-Nd and SHRIMP UPb zircon geochronology of high-pressure granulites in the Sanggan area,North China Craton:Timing of Paleoproterozoic continental collision. Journal of Asian Earth Sciences,24(5):629 -642
Guo SS and Li SG. 2009. SHRIMP zircon U-Pb ages for the Paleoproterozoic metamorphic-magmatic events in the southeast margin of the North China Craton. Science in China (Series D),52(8):1039 -1045
Harley SL. 1989. The origins of granulites:A metamorphic perspective.Geological Magazine,126(3):215 -247
Hawkesworth CJ and Kemp AIS. 2006. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution.Chemical Geology,226(3 -4):144 -162
Hermann J,Rubatto D,Korsakov A and Shatsky VS. 2001. Multiple zircon growth during fast exhumation of diamondiferous,deeply subducted continental crust (Kokchetav massif,Kazakhstan).Contributions to Mineralogy and Petrology,141(1):66 -82
Hermann J and Rubatto D. 2003. Relating zircon and monazite domains to garnet growth zones:Age and duration of granulite facies metamorphism in the Val Malenco lower crust. Journal of Metamorphic Geology,21(9):833 -852
Holness MB and Sawyer EW. 2008. On the pseudomorphing of melt-filled pores during the crystallization of migmatites. Journal of Petrology,49(7):1343 -1363
Hou GT,Liu YL and Li JH. 2006. Evidence for 1.8Ga extension of the Eastern Block of the North China Craton from SHRIMP U-Pb dating of mafic dyke swarms in Shandong Province. Journal of Asian Earth Sciences,27(4):392 -401
Hou GT,Li JH,Yang MH,Yao WH,Wang CC and Wang YX. 2008.Geochemical constraints on the tectonic environment of the Late Paleoproterozoic mafic dyke swarms in the North China Craton.Gondwana Research,13(1):103 -116
Iizuka T,Hirata T,Komiya T,Rino S,Katayama I,Motoki A and Maruyama S. 2005. U-Pb and Lu-Hf isotope systematics of zircons from the Mississippi River sand:Implications for reworking and growth of continental crust. Geology,33(6):485 -488
Jahn BM,Vidal P and Kr?ner A. 1984. Multi-chronometric ages and origin of Archaean tonalitic gneisses in Finnish Lapland:A case for long crustal residence time. Contributions to Mineralogy and Petrology,86(4):398 -408
Jahn BM,Liu DY,Wan YS,Song B and Wu JS. 2008. Archean crustal evolution of the Jiaodong Peninsula,China,as revealed by zircon SHRIMP geochronology,elemental and Nd-isotope geochemistry.American Journal of Science,308(3):232 -269
Jiang N,Guo JH,Zhai MG and Zhang SQ. 2010. ~2.7Ga crust growth in the North China craton. Precambrian Research,179(1 -4):37-49
Jiang N,Guo JH and Chang GH. 2013. Nature and evolution of the lower crust in the eastern North China craton:A review. Earth-Science Reviews,122:1 -9
Kemp AIS,F(xiàn)oster GL,Scherstén A,Whitehouse MJ,Darling J and Storey C. 2009. Concurrent Pb-Hf isotope analysis of zircon by laser ablation multi-collector ICP-MS,with implications for the crustal evolution of Greenland and the Himalayas. Chemical Geology,261(3 -4):244 -260
Klavera M,De Roever EWF,Nanne JAM,Mason PRD and Davies GR.2015. Charnockites and UHT metamorphism in the Bakhuis Granulite Belt,western Suriname:Evidence for two separate UHT events. Precambrian Research,262:1 -19
Kotková J and Harley SL. 2010. Anatexis during high-pressure crustal metamorphism:Evidence from garnet-whole-rock REE relationships and zircon-rutile Ti-Zr thermometry in leucogranulites from the Bohemian Massif. Journal of Petrology,51(10):1967 -2001
Kr?ner A,Wilde SA,Li JH and Wang KY. 2005. Age and evolution of a Late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. Journal of Asian Earth Sciences,24(5):577 -595
Kusky TM and Li JH. 2003. Paleoproterozoic tectonic evolution of the North China Craton. Journal of Asian Earth Sciences,22(4):383-397
Li SG,Wang SJ,Guo SS,Xiao YL,Liu YC,Liu SA,He YS and Liu JL. 2014. Geochronology and geochemistry of leucogranites from the southeast margin of the North China Block:Origin and migration.Gondwana Research,26(3 -4):1111 -1128
Li SZ and Zhao GC. 2007. SHRIMP U-Pb zircon geochronology of the Liaoji granitoids:Constraints on the evolution of the Paleoproterozoic Jiao-Liao-Ji belt in the Eastern Block of the North China Craton.Precambrian Research,158(1 -2):1 -16
Li SZ,Zhao GC,Santosh M,Liu X,Dai LM,Suo YH,Song MC and Wang PC. 2012. Paleoproterozoic structural evolution of the southern segment of the Jiao-Liao-Ji Belt,North China Craton. Precambrian Research,200 -203:59 -73
Li XP,Rahn M and Bucher K. 2004. Metamorphic processes in rodingites of the Zermatt-Saas ophiolites. International Geology Review,46(1):28 -51
Liu DY,Nutman AP,Compston W,Wu JS and Shen QH. 1992.Remnants of 3800Ma crust in the Chinese part of the Sino-Korean craton. Geology,20(4):339 -342
Liu F,Guo JH,Peng P and Qian Q. 2012a. Zircon U-Pb ages and geochemistry of the Huai’an TTG gneisses terrane:Petrogenesis and implications for ~2.5Ga crustal growth in the North China Craton.Precambrian Research,212 -213:225 -244
Liu FL,Gerdes A,Liou JG,Xue HM and Liang FH. 2006. SHRIMP UPb zircon dating from Sulu-Dabie dolomitic marble,eastern China:Constraints on prograde, ultrahigh-pressure and retrograde metamorphic ages. Journal of Metamorphic Geology,24(7):569-589
Liu FL,Liu PH,Ding ZJ,Liu JH,Yang H and Hu WH. 2012. Genetic mechanism of granitic leucosome within high-pressure granulite from the Early Precambrian metamorphic basement of Shandong Peninsula,SE North China Craton. Acta Petrologica Sinica,28(9):2686 -2696 (in Chinese with English abstract)
Liu FL,Wang F,Liou JG,Meng E,Liu JH,Yang H,Xiao LL,Cai J and Shi JR. 2014a. Mid-Late Triassic metamorphic event for Changhai meta-sedimentary rocks from the SE Jiao-Liao-Ji Belt,North China Craton:Evidence from monazite U-Th-Pb and muscovite Ar-Ar dating. Journal of Asian Earth Sciences,94:205 -225
Liu JH,Liu FL,Ding ZJ,Liu CH,Yang H,Liu PH,Wang F and Meng E. 2013a. The growth,reworking and metamorphism of Early Precambrian crust in the Jiaobei terrane,the North China Craton:Constraints from U-Th-Pb and Lu-Hf isotopic systematics,and REE concentrations of zircon from Archean granitoid gneisses.Precambrian Research,224:287 -303
Liu L and Yang XY. 2013. Geochemical characteristics of the Huoqiu BIF ore deposit in Anhui Province and their metallogenic significance:Taking the Bantaizi and Zhouyoufang deposits as examples. Acta Petrologica Sinica,29 (7):2551 - 2566 (in Chinese with English abstract)
Liu L,Yang XY,Santosh M and Aulbach S. 2014b. Neoarchean to Paleoproterozoic continental growth in the southeastern margin of the North China Craton:Geochemical,zircon U-Pb and Hf isotope evidence from the Huoqiu complex. Gondwana Research,doi:10.1016/j.gr.2014.08.011
Liu L and Yang XY. 2015. Temporal,environmental and tectonic significance of the Huoqiu BIF,southeastern North China Craton:Geochemical and geochronological constraints. Precambrian Research,261:217 -233
Liu PH,Liu FL,Wang F and Liu JH. 2010. Genetic mineralogy and metamorphic evolution of mafic high-pressure (HP)granulites from the Shandong Peninsula,China. Acta Petrologica Sinica,26(7):2039 -2056 (in Chinese with English abstract)
Liu PH,Liu FL,Wang F,Liu JH,Yang H and Shi JR. 2012.Geochemical characteristics and genesis of the high-pressure mafic granulite in the Jiaobei high-grade metamorphic basement,eastern Shandong,China. Acta Petrologica Sinica,28(9):2705 - 2720(in Chinese with English abstract)
Liu SA,Li SG,Guo SS,Hou ZH and He YS. 2012b. The Cretaceous adakitic-basaltic-granitic magma sequence on south-eastern margin of the North China Craton:Implications for lithospheric thinning mechanism. Lithos,134 -135:163 -178
Liu SW,Santosh M,Wang W,Bai X and Yang PT. 2011a. Zircon U-Pb chronology of the Jianping Complex:Implications for the Precambrian crustal evolution history of the northern margin of North China Craton. Gondwana Research,20(1):48 -63
Liu WJ,Zhai MG and Li YG. 1998. Metamorphism of the high-pressure basic granulites in Laixi,eastern Shandong,China. Acta Petrologica Sinica,14(4):449 -459 (in Chinese with English abstract)
Liu Y and Zhong D. 1997. Petrology of high-pressure granulites from the eastern Himalayan syntaxis. Journal of Metamorphic Geology,15(4):451 -466
Liu YC,Wang AD,Rolfo F,Groppo C,Gu XF and Song B. 2009.Geochronological and petrological constraints on Palaeoproterozoic granulite facies metamorphism in southeastern margin of the North China Craton. Journal of Metamorphic Geology,27(2):125 -138
Liu YC,Gu XF,Li SG,Hou ZH and Song B. 2011b. Multistage metamorphic events in granulitized eclogites from the North Dabie complex zone,central China:Evidence from zircon U-Pb age,trace element and mineral inclusion. Lithos,122(1 -2):107 -121
Liu YC and Wang AD. 2012. Episodic growth and multiple modification of Precambrian lower crust in the southeastern margin of the North China China Craton:Petrologic,geochronological and Hf-isotope evidences. Journal of Earth Sciences and Environment,34(4):1 -11 (in Chinese with English abstract)
Liu YC,Wang AD,Li SG,Rolfo F,Li Y,Groppo C,Gu XF and Hou ZH. 2013b. Composition and geochronology of the deep-seated xenoliths from the southeastern margin of the North China Craton.Gondwana Research,23(3):1021 -1039
Liu YC,Deng LP,Gu XF,Groppo C and Rolfo F. 2015. Application of Ti-in-zircon and Zr-in-rutile thermometers to constrain hightemperature metamorphism in eclogites from the Dabie orogen,central China. Gondwana Research,27(1):410 -423
Liu YC,Wang CC,Zhang PG,Groppo C,Rolfo F and Wang AD. 2015.Granulite facies metamorphism,partial melting and metasomatism in the Wuhe Complex at the southeastern margin of the North China Block. Journal of Earth Sciences and Environment,37(1):1 -11(in Chinese with English abstract)
Lu SN,Zhao GC,Wang HC and Hao GJ. 2008. Precambrian metamorphic basement and sedimentary cover of the North China Craton:A review. Precambrian Research,160(1 -2):77 -93
Luo Y,Sun M,Zhao GC,Li SZ,Xu P,Ye K and Xia XP. 2004. LAICP-MS U-Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton:Constraints on the evolution of the Jiao-Liao-Ji Belt. Precambrian Research,134(3 -4):349 -371
McCulloch MT and Bennett VC. 1994. Progressive growth of the Earth’s continental crust and depleted mantle:Geochemical constraints.Geochimica et Cosmochimica Acta,58(21):4717 -4738
Mclennan SM and Taylor SR. 1982. Geochemical constraints on the growth of the continental crust. The Journal of Geology,90(4):347-361
M?ller A,O’Brien PJ,Kennedy A and Kr?ner A. 2002. Polyphase zircon in ultrahigh-temperature granulites (Rogaland,SW Norway):Constraints for Pb diffusion in zircon. Journal of Metamorphic Geology,20(8):727 -740
O’Brien PJ and R?tzler J. 2003. High-pressure granulites:Formation,recovery of peak conditions and implications for tectonics. Journal of Metamorphic Geology,21(1):3 -20
Othman DB,White WM and Patchett J. 1989. The geochemistry of marine sediments,island arc magma genesis,and crust-mantle recycling. Earth and Planetary Science Letters,94(1 -2):1 -21
Pattison DRM. 2003. Petrogenetic significance of orthopyroxene-free garnet+clinopyroxene+plagioclase±quartz-bearing metabasites with respect to the amphibolite and granulite facies. Journal of Metamorphic Geology,21(1):21 -34
Pattison DRM,Chacko T,F(xiàn)arquhar J and Mcfarlane CRM. 2003.Temperatures of granulite-facies metamorphism:Constraints from experimental phase equilibria and thermobarometry corrected for retrograde exchange. Journal of Petrology,44(5):867 -900
Peng P,Zhai MG,Zhang HF and Guo JH. 2005. Geochronological constraints on the Paleoproterozoic evolution of the North China Craton:SHRIMP zircon ages of different types of mafic dikes.International Geology Review,47(5):492 -508
Peng P,Zhai MG,Ernst RE,Guo JH,Liu F and Hu B. 2008. A 1.78Ga large igneous province in the North China craton:The Xiong’er volcanic province and the North China dyke swarm.Lithos,101(3 -4):260 -280
Reichardt H and Weinberg RF. 2012. Hornblende chemistry in meta-and diatexites and its retention in the source of leucogranites:An example from the Karakoram shear zone,NW India. Journal of Petrology,53(6):1287 -1318
Rogers JJW and Santosh M. 2003. Supercontinents in Earth history.Gondwana Research,6(3):357 -368
Rubatto D,Williams IS and Buick IS. 2001. Zircon and monazite response to prograde metamorphism in the Reynolds Range,central Australia. Contributions to Mineralogy and Petrology,140(4):458-468
Rudnick RL. 1995. Making continental crust. Nature,378(6557):571-578
Sawyer EW,Cesare B and Brown M. 2011. When the continental crust melts. Elements,7(4):229 -234
Spear FS and Florence FP. 1992. Thermobarometry in granulites:Pitfalls and new approaches. Precambrian Research,55(1 -4):209 -241
Tam PK,Zhao GC,Liu FL,Zhou XW,Sun M and Li SZ. 2011. Timing of metamorphism in the Paleoproterozoic Jiao-Liao-Ji Belt:New SHRIMP U-Pb zircon dating of granulites,gneisses and marbles of the Jiaobei massif in the North China Craton. Gondwana Research,19(1):150 -162
Tang J,Zheng YF,Wu YB,Gong B and Liu XM. 2007. Geochronology and geochemistry of metamorphic rocks in the Jiaobei terrane:Constraints on its tectonic affinity in the Sulu orogen. Precambrian Research,152(1 -2):48 -82
Taylor SR and McLennan SM. 1985. The Continental Crust:Its Composition and Evolution. London: Blackwell Scientific Publications,1 -312
Tu XL,Zhu BQ,F(xiàn)an SK and Hu AQ. 1993. Pb isotopes of the granulites from the North China and the comparison with other places over the world. Science in China (Series B),23(5):537 - 544 (in Chinese)
Tu YJ. 1994. On the Late Archean TTG-gneiss in the northern Jianghuai area. Geology of Anhui,4(4):15 -23 (in Chinese with English abstract)
Vernon RH and Collins WJ. 1988. Igneous microstructures in migmatites. Geology,16(12):1126 -1129
Vervoort JD and Blichert-Toft J. 1999. Evolution of the depleted mantle:Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta,63(3 -4):533 -556
Wan YS,Wilde SA,Liu DY,Yang CX,Song B and Yin XY. 2006.Further evidence for ~1.85Ga metamorphism in the Central Zone of the North China Craton:SHRIMP U-Pb dating of zircon from metamorphic rocks in the Lushan area,Henan Province. Gondwana Research,9(1 -2):189 -197
Wan YS,Dong CY,Wang W,Xie HQ and Liu DY. 2010. Archean basement and a Paleoproterozoic collision orogen in the Huoqiu area at the Southeastern margin of North China Craton:Evidence from sensitive high resolution Ion Micro-Probe U-Pb zircon geochronology.Acta Geologica Sinica,84(1):91 -104
Wan YS,Liu DY,Wang SJ,Yang EX,Wang W,Dong CY,Zhou HY,Du LL,Yang YH and Diwu CR. 2011. ~2.7Ga juvenile crust formation in the North China Craton (Taishan-Xintai area,western Shandong Province):Further evidence of an understated event from U-Pb dating and Hf isotopic composition of zircon. Precambrian Research,186(1 -4):169 -180
Wan YS,Xu ZY,Dong CY,Nutman AP,Ma MZ,Xie HQ,Liu SJ,Liu DY,Wang HC and Cu H. 2013. Episodic Paleoproterozoic(~2.45,~1.95 and ~1.85Ga)mafic magmatism and associated high temperature metamorphism in the Daqingshan area,North China Craton:SHRIMP zircon U-Pb dating and whole-rock geochemistry.Precambrian Research,224:71 -93
Wang AD,Liu YC,Gu XF,Li SG and Xie HQ. 2009. Zircon SHRIMP U-Pb dating for garnet-bearing gneissic granite at Laoshan,Bengbu:Implications for recycling of the subducted continental crust of the South China Block. Journal of Mineralogy and Petrology,29(2):38-43 (in Chinese with English abstract)
Wang AD,Liu YC,Gu XF,Hou ZH and Song B. 2012. Late-Neoarchean magmatism and metamorphism at the southeastern margin of the North China Craton and their tectonic implications.Precambrian Research,220 -221:65 -79
Wang AD,Liu YC,Santosh M and Gu XF. 2013a. Zircon U-Pb geochronology, geochemistry and Sr-Nd-Pb isotopes from the metamorphic basement in the Wuhe Complex:Implications for Neoarchean active continental margin along the southeastern North China Craton and constraints on the petrogenesis of Mesozoic granitoids. Geoscience Frontiers,4(1):57 -71
Wang J,Sheng Y,Pu XP,Kang T and Shi YH. 2014. The investigation on metamorphic petrology and P-T conditions of Wuhe complex rocks:Evidences from drill ZK02 in the South of Mengcheng area.Chinese Journal of Geology,49(2):556 -575 (in Chinese with English abstract)
Wang QY,Zheng JP,Pan YM,Dong YJ,Liao FX,Zhang Y,Zhang L,Zhao G and Tu ZB. 2014. Archean crustal evolution in the southeastern North China Craton:New data from the Huoqiu Complex. Precambrian Research,255(Part 1):294 -315
Wang SJ,Li SG and Liu SA. 2013b. The origin and evolution of lowδ18O magma recorded by multi-growth zircons in granite. Earth and Planetary Science Letters,373:233 -241
Weber MBI,Tarney J,Kempton PD and Kent RW. 2002. Crustal makeup of the northern Andes,evidence based on deep crustal xenolith suites,Mercaderes,SW Colombia. Tectonophysics,345(1):49-82
Wilde SA,Zhao GC and Sun M. 2002. Development of the North China Craton during the Late Archaean and its final amalgamation at 1.8Ga: Some speculations on its position within a global Palaeoproterozoic supercontinent. Gondwana Research,5(1):85 -94
Wilde SA and Zhao GC. 2005. Archean to Paleoproterozoic evolution of the North China Craton. Journal of Asian Earth Sciences,24(5):519 -522
Windley BF. 1973. Crustal development in the Precambrian.Philosophical Transactions Royal Society of London A,273(1235):421 -441
Woodhead J,Hergt J,Shelley M,Eggins S and Kemp R. 2004. Zircon Hf-isotope analysis with an excimer laser,depth profiling,ablation of complex geometries,and concomitant age estimation. Chemical Geology,209(1 -2):121 -135
Wu FY,Yang YH,Xie LW,Yang JH and Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology,234(1 -2):105 -126
Wu FY,Zhang YB,Yang JH,Xie LW and Yang YH. 2008. Zircon UPb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton. Precambrian Research,167(3):339 -362
Xing FM and Ren SM. 1984. The preliminary study on origin of the banded and striped silico-iron formation of Houqiu Group in western Anhui. Acta Geologica Sinica,58(1):35 -48 (in Chinese with English abstract)
Xu WL,Wang DY,Liu XC,Wang QH and Lin JQ. 2002. Discovery of eclogite inclusions and its geological significance in Early Jurassic intrusive complex in Xuzhou-northern Anhui, eastern China.Chinese Science Bulletin,47(14):1212 -1216
Xu WL,Wang QH,Liu XC,Wang DY and Guo JH. 2004. Chronology and sources of Mesozoic intrusive complexes in the Xuzhou-Huainan region,central China:Constraints from SHRIMP U-Pb dating. Acta Geologica Sinica,78(1):96 -106
Xu WL,Wang QH,Yang DB,Liu XC and Guo JH. 2005. SHRIMP zircon U-Pb dating in Jingshan“migmatitic granite”,Bengbu and its geological significance. Science in China (Series D),48(2):185-191
Xu WL,Gao S,Wang QH,Wang DY and Liu YS. 2006. Mesozoic crustal thickening of the eastern North China craton:Evidence from eclogite xenoliths and petrologic implications. Geology,34(9):721-724
Xu WL,Yang DB,Pei FP,Yang CH,Liu XM and Hu ZC. 2006. Age of the Wuhe complex in the Bengbu uplift:Evidence from LA-ICPMS zircon U-Pb dating. Geology in China,33(1):132 -137 (in Chinese with English abstract)
Xu WL,Gao S,Yang DB,Pei FP and Wang QH. 2009. Geochemistry of eclogite xenoliths in Mesozoic adakitic rocks from Xuzhou-Suzhou area in central China and their tectonic implications. Lithos,107(3-4):269 -280
Xu X,Hou MJ,Qiu RL,Wu LB and Li JS. 2005.40Ar-39Ar dating of granites and related dikes in the Bengbu area on the southeastern margin of the North China block. Geology in China,32(4):588 -595 (in Chinese with English abstract)
Yang DB,Xu WL,Pei FP,Wang QH and Liu XM. 2005. Formation time and magma source of granites in Bengbu uplift:Evidence from LA-ICPMS zircon U-Pb dating and tracing. Geochimica,34(5):443 -454 (in Chinese with English abstract)
Yang DB,Xu WL,Pei FP,Wang QH and Gao S. 2008. Chronology and Pb isotope compositions of Early Cretaceous adakitic rocks in Xuzhou-Huaibei area,central China:Constraints on magma sources and tectonic evolution in the eastern North China Craton. Acta Petrologica Sinica,24(8):1745 -1458 (in Chinese with English abstract)
Yang DB,Xu WL,Pei FP and Wang QH. 2009. Petrogenesis of the Paleoproterozoic K-Feldspar granites in Bengbu Uplift:Constraints from petro-geochemistry,zircon U-Pb dating and Hf isotope. Earth Science,34(1):148 -164 (in Chinese with English abstract)
Yang DB,Xu WL,Wang QH and Pei FP. 2010. Chronology and geochemistry of Mesozoic granitoids in the Bengbu area,central China:Constraints on the tectonic evolution of the eastern North China Craton. Lithos,114(1 -2):200 -216
Yang XY,Wang BH,Du ZB,Wang QC,Wang YX,Tu ZB,Zhang WL and Sun WD. 2012. On the metamorphism of the Huoqiu Group,forming ages and mechanism of BIF and iron deposit in the Huoqiu region,southern margin of North China carton. Acta Petrologica Sinica,28(11):3476 -3496 (in Chinese with English abstract)
Yardley BWD. 1989. An introduction to Metamorphic Petrology.Longman Group,Harlow,UK:Prentice Hall,49 -51
Ying JL,Wang YD,Zhao PY,Lin XL,Sang BL,Xing FM and Chen YZ. 1984. Geochronological studies of Precambrian metamorphic rocks from western Anhui Province. Geochimica,13(2):145 -152(in Chinese with English abstract)
Zeh A,Gerdes A and Barton Jr JM. 2009. Archean accretion and crustal evolution of the Kalahari Craton:The zircon age and Hf isotope record of granitic rocks from Barberton/Swaziland to the Francistown arc. Journal of Petrology,50(5):933 -966
Zeh A,Gerdes A,Will TM and Frimmela HE. 2010. Hafnium isotope homogenization during metamorphic zircon growth in amphibolitefacies rocks:Examples from the Shackleton Range (Antarctica).Geochimica et Cosmochimica Acta,74(16):4740 -4758
Zhai MG,Guo JH,Yan YH,Li YG and Han XL. 1993. Discovery of high-pressure basic granulite terrain in North China Archaean craton and preliminary study. Science in China (Series B),36(11):1402-1408
Zhai MG,Bian AG and Zhao TP. 2000. The amalgamation of the supercontinent of North China craton at the end of Neo-Archaean and its breakup during the Late Palaeoproterozoic and Mesoproterozoic.Science in China (Series D),43(Suppl.1):219 -232
Zhai MG and Liu WJ. 2003. Palaeoproterozoic tectonic history of the North China Craton:A review. Precambrian Research,122(1 -4):183 -99
Zhai MG and Santosh M. 2011. The Early Precambrian odyssey of the North China Craton:A synoptic overview. Gondwana Research,20(1):6 -25
Zhai MG. 2014. Multi-stage crustal growth and cratonization of the North China Craton. Geoscience Frontiers,5(4):457 -469
Zhang BR,Gao S,Zhang HF and Han YW. 2002. Geochemistry of the Qinling Orogenic Belt. Beijing:Science Press,1 - 187 (in Chinese)
Zhang HF. 2012. Destruction of ancient lower crust through magma underplating beneath Jiaodong Peninsula,North China Craton:U-Pb and Hf isotopic evidence from granulite xenoliths. Gondwana Research,21(1):281 -292
Zhang GH,Zhou XH,Sun M,Chen SH and Feng JL. 1998. Sr,Nd and Pb isotopic characteristics of granulite and pyroxenite xenoliths in Hannuoba basalts,Hebei Province,and their implications for geologic processes. Acta Petrologica Sinica,14(2):190 -197 (in Chinese with English abstract)
Zhang HF,Ying JF,Santosh M and Zhao GC. 2012. Episodic growth of Precambrian lower crust beneath the North China Craton:A synthesis. Precambrian Research,222 -223:255 -264
Zhang LG. 1995. Block-Geology of Eastern Asia Lithosphere:Isotope Geochemistry and Dynamics of Upper Mantle, Basement and Granite. Beijing:Science Press,1 -252 (in Chinese with English abstract)
Zhao GC,Cawood PA,Wilde SA,Sun M and Lu LZ. 2000.Metamorphism of basement rocks in the Central Zone of the North China craton:Implications for Palaeoproterozoic tectonic evolution.Precambrian Research,103(1 -2):55 -88
Zhao GC,Wilde SA,Cawood PA and Sun M. 2001. Archean blocks and their boundaries in the North China craton: Lithological,geochemical,structural,and P-T path constraints and tectonic evolution. Precambrian Research,107(1 -2):45 -73
Zhao GC,Sun M,Wilde SA and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues revisited. Precambrian Research,136(2):177 -202
Zhao GC,Cawood PA,Li SZ,Wilded SA,Sun M,Zhang J,He YH and Yin CQ. 2012. Amalgamation of the North China Craton:Key issues and discussion. Precambrian Research,222 -223:55 -76
Zhao GC and Zhai MG. 2013. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondwana Research,23(4):1207 -1240
Zheng JP,Sun M,Lu FX and Pearson N. 2003. Mesozoic lower crustal xenoliths and their significance in lithospheric evolution beneath the Sino-Korean Craton. Tectonophysics,361(1 -2):37 -60
Zheng JP,Griffin WL,O’Reilly SY,Lu FX,Yu CM,Zhang M and Li HM. 2004a. U-Pb and Hf-Isotope analysis of zircons in mafic xenoliths from Fuxian kimberlites:Evolution of the lower crust beneath the North China Craton. Contributions to Mineralogy and Petrology,148(1):79 -103
Zheng JP,Griffin WL,O’Reilly SY,Lu FX,Wang CY,Zhang M,Wang FZ and Li HM. 2004b. 3.6Ga lower crust in central China:New evidence on the assembly of the North China Craton. Geology,32(3):229 -232
Zheng JP,Griffin WL,O’Reilly SY,Zhao JH,Wu YB,Liu GL,Pearson N,Zhang M,Ma CQ,Zhang CQ,Yu CM,Su YP and Tang HY. 2009. Neoarchean (2.7 ~2.8Ga)accretion beneath the North China Craton:U-Pb age,trace elements and Hf isotopes of zircons in diamondiferous kimberlites. Lithos,112(3 -4):188 -202
Zhou XW,Wei CJ,Geng YS and Zhang LF. 2004. Discovery and implications of the high-pressure pelitic granulite from the Jiaobei massif. Chinese Science Bulletin,49(18):1942 -1948
Zhu BQ. 1991. Evidence of isotopic systematics from crust and mantle for chemical heterogeneities of terranes. Chinese Science Bulletin,36(15):1279 -1282
附中文參考文獻(xiàn)
安徽省地質(zhì)礦產(chǎn)局. 1987. 安徽省區(qū)域地質(zhì)志. 北京:地質(zhì)出版社,1 -721
安徽省地質(zhì)礦產(chǎn)局. 1997. 安徽省巖石地層. 武漢:中國(guó)地質(zhì)大學(xué)出版社,1 -271
劉福來(lái),劉平華,丁正江,劉建輝,楊紅,胡偉華. 2012. 山東半島高壓麻粒巖中花崗質(zhì)淺色脈體的成因. 巖石學(xué)報(bào),28(9):2686-2696
劉磊,楊曉勇. 2013. 安徽霍邱BIF 鐵礦地球化學(xué)特征及其成礦意義:以班臺(tái)子和周油坊礦床為例. 巖石學(xué)報(bào),29(7):2551-2566
劉平華,劉福來(lái),王舫,劉建輝. 2010. 山東半島基性高壓麻粒巖的成因礦物學(xué)及變質(zhì)演化. 巖石學(xué)報(bào),26(7):2039 -2056
劉平華,劉福來(lái),王舫,劉建輝,楊紅,施建榮. 2012. 膠北高級(jí)變質(zhì)基底中高壓基性麻粒巖的地球化學(xué)特征及其成因. 巖石學(xué)報(bào),28(9):2705 -2720
劉文軍,翟明國(guó),李永剛. 1998. 膠東萊西地區(qū)基性高壓麻粒巖的變質(zhì)作用. 巖石學(xué)報(bào),14(4):449 -459
劉貽燦,王安東. 2012. 華北克拉通東南緣前寒武紀(jì)下地殼的幕式生長(zhǎng)與多期改造:巖石學(xué)、年代學(xué)和Hf 同位素證據(jù). 地球科學(xué)與環(huán)境學(xué)報(bào),34(4):1 -11
劉貽燦,王程程,張品剛,Groppo C,Rolfo F,王安東. 2015. 華北板塊東南緣五河雜巖的麻粒巖相變質(zhì)、部分熔融與交代作用. 地球科學(xué)與環(huán)境學(xué)報(bào),37(1):1 -11
涂湘林,朱炳泉,范嗣昆,胡靄琴. 1993. 華北麻粒巖相帶鉛同位素組成特征及其與全球?qū)Ρ? 中國(guó)科學(xué)(B 輯),23(5):537 -544
涂蔭玖. 1994. 江淮地區(qū)北部晚太古宙TTG 質(zhì)片麻巖. 安徽地質(zhì),4(4):15 -23
王安東,劉貽燦,古曉鋒,李曙光,頡頏強(qiáng). 2009. 蚌埠老山含石榴子石片麻狀花崗巖的鋯石SHRIMP U-Pb 年齡及其對(duì)華南俯沖陸殼再循環(huán)的意義. 礦物巖石,29(2):38 -43
王娟,盛勇,卜香萍,康濤,石永紅. 2014. 五河雜巖的變質(zhì)巖石學(xué)及P-T 條件分析——來(lái)自蒙城南ZK02 鉆孔的研究. 地質(zhì)科學(xué),49(2):556 -575
邢鳳鳴,任思明. 1984. 皖西霍邱群條帶狀硅鐵建造成因雛議. 地質(zhì)學(xué)報(bào),58(1):35 -48
許文良,楊德彬,裴福萍,楊承海,柳小明,胡兆初. 2006. 蚌埠隆起區(qū)五河雜巖的形成時(shí)代:鋯石LA-ICP-MS U-Pb 定年證據(jù). 中國(guó)地質(zhì),33(1):132 -137
徐祥,侯明金,邱瑞龍,吳禮彬,李建設(shè). 2005. 華北陸塊東南緣蚌埠地區(qū)花崗巖與相關(guān)脈巖40Ar-39Ar 定年. 中國(guó)地質(zhì),32(4):588 -595
楊德彬,許文良,裴福萍,王清海,柳小明. 2005. 蚌埠隆起區(qū)花崗巖形成時(shí)代及巖漿源區(qū)性質(zhì):鋯石LA-ICPMS U-Pb 定年與示蹤. 地球化學(xué),34(5):443 -454
楊德彬,許文良,裴福萍,王清海,高山. 2008. 徐淮地區(qū)早白堊世adakitic 巖石的年代學(xué)和Pb 同位素組成:對(duì)巖漿源區(qū)與華北克拉通東部構(gòu)造演化的制約. 巖石學(xué)報(bào),24(8):1745 -1458
楊德彬,許文良,裴福萍,王清海. 2009. 蚌埠隆起區(qū)古元古代鉀長(zhǎng)花崗巖的成因:巖石地球化學(xué)、鋯石U-Pb 年代學(xué)與Hf 同位素的制約. 地球科學(xué),34(1):148 -164
楊曉勇,王波華,杜貞保,王啟才,王玉賢,涂政標(biāo),張文利,孫衛(wèi)東. 2012. 論華北克拉通南緣霍邱群變質(zhì)作用、形成時(shí)代及霍邱BIF 鐵礦成礦機(jī)制. 巖石學(xué)報(bào),28(11):3476 -3496
營(yíng)俊龍,王揚(yáng)德,趙溥云,林秀蘭,桑寶梁,邢鳳鳴,陳躍志. 1984.皖西前寒武紀(jì)變質(zhì)巖系地質(zhì)年代學(xué)研究. 地球化學(xué),13(2):145 -152
張本仁,高山,張宏飛,韓吟文. 2002. 秦嶺造山帶地球化學(xué). 北京:科學(xué)出版社,1 -187
張國(guó)輝,周新華,孫敏,陳紹海,馮家麟. 1998. 河北漢諾壩玄武巖中麻粒巖類(lèi)和輝石巖類(lèi)捕虜體Sr、Nd、Pb 同位素特征及其地質(zhì)意義. 巖石學(xué)報(bào),14(2):190 -197
張理剛. 1995. 東亞巖石圈塊體地質(zhì)——上地幔、基底和花崗巖同位素地球化學(xué)及其動(dòng)力學(xué). 北京:科學(xué)出版社,1 -252