李志明,芮曉慶,黎茂穩(wěn),曹婷婷,徐二社,陶國(guó)亮,蔣啟貴
1.中國(guó)石化石油勘探開(kāi)發(fā)研究院無(wú)錫石油地質(zhì)研究所,江蘇 無(wú)錫 214151 2.中國(guó)石化油氣成藏重點(diǎn)實(shí)驗(yàn)室,江蘇 無(wú)錫 214126
?
北美典型混合頁(yè)巖油系統(tǒng)特征及其啟示
李志明1,2,芮曉慶1,2,黎茂穩(wěn)1,2,曹婷婷1,2,徐二社1,2,陶國(guó)亮1,2,蔣啟貴1,2
1.中國(guó)石化石油勘探開(kāi)發(fā)研究院無(wú)錫石油地質(zhì)研究所,江蘇 無(wú)錫 214151 2.中國(guó)石化油氣成藏重點(diǎn)實(shí)驗(yàn)室,江蘇 無(wú)錫 214126
北美Williston 盆地Bakken組屬典型的混合頁(yè)巖油系統(tǒng)。筆者系統(tǒng)剖析了Bakken組混合頁(yè)巖油系統(tǒng)富有機(jī)質(zhì)層段和貧有機(jī)質(zhì)層段的地質(zhì)與地球化學(xué)、物性與裂縫發(fā)育以及頁(yè)巖油特征,揭示了頁(yè)巖油“甜點(diǎn)”主要受高含輕質(zhì)油的富有機(jī)質(zhì)成熟頁(yè)巖、異常壓力、微裂縫以及貧有機(jī)質(zhì)層的白云石化作用共同控制,同時(shí)由于貧有機(jī)質(zhì)層具有相對(duì)高的孔隙度、滲透率以及低的吸附量,因此可認(rèn)為其是混合型頁(yè)巖油系統(tǒng)中的主要產(chǎn)層。這對(duì)目前我國(guó)東部陸相頁(yè)巖油勘探效果不佳的因素分析具有重要啟示。把頁(yè)巖油勘探目標(biāo)層僅僅聚焦于富有機(jī)質(zhì)泥頁(yè)巖層段是勘探效果欠佳的主觀因素;而富有機(jī)質(zhì)泥頁(yè)巖層段天然微裂縫發(fā)育局限、滯留油主要賦存在有機(jī)質(zhì)中、熱演化程度偏低使滯留油較重以及湖相Ⅰ型烴源巖生成的油含蠟量高等因素,是導(dǎo)致可采的頁(yè)巖油量十分有限的客觀因素。為此,針對(duì)我國(guó)東部湖盆頁(yè)巖油的勘探,建議:加強(qiáng)成熟富有機(jī)質(zhì)層系中貧有機(jī)質(zhì)碳酸鹽巖或粉砂、細(xì)砂巖薄夾層的精細(xì)評(píng)價(jià)與勘探;加強(qiáng)成熟富有機(jī)質(zhì)泥頁(yè)巖層段裂縫型頁(yè)巖油的評(píng)價(jià)與勘探。
混合頁(yè)巖油系統(tǒng);Bakken組;Williston盆地;頁(yè)巖油勘探;中國(guó)東部;北美;頁(yè)巖油
頁(yè)巖氣的成功開(kāi)發(fā)使嘗試從富有機(jī)質(zhì)頁(yè)巖(泥巖)或與之共生的貧有機(jī)質(zhì)巖相生產(chǎn)石油的工作得以重新恢復(fù),加上石油的經(jīng)濟(jì)價(jià)值大于天然氣,促使原來(lái)以頁(yè)巖氣為主營(yíng)業(yè)務(wù)的公司紛紛調(diào)整戰(zhàn)略,轉(zhuǎn)向頁(yè)巖油的勘探開(kāi)發(fā),這是美國(guó)2008年以來(lái)油氣勘探開(kāi)發(fā)的戰(zhàn)略轉(zhuǎn)移。頁(yè)巖油是指從富有機(jī)質(zhì)頁(yè)巖(泥巖)或與之密切共生的貧有機(jī)質(zhì)巖相如碳酸鹽巖、粉砂巖或砂巖薄層內(nèi)可采出的石油。根據(jù)頁(yè)巖油產(chǎn)層的巖性組合和裂縫發(fā)育特征等,頁(yè)巖油系統(tǒng)可劃分為3個(gè)類(lèi)型,即致密型富有機(jī)質(zhì)泥巖系統(tǒng)(如Barnett組)、裂縫型富有機(jī)質(zhì)泥巖系統(tǒng)(如Monterey組)及具有相鄰、連續(xù)富有機(jī)質(zhì)和貧有機(jī)質(zhì)層的混合(hybrid)系統(tǒng)(如Bakken組)[1]。目前的勘探結(jié)果表明,裂縫型與混合型頁(yè)巖油系統(tǒng)具有高的頁(yè)巖油生產(chǎn)能力,而致密型頁(yè)巖油系統(tǒng)因超低滲透率以及有機(jī)質(zhì)、黏土對(duì)石油的吸附滯留效應(yīng),難以獲得高的頁(yè)巖油產(chǎn)量[1]。裂縫型泥頁(yè)巖油藏的勘探開(kāi)發(fā)在我國(guó)諸多盆地如渤海灣盆地沾化凹陷早已開(kāi)展并進(jìn)行了系統(tǒng)的研究[2-4],而北美Williston盆地Bakken組是頁(yè)巖油開(kāi)發(fā)率先取得成功的層位[1,5-6]。故本文重點(diǎn)系統(tǒng)解剖北美Williston盆地Bakken組典型混合型頁(yè)巖油系統(tǒng)的特征,旨在啟發(fā)思考當(dāng)前我國(guó)頁(yè)巖油勘探中存在的問(wèn)題,為我國(guó)頁(yè)巖油下步勘探提供借鑒與新思路。
Williston盆地是一個(gè)大型近圓形克拉通內(nèi)坳陷,沿加拿大地盾西南邊緣發(fā)育于北美克拉通之上。沉積物沉積始于寒武紀(jì)期間,但盆地主要沉降和充填作用始于奧陶紀(jì)期間。盆地面積約77萬(wàn) km2,跨越美國(guó)北達(dá)科塔、南達(dá)科塔、蒙大拿和加拿大馬尼托巴、薩克斯其萬(wàn)省[7](圖1)。
據(jù)文獻(xiàn)[7]修編。圖1 Williston 盆地位置、主要背斜和穹窿及Bakken組油田分布簡(jiǎn)圖Fig.1 Sketch showing locations of Williston basin and the main anticlines, domes and oilfields in Bakken Formation
盆地內(nèi)保存的地層記錄跨越500 Ma,包含的沉積巖由寒武系至新近系,在盆地中心顯生宙沉積巖最大厚度4 850 m[8]。盆地沉積作用以周期性的海侵和海退為特征,從而盆地內(nèi)重復(fù)沉積了碳酸鹽巖和碎屑巖;古生代地層以碳酸鹽巖為主,而中、新生代地層主要由碎屑巖組成[9]。沉積地層可以劃分成6個(gè)主要以不整合為界的層序,即中寒武世至早奧陶世Sauk層序、中奧陶世至晚志留世Tippecanoe層序、中泥盆世至晚密西西比世Kaskaskia層序、早賓夕法尼亞世至早侏羅世Absaroka層序、中侏羅世至古新世Zuni層序以及古新世后Tejas層序[10]。因盆地幾乎發(fā)育完整的地層剖面、由盆地中心向盆緣大多數(shù)地層單元變薄以及斷裂和其他構(gòu)造特征通常僅具有小的位移或運(yùn)動(dòng),一般被視為是一個(gè)構(gòu)造簡(jiǎn)單的盆地[7],盆地沉降主要受撓曲作用而不是斷層作用控制[11]。不過(guò),詳細(xì)的研究揭示,更加復(fù)雜的構(gòu)造史主要由下伏形變的基底巖石和對(duì)盆內(nèi)斷層、構(gòu)造線、斷塊運(yùn)動(dòng)、沉積模式、鹽溶解作用、流體運(yùn)動(dòng)、熱史具有控制作用的兩條主要邊界構(gòu)造斷裂系統(tǒng)引起[12-13]。因此,這些構(gòu)造要素的每一個(gè)均對(duì)油氣的生成、運(yùn)移和分布起著重要作用。
Williston盆地油氣分布與構(gòu)造關(guān)系密切,盆地內(nèi)主要構(gòu)造如Nesson、Cedar Creek、Little Knife、Billings和Antelope背斜以及Poplar穹窿均為油氣生產(chǎn)區(qū),并且大多數(shù)構(gòu)造在Bakken組生產(chǎn)油氣。南北走向的Nesson背斜和北西走向Cedar Creek背斜是盆地最顯著的構(gòu)造,這些構(gòu)造地表就有顯示,并在多個(gè)地層單元中已產(chǎn)出大量油氣。美國(guó)地質(zhì)調(diào)查局在Williston盆地確定了10個(gè)總油氣系統(tǒng)(total petroleum system,TPS)[7]。其中,Bakken組至Logdepole組總油氣系統(tǒng)為典型的混合型頁(yè)巖油系統(tǒng),并且Bakken組頁(yè)巖油既產(chǎn)自裂縫頁(yè)巖(如Bicentennial田),也產(chǎn)自與富有機(jī)質(zhì)頁(yè)巖并置的貧有機(jī)質(zhì)層如中段白云質(zhì)砂巖和Three Forks組碳酸鹽巖(如Elm Coulee, Sanish和Parshall油田)(圖1)[1]。
2.1 地層地質(zhì)、地球化學(xué)特征
Bakken組混合頁(yè)巖油系統(tǒng)由Bakken組(包括下段、中段和上段)和上覆Lodgepole組下段以及下伏Three Forks組上段組成[7,14](圖2)。其中,Bakken組下段和上段為該頁(yè)巖油系統(tǒng)的生油巖,整個(gè)Bakken組、Lodgepole組下段和Three Forks組上段構(gòu)成基本連續(xù)的儲(chǔ)集層[15]。
據(jù)文獻(xiàn)[7,14]修編。圖2 Williston盆地Bakken組混合型頁(yè)巖油系統(tǒng)簡(jiǎn)圖Fig.2 Sketch of hybrid shale-oil system in Bakken Formation of Williston basin
在Williston盆地,晚泥盆世--早密西西比世Bakken組最大厚度約49 m,雖僅占盆地沉積地層最大總厚度的1%,但其是世界級(jí)的烴源巖和儲(chǔ)集巖。根據(jù)美國(guó)地質(zhì)調(diào)查局的命名原則,Bakken組由3個(gè)非正式的層段組成:下部頁(yè)巖段、中部砂巖(白云巖)段和上部頁(yè)巖段。向北、向南和向東部沿盆地邊緣因沉積超覆和(或)剝蝕逐漸變薄,每個(gè)層段依據(jù)地球物理測(cè)井尤其是伽馬和電阻率測(cè)井極易區(qū)分[7]。圖3顯示了Parshall 油田1-05H-N&D井Bakken組3個(gè)層段的巖性與地球化學(xué)柱狀圖。Bakken組混合頁(yè)巖油系統(tǒng)地層地質(zhì)與地球化學(xué)等主要特征見(jiàn)表1。
IOS=100S1/TOC,為油飽和指數(shù);IH=100S2/TOC,為氫指數(shù)。據(jù)文獻(xiàn)[1]修編。圖3 Williston 盆地Parshall 油田1-05H-N&D井Bakken組地球化學(xué)柱狀圖Fig.3 Sketch of 1-05H-N&D well geochemical log of Bakken Formation in Parshall field, Williston basin
Bakken組下段:下段為一套細(xì)層紋狀深灰色、淡棕黑色至黑色富有機(jī)質(zhì)頁(yè)巖,其成熟度參數(shù)----等效鏡質(zhì)體反射率Roe(據(jù)Tmax)主要為0.50%~1.18%[7,9,16],在盆地較深處,成熟的頁(yè)巖總有機(jī)碳質(zhì)量分?jǐn)?shù)(w(TOC))平均為8.00%,最大值為20.00%,有機(jī)組分幾乎全為海藻,在整個(gè)層段有機(jī)組分呈不連續(xù)無(wú)定形微紋層(<0.1 mm)分布[17];Parshall 油田1-05H-N&D井揭示下部頁(yè)巖段w(TOC)為8.87%~24.70%,平均為15.17%(圖3)[1]。該段厚度在盆地內(nèi)平均厚度3 m,在North Dakota Nesson背斜東側(cè)的盆地沉積中心最大厚度20 m[18-19],在Parshall油田1-05H-N&D井該段約為5 m(圖3)[1],在Elm Coulee油田平均厚度僅為0.42 m[20-21]。
Bakken組中段:中段巖性變化顯著,由淺灰色、灰色至深灰色互層粉砂巖、砂巖及少量富粉砂、砂和鮞粒的頁(yè)巖、白云巖和灰?guī)r組成[9]。不同研究者將中段劃分成5~7個(gè)巖相[5,21],如在Elm Coulee油田,中段包含5個(gè)淺海粉砂質(zhì)-白云質(zhì)砂巖巖相(2個(gè)富腕足動(dòng)物相、2個(gè)生物擾動(dòng)相和1個(gè)層狀相)[21];Parshall 油田1-05H-N&D井揭示中段主要為一套白云質(zhì)粉砂巖、砂巖和少量砂質(zhì)白云巖,整個(gè)層段白云石體積分?jǐn)?shù)為21%~70%,平均體積分?jǐn)?shù)為38%;同時(shí),整個(gè)中段油高飽和,油飽和指數(shù)普遍高于400 mg/g(圖3),絕對(duì)油體積分?jǐn)?shù)平均約為0.007 47(m3油/m3巖石)[1]。中段各巖相單元在North Dakota盆地中心最厚,向其北部、南部和東部邊緣減薄至0,該段總厚度平均13 m,最大厚度30 m[16];在Parshall 油田1-05H-N&D井該段厚度約12 m(圖3)[1]。
Bakken組上段:上段巖性與下段頁(yè)巖相似,由深灰色、淡棕黑色至黑色片狀鈣質(zhì)富有機(jī)質(zhì)頁(yè)巖組成,Roe(據(jù)Tmax)主要為0.40%~1.07%[7,9,16],頁(yè)巖由石英、正長(zhǎng)石、白云石、伊利石和黃鐵礦構(gòu)成,比下段具有更高的有機(jī)質(zhì)豐度,w(TOC)平均為10.00%,最大值為35.00%[16];Parshall 油田1-05H-N&D井揭示上段w(TOC)為5.36%~21.40%,平均為14.30%(圖3)[1]。該頁(yè)巖段在盆地內(nèi)平均厚度為2 m,在North Dakota 最大厚度達(dá)到9 m,在Saskatchewan最大厚度達(dá)到4 m,在Manitoba的Waskada地區(qū)最大厚度達(dá)18 m[9];在Parshall油田1-05H-N&D井該段厚度約5 m(圖3)[1];在Elm Coulee油田平均厚度僅2.2 m[20-21]。
Three Forks組上段:Three Forks組上段由下至上可以細(xì)分成3個(gè)主要巖相:塊狀至波紋狀、不規(guī)則層狀至角礫狀粉砂質(zhì)白云巖;粉砂質(zhì)白云巖與綠色泥巖互層;生物擾動(dòng)的粉砂質(zhì)、砂質(zhì)白云巖和砂巖。3個(gè)巖相代表一個(gè)完整的海侵層序,由潮間/潮上帶沉積至潮下帶沉積。Three Forks組上段總厚度約12 m,其中頂部生物擾動(dòng)的粉砂質(zhì)、砂質(zhì)白云巖和砂巖厚度約1.5 m[22-23]。
Lodgepole組下段:如圖2所示,Lodgepole組以灰?guī)r為主,總厚度約33.5 m,其下部為一套厚度約3 m海百合灰?guī)r[24]。
2.2 物性與裂縫發(fā)育特征
Bakken組下段和上段富有機(jī)質(zhì)頁(yè)巖段孔隙度均很低(表1)。下段1個(gè)頁(yè)巖樣品的孔隙度為1.30%,上段9個(gè)頁(yè)巖樣品的孔隙度為0.60%~5.00%,平均為1.80%[21];Almanza[25]的研究結(jié)果揭示下段頁(yè)巖孔隙度平均為3.10%,上段頁(yè)巖孔隙度平均為1.70%。Bakken組下段和上段平均滲透率為0.001 nD[26]。
圖4a為整個(gè)Williston盆地Bakken組中段白云質(zhì)砂巖和粉砂巖巖心孔隙度與滲透率關(guān)系圖,圖4b則為Williston盆地Elm Coulee頁(yè)巖油田區(qū)Bakken組中段白云質(zhì)砂巖和粉砂巖巖心孔隙度與滲透率關(guān)系圖。Bakken組中段白云質(zhì)砂巖與粉砂巖巖心孔隙度總體較低,主要為1.00%~10.00%,平均約5.00%;滲透率很低,主要為0.01~1.00 mD,平均0.04 mD(圖4a)。在Elm Coulee頁(yè)巖油田區(qū)Bakken組中段白云質(zhì)砂巖與粉砂巖巖心孔隙度主要為4.00%~9.00%,平均約6.40%,主要孔隙類(lèi)型為晶間孔隙、溶蝕孔隙與粒間孔隙,其中晶間孔隙和溶蝕孔隙分別由白云石化作用與后期溶蝕作用形成;滲透率則主要為0.001~0.100 mD,平均0.070 mD[21](圖4b)。另外,研究表明:埋深小于3 000 m的Bakken組中段,其白云質(zhì)砂巖與粉砂巖巖心孔隙度位于一個(gè)相對(duì)窄的范圍(5.00%~7.00%),埋深大于3 000 m的Bakken組中段,其白云質(zhì)砂巖與粉砂巖巖心孔隙度呈現(xiàn)稍寬的范圍(3.00%~6.00%);而滲透率則在任何深度范圍內(nèi)變化范圍顯著,巖心研究表明,中段滲透率大于0.01 mD的巖心,通常含有未被充填的天然裂縫[9]。
Three Forks組上段同樣具有低的孔隙度和滲透率,一般孔隙度低于8.00%,滲透率小于0.10 mD[24]。
另外,由圖4可見(jiàn),在相同孔隙度情況下,巖石的滲透率值可相差上百至上千倍,這顯然與巖石的裂縫發(fā)育程度有關(guān)。實(shí)際上,巖心研究揭示,Bakken組中段滲透率大于0.01 mD的儲(chǔ)集巖,一般含有開(kāi)放的天然裂縫。在Bakken組,尤其在下部頁(yè)巖段和中部砂巖段,存在多級(jí)宏觀與微觀裂縫。在中段砂巖和粉砂巖中,裂縫主要呈與層理近平行的不連續(xù)、開(kāi)放狀態(tài),孔徑寬度一般大于30 μm,沿一些水平裂縫存在瀝青質(zhì)。這些裂縫的一個(gè)重要特征是形成高密度裂縫網(wǎng)絡(luò),具有高殘留油飽和度(圖5),而在低殘留油或無(wú)殘留油的巖石中,通常不存在這樣的裂縫。在下部頁(yè)巖段,裂縫主要呈開(kāi)放的層理面或開(kāi)放的發(fā)狀垂向形態(tài),在硅質(zhì)頁(yè)巖中普遍發(fā)育不規(guī)則和塊狀或平滑和貝殼狀裂縫,這些裂縫或多或少地被方解石或黃鐵礦充填[9]。
表1 Bakken組混合頁(yè)巖油系統(tǒng)地層地質(zhì)、地球化學(xué)與物性特征
Table 1 Characteristics of strata geology, geochemistry and physical properties of hybrid shale-oil system of Bakken Formation
地層主要巖性厚度/mw(TOC)/%Roe/%孔隙度/%滲透率資料來(lái)源Lodgepole組下段致密灰?guī)r33平均0.5nD文獻(xiàn)[24]Bakken組上段深灰色、淡棕黑色至黑色片狀鈣質(zhì)頁(yè)巖0~18主要為5.36~35.000.40~1.07平均1.80或1.70平均0.001nD文獻(xiàn)[1,7,9,16,20-21,25-26]Bakken組中段淺灰色、灰色至深灰色互層白云質(zhì)粉砂巖、砂巖及砂質(zhì)白云巖0~30一般小于1.00主要為1.00~10.00主要為0.01~1.00mD文獻(xiàn)[1,7,9,16-21]Bakken組下段層紋狀深灰色、淡棕黑色至黑色頁(yè)巖0~20主要為3.00~24.700.50~1.18平均3.10平均0.001nD文獻(xiàn)[1,5,9,16,21,25-26]ThreeForks組上段粉砂質(zhì)白云巖、綠色泥巖、砂質(zhì)白云巖和砂巖12一般小于8.00主要為0.01~1.00mD文獻(xiàn)[22-24]
注:達(dá)西(D)為非法定計(jì)量單位,1 D=0.987 μm2。下同。
a.據(jù)文獻(xiàn)[9]修編;b.據(jù)文獻(xiàn)[21]修編。圖4 Bakken組中段白云質(zhì)砂巖和粉砂巖巖心孔隙度與滲透率圖Fig.4 Plot of core porosity vs. permeability in dolomitic sandstones and siltstones in the middle of Bakken Formation
圖5 North Dakota地區(qū)NDGS 8902井Bakken組中段3 186 m白云質(zhì)砂巖切片顯示網(wǎng)狀裂縫[9]Fig.5 Slabbed dolomitic sandstone at well NDGS 8 902,3186 m, in North Dakota[9] displaying reticulated fracture network on wet surface in the middle of Bakken Formation
Sonnenberg等[27]對(duì)Williston盆地North Dakota地區(qū)Bakken組中部層段微裂縫研究指出,微裂縫主要平行于層面(即水平微裂縫),裂縫寬度2~25 μm,長(zhǎng)6 μm至幾十厘米,在研究樣品中約95%的水平裂縫出現(xiàn)在富黏土礦物層段;在盆地的一些地區(qū),如Parshall油田,也存在垂向裂縫密集帶。
Coskey和Leonard[28]提出,原始高有機(jī)碳的未成熟Bakken組頁(yè)巖在某種程度上以干酪根支撐,當(dāng)干酪根成熟至生油水平,其變成撓性而失去強(qiáng)度,隨著轉(zhuǎn)化為液態(tài)烴,體積增大,而局部發(fā)育高壓?jiǎn)卧瑝毫υ黾訉?dǎo)致形成微裂縫,然后油由干酪根經(jīng)微裂縫排出,導(dǎo)致頁(yè)巖收縮,在生油窗內(nèi)隨成熟度增大而密度增高。Bakken組中段開(kāi)放水平裂縫的分布和發(fā)育程度與源巖的厚度、成熟度水平(Roe≥0.50%)、生烴程度等有關(guān);同時(shí)也與儲(chǔ)集層內(nèi)部相變有關(guān),如果相鄰的烴源巖未熟(Roe<0.50%)具有很低甚至無(wú)生成油的潛力,那么中段的砂巖與粉砂巖實(shí)際上無(wú)水平裂縫顯示。在烴源巖開(kāi)始生烴的區(qū)域,中段內(nèi)水平裂縫發(fā)育程度向上、下頁(yè)巖段增大,在鄰近生烴作用強(qiáng)烈的成熟--過(guò)成熟烴源巖區(qū),中段油飽和的儲(chǔ)集層中出現(xiàn)異常發(fā)育的裂縫網(wǎng)絡(luò)(圖5)[9]。
2.3 頁(yè)巖油特征
北美地區(qū)高產(chǎn)頁(yè)巖油區(qū)海相頁(yè)巖穩(wěn)定、分布范圍大、熱演化程度較高、干酪根類(lèi)型以Ⅱ型為主,生成的油質(zhì)較輕、黏度低、可動(dòng)性好;Bakken組混合型頁(yè)巖油系統(tǒng)的油也是如此。據(jù)Bohrer 等[29]的研究,Williston 盆地中部頁(yè)巖油高產(chǎn)區(qū)Bakken組油藏的溫度大于150 ℃,普遍為168~171 ℃,北達(dá)科塔州Bakken組頁(yè)巖油大多數(shù)都為密度小0.82 g/cm3的輕質(zhì)原油[30]。據(jù)Williston 盆地Parshall 油田Bakken組上段頁(yè)巖抽提物、中段夾層抽提物以及中段夾層生產(chǎn)的原油色譜分析結(jié)果對(duì)比(圖6)[31]可見(jiàn),Bakken組上段頁(yè)巖抽提物的色譜分析結(jié)果與中段夾層生產(chǎn)的原油色譜分析結(jié)果極其相近,均以輕烴部分為主。這一方面反映了油質(zhì)較輕、烴源巖熱演化成熟較高,處于成熟晚期-高成熟階段;另一方面反映了頁(yè)巖因致密和滲透性極低及有機(jī)質(zhì)的高吸附效應(yīng),其輕烴部分損失很小,基本保留了生成油的組分特征。而B(niǎo)akken組中段夾層抽提物的色譜分析則顯示,中段白云質(zhì)砂巖與粉砂巖層僅滯留了很少量的輕質(zhì)油,低于C15的烴大多數(shù)已經(jīng)損失,僅滯留了一些相對(duì)重些的烴類(lèi)組分;說(shuō)明在Williston 盆地Bakken組混合型頁(yè)巖油系統(tǒng)中,真正可動(dòng)用油(可有效采出的油)主要為碳數(shù)低于15的輕烴部分。
據(jù)文獻(xiàn)[31]修編。圖6 Williston盆地Parshall 油田Bakken組混合頁(yè)巖油系統(tǒng)油色譜圖Fig.6 Fingerprints of oils from hybrid shale-oil system of Bakken Formation in Parshall field, Williston basin
北美Williston盆地Bakken組混合頁(yè)巖油系統(tǒng)中存在兩種類(lèi)型的頁(yè)巖油“甜點(diǎn)”,即裂縫型富有機(jī)質(zhì)成熟頁(yè)巖段和與成熟富有機(jī)質(zhì)頁(yè)巖層相鄰的貧有機(jī)質(zhì)層段。兩種類(lèi)型的頁(yè)巖油“甜點(diǎn)”均受高含輕質(zhì)油富有機(jī)質(zhì)成熟頁(yè)巖、異常壓力及微裂縫控制,同時(shí)與成熟富有機(jī)質(zhì)頁(yè)巖層相鄰的貧有機(jī)質(zhì)層段也受后期成巖作用的改造制約。
3.1 高含輕質(zhì)油富有機(jī)質(zhì)成熟頁(yè)巖
泥頁(yè)巖富有機(jī)質(zhì)是形成頁(yè)巖油的物質(zhì)基礎(chǔ),也是泥頁(yè)巖層系熱演化過(guò)程中形成異常高壓并發(fā)育微裂縫的前提條件。Bakken組下段和上段頁(yè)巖雖厚度不大,但有機(jī)質(zhì)豐度異常高(圖3)。頁(yè)巖油主要形成于有機(jī)質(zhì)演化液態(tài)烴生成階段(0.50≤Ro<1.30%),在富有機(jī)質(zhì)頁(yè)巖持續(xù)生油階段,石油在頁(yè)巖儲(chǔ)集層中滯留聚集,只有在頁(yè)巖儲(chǔ)集層自身飽和后才外溢[33]。目前,Bakken組頁(yè)巖油高產(chǎn)區(qū)均處于富有機(jī)質(zhì)頁(yè)巖成熟區(qū),油質(zhì)較輕,并且富有機(jī)質(zhì)頁(yè)巖本身的油飽和指數(shù)在100 mg/g左右,當(dāng)大于100 mg/g 以上時(shí)就具有頁(yè)巖油生產(chǎn)潛力[1],孔隙空間油飽和度高達(dá)0.80以上[29]。
3.2 異常壓力
Bakken組混合頁(yè)巖油系統(tǒng)油藏分析發(fā)現(xiàn),頁(yè)巖油高產(chǎn)地區(qū)幾乎均位于超壓區(qū)。異常壓力的成因與生烴作用有關(guān),富有機(jī)質(zhì)頁(yè)巖壓實(shí)埋藏?zé)嵫莼^(guò)程中,由于上覆Lodgepole組為一套致密灰?guī)r并且本身富有機(jī)質(zhì),具有良好的封蓋能力,導(dǎo)致Bakken組上、下富有機(jī)質(zhì)層段生成的烴類(lèi)大量滯留在富有機(jī)質(zhì)頁(yè)巖及與其并置的貧有機(jī)質(zhì)夾層中,從而形成異常高壓[16,24,32],壓力系數(shù)達(dá)1.35~1.58[33]。
3.3 微裂縫
數(shù)據(jù)據(jù)文獻(xiàn)[21]。圖7 Williston盆地Elm Coulee油田Bakken組中段白云石體積分?jǐn)?shù)與孔隙度、含油飽和度關(guān)系圖Fig.7 Diagrams showing the relationship of the content of dolomites with porosity and oil saturation in the middle Bakken Formation in Elm Coulee field, Williston basin
Bakken組混合頁(yè)巖油系統(tǒng)的勘探開(kāi)發(fā)表明,具有工業(yè)產(chǎn)能的頁(yè)巖油主要產(chǎn)自Bakken組中段的貧有機(jī)質(zhì)且微裂縫發(fā)育的砂巖或碳酸鹽巖夾層中以及微裂縫發(fā)育的富有機(jī)質(zhì)Bakken組下段和上段[1,9,27-33];而微裂縫不發(fā)育的層段尤其上、下頁(yè)巖段則因超低滲透能力和有機(jī)質(zhì)對(duì)石油吸附的滯留作用,可采的石油量很小[1]。最近,英國(guó)皇家學(xué)會(huì)院士Steve Larter等[34]撰文指出,烴源巖中滯留油主要賦存在干酪根中,而賦存在干酪根中的滯留油其運(yùn)移方式主要靠擴(kuò)散作用而不是經(jīng)典的達(dá)西滲流作用。因此,人工壓裂作用對(duì)烴源巖中賦存在干酪根內(nèi)的滯留油的生產(chǎn)能力影響也很小。這意味著裂縫不發(fā)育的富有機(jī)質(zhì)泥頁(yè)巖目前難以實(shí)現(xiàn)頁(yè)巖油的有效開(kāi)發(fā)。
3.4 貧有機(jī)質(zhì)層的成巖作用改造
Bakken組混合頁(yè)巖油系統(tǒng)的一個(gè)重要特點(diǎn)是系統(tǒng)內(nèi)發(fā)育與富有機(jī)質(zhì)層相鄰的貧有機(jī)質(zhì)層。盡管Bakken組混合頁(yè)巖油系統(tǒng)的部分頁(yè)巖油產(chǎn)自微裂縫發(fā)育的頁(yè)巖段,但最佳頁(yè)巖油產(chǎn)層則是與富有機(jī)質(zhì)頁(yè)巖層并置的貧有機(jī)質(zhì)層段,尤其是Bakken組中段白云質(zhì)砂巖與粉砂巖,其油飽和指數(shù)普遍高達(dá)400 mg/g(圖3)。據(jù)美國(guó)地質(zhì)調(diào)查局2010年估算,可采石油主要位于具有較高基質(zhì)孔隙度、微裂縫發(fā)育的Bakken組中部白云質(zhì)砂巖(白云巖)層段[21]。Bakken組中段白云質(zhì)砂巖與粉砂巖富含頁(yè)巖油,這得益于成巖作用的改造作用。對(duì)Elm Coulee油田Bakken組中段的成巖作用研究表明,如果沒(méi)有經(jīng)歷多種成巖作用的改造,尤其原始灰質(zhì)砂巖與粉砂巖的早期白云巖化作用以及微裂縫作用,使其增加次生孔隙和滲透率,Elm Coulee不可能產(chǎn)油并成為Williston盆地最大的油田[21]。由圖7可見(jiàn),在Williston盆地Elm Coulee油田,隨著B(niǎo)akken組中段白云石體積分?jǐn)?shù)的增高(即白云巖化作用的增強(qiáng)),其孔隙度和孔隙含油飽和度均顯著增大。顯然,后期成巖改造是混合頁(yè)巖油系統(tǒng)中貧有機(jī)質(zhì)層段頁(yè)巖油富集的重要控制因素。
隨著國(guó)外尤其北美地區(qū)頁(yè)巖油勘探的成功,國(guó)內(nèi)各大石油公司也開(kāi)始了頁(yè)巖油勘探的探索,通過(guò)老井復(fù)查復(fù)試和頁(yè)巖油水平井分段壓裂實(shí)踐,已在東部斷陷湖盆頁(yè)巖油領(lǐng)域取得了突破。如中國(guó)石化2011年在泌陽(yáng)凹陷安深1井核三3頁(yè)巖段大型壓裂日產(chǎn)油4.68 m3,實(shí)現(xiàn)了中國(guó)陸相頁(yè)巖油勘探的突破[35];2012年泌頁(yè)HF-1井水平井分段壓裂最高日產(chǎn)油23.6 m3,成功實(shí)現(xiàn)了國(guó)內(nèi)第一口頁(yè)巖油水平井的分段壓裂[36];在濟(jì)陽(yáng)坳陷沾化凹陷,針對(duì)沙三下--沙四上部署實(shí)施了多口頁(yè)巖油水平井,渤頁(yè)平1井在第二段壓裂后初期日產(chǎn)油8.22 m3,渤頁(yè)平2井共完成5段分段壓裂,其中,第5段壓裂深度3 125.94~3 244.96 m,進(jìn)行了2次壓裂,壓后分別日產(chǎn)油1.5 m3和2.3 m3[37]。盡管如此,這些頁(yè)巖油勘探井日產(chǎn)油量均衰減很快,難以形成具有經(jīng)濟(jì)效益的產(chǎn)量,故目前我國(guó)東部斷陷湖盆頁(yè)巖油的勘探總體效果是不理想的。
表2為東部湖相盆地頁(yè)巖油勘探目標(biāo)層與北美Williston Bakken組目標(biāo)層地質(zhì)特征對(duì)比表,顯然對(duì)比結(jié)果對(duì)揭示東部湖盆頁(yè)巖油的勘探總體效果不佳的原因具有重要啟示。首先,受頁(yè)巖氣勘探思路的影響,目前我國(guó)東部湖盆頁(yè)巖油勘探目標(biāo)層重點(diǎn)也聚焦于富有機(jī)質(zhì)泥頁(yè)巖層段,而富有機(jī)質(zhì)層段相對(duì)貧有機(jī)質(zhì)的碳酸鹽巖或砂巖夾層具有更低的基質(zhì)孔隙度與滲透率;其次,有機(jī)質(zhì)對(duì)滯留油具有相對(duì)高的吸附或互溶效應(yīng),這必然導(dǎo)致富有機(jī)質(zhì)層段雖高含油,但難以有效動(dòng)用,除非微裂縫異常發(fā)育并飽和油。因此,把頁(yè)巖油勘探目標(biāo)層聚焦于富有機(jī)質(zhì)泥頁(yè)巖層段,是我國(guó)東部湖盆頁(yè)巖油勘探效果欠佳的主觀因素。
另外,東部湖盆頁(yè)巖油勘探效果不佳尚與客觀因素有關(guān)。第一,目前進(jìn)行頁(yè)巖油勘探的沾化凹陷沙三下和泌陽(yáng)凹陷核三段富有機(jī)質(zhì)泥頁(yè)巖層段,其微裂縫發(fā)育程度一般有限,僅局部發(fā)育;如泌陽(yáng)凹陷泌頁(yè)HF-1井核三段紋層-層狀白云質(zhì)頁(yè)巖、泥巖段相對(duì)發(fā)育層理縫(圖8a),局部發(fā)育構(gòu)造縫,并且層理縫與構(gòu)造縫均含油,而塊狀白云質(zhì)泥巖段僅局部發(fā)育構(gòu)造微裂縫(圖8b--d)。第二,沾化凹陷沙三下和泌陽(yáng)凹陷核三段富有機(jī)質(zhì)泥頁(yè)巖層段盡管具有很強(qiáng)的非均質(zhì)性,但其內(nèi)部含油的貧有機(jī)質(zhì)的碳酸鹽巖或粉砂巖夾層很薄,一般小于5 cm(圖8e、f)。第三,在相同熱演化階段,湖相Ⅰ型烴源巖較海相Ⅱ型烴源巖生成的油重、油氣比小、黏度大。當(dāng)前東部頁(yè)巖油的勘探深度小于3 500 m,而該埋藏深度內(nèi)沾化凹陷沙三下和泌陽(yáng)凹陷核三段富有機(jī)質(zhì)泥頁(yè)巖層段熱演化程度偏低,一般Ro<1.00%導(dǎo)致生成的油較重,可動(dòng)性差(表2)。第四,由于湖相烴源巖有機(jī)質(zhì)類(lèi)型以Ⅰ型為主,較海相Ⅱ型有機(jī)質(zhì)為主烴源巖生成的油含蠟量高,導(dǎo)致油的可流動(dòng)性更低。
為此,針對(duì)我國(guó)東部湖盆頁(yè)巖油的勘探,建議目前加強(qiáng)如下兩個(gè)方面的研究:
1)加強(qiáng)成熟富有機(jī)質(zhì)層系內(nèi)貧有機(jī)質(zhì)碳酸鹽巖或粉砂、細(xì)砂巖薄夾層的精細(xì)評(píng)價(jià)與頁(yè)巖油勘探。充分利用鉆井、測(cè)井、錄井等資料,精細(xì)評(píng)價(jià)我國(guó)東部湖相盆地成熟富有機(jī)質(zhì)層系中貧有機(jī)質(zhì)碳酸鹽巖或粉砂、細(xì)砂巖薄夾層的發(fā)育、分布特征、壓力場(chǎng)特征及微裂縫發(fā)育情況和含油性特征,為貧有機(jī)質(zhì)層的頁(yè)巖油勘探提供有利層段與目標(biāo)區(qū)。
2)對(duì)于成熟富有機(jī)質(zhì)泥頁(yè)巖層段,應(yīng)重點(diǎn)開(kāi)展微裂縫發(fā)育情況、壓力場(chǎng)特征及油飽和指數(shù)評(píng)價(jià),圈定裂縫發(fā)育、處于異常高壓并且油飽和指數(shù)高于100 mg/g的深度段以及分布范圍,為泥頁(yè)巖裂縫型頁(yè)巖油勘探提供有利層段與目標(biāo)區(qū)。
表2 東部湖相盆地頁(yè)巖油勘探目標(biāo)層與北美Williston Bakken組目標(biāo)層地質(zhì)特征對(duì)比
Table 2 Comparative table showing geological characteristics of shale oil exploring target section in lacustrine face basins of Eastern China and in Williston Bakken, North America
頁(yè)巖油勘探目標(biāo)層地質(zhì)特征Williston盆地沾化凹陷泌陽(yáng)凹陷地層時(shí)代晚泥盆世早密西西比世沙三下核三段沉積環(huán)境深水陸棚淺海沉積相深湖淺湖沉積相深湖淺湖沉積相巖性組合貧有機(jī)質(zhì)白云質(zhì)砂巖、粉砂巖或微裂縫異常發(fā)育的富有機(jī)質(zhì)頁(yè)巖段富有機(jī)質(zhì)紋層狀、層狀或塊狀泥質(zhì)灰?guī)r與灰質(zhì)泥巖夾很薄(一般小于1cm)的微晶灰?guī)r富有機(jī)質(zhì)紋層狀、層狀或塊狀白云質(zhì)或灰質(zhì)頁(yè)巖、泥巖夾薄層(一般小于5cm)粉砂巖、白云巖基質(zhì)孔隙度/%1.00~16.000.60~6.100.80~2.20基質(zhì)滲透率/mD0.01~1.000.08~0.00060.02~0.0009微裂縫發(fā)育情況異常發(fā)育一般發(fā)育有限,局部發(fā)育一般發(fā)育有限,局部發(fā)育壓力系數(shù)1.35~1.581.20~1.600.95~1.05頁(yè)巖油密度/(g/cm3)0.80~0.820.91~0.930.86
a.含油層理縫異常發(fā)育;b.富有機(jī)質(zhì)頁(yè)巖與貧有機(jī)質(zhì)白云巖互層產(chǎn)出,并被構(gòu)造微裂縫穿切,層理縫、構(gòu)造微裂縫以及白云巖薄夾層含油;c.低角度含油構(gòu)造微裂縫;d.高角度含油構(gòu)造微裂縫;e、f.含油粉砂巖薄夾層。圖8 泌陽(yáng)凹陷泌頁(yè)HF-1井核三段層理縫、構(gòu)造微裂縫以及粉砂巖、白云巖薄夾層普遍含油Fig.8 Photos showing oil-bearing thin interlayer of siltstone, dolostone of Eh3 with fedding cnacks and microfractures, well Biye HF-1 in Biyang depression
1)北美Williston 盆地Bakken組混合頁(yè)巖油系統(tǒng)由Bakken組(包括下段、中段和上段)和上覆Lodgepole組下段以及下伏Three Forks組上段組成。其中,Bakken組下段和上段為該頁(yè)巖油系統(tǒng)的生油巖,整個(gè)Bakken組、Lodgepole組下段和Three Forks組上段構(gòu)成基本連續(xù)的儲(chǔ)集層。
2)Bakken組混合頁(yè)巖油系統(tǒng)存在裂縫型富有機(jī)質(zhì)成熟頁(yè)巖段、與成熟富有機(jī)質(zhì)頁(yè)巖層相鄰的貧有機(jī)質(zhì)層段兩種類(lèi)型的頁(yè)巖油“甜點(diǎn)”。兩種類(lèi)型的“甜點(diǎn)”均受高含輕質(zhì)油富有機(jī)質(zhì)成熟頁(yè)巖、異常壓力及微裂縫控制,同時(shí)貧有機(jī)質(zhì)層段也受后期成巖作用改造制約。貧有機(jī)質(zhì)層段具有相對(duì)高的孔隙度、滲透率及低的吸附量,其是混合型頁(yè)巖油系統(tǒng)中的主要產(chǎn)層。
3)把頁(yè)巖油勘探目標(biāo)層聚焦于富有機(jī)質(zhì)泥頁(yè)巖層段,是我國(guó)東部湖盆頁(yè)巖油勘探效果欠佳的主觀因素;而富有機(jī)質(zhì)泥頁(yè)巖層段天然微裂縫發(fā)育局限,滯留油主要賦存在有機(jī)質(zhì)中,熱演化程度偏低使滯留油較重及湖相Ⅰ型烴源巖生成的油含蠟量高等因素,是導(dǎo)致可采的頁(yè)巖油量十分有限的客觀因素。
4)建議加強(qiáng)成熟富有機(jī)質(zhì)層系內(nèi)貧有機(jī)質(zhì)碳酸鹽巖或粉砂、細(xì)砂巖薄夾層的精細(xì)評(píng)價(jià)與勘探,加強(qiáng)成熟富有機(jī)質(zhì)泥頁(yè)巖層段裂縫型頁(yè)巖油的評(píng)價(jià)與勘探。
[1] Jarvie D M. Shale Resource Systems for Oil and Gas: Part 2-Shale-Oil Resource Systems[C]//Breyer J A. Shale Reservoirs-Giant Resources for the 21st Century: AAPG Memoir 97. Houston: AAPG,2012:89-119.
[2] 王志剛. 沾化凹陷裂縫型泥質(zhì)巖油藏研究[J]. 石油勘探與開(kāi)發(fā),2003,30(1):41-43. Wang Zhigang. A Study of Shale-Fractured Reservoirs in Zhanhua Sag[J]. Petroleum Exploration and Development, 2003,30(1):41-43.
[3] 徐福剛,李琦,康仁華,等. 沾化凹陷泥巖裂縫油氣藏研究[J]. 礦物巖石,2003,23(1):74-76. Xu Fugang, Li Qi, Kang Renhua, et al. The Characteristics of Fractured Shale Reservoir in Zhanhua Depression[J]. Journal of Mineral and Petrology, 2003,23(1):74-76.
[4] 智鳳琴,李琦,樊德華,等. 沾化凹陷泥巖裂縫油氣藏油氣運(yùn)移聚集研究[J].油氣地質(zhì)與采收率,2004,11(5):27-29. Zhi Fengqin, Li Qi, Fan Dehua, et al. Study on Migration and Accumulation of Oil and Gas in Fractured Shale Reservoir in Zhanhua Sag[J]. Petroleum Geology and Recovery Efficiency, 2004,11(5):27-29.
[5] 周慶凡,楊國(guó)豐. 致密油與頁(yè)巖油的概念與應(yīng)用[J]. 石油與天然氣地質(zhì),2012,33(4):541-544,570. Zhou Qingfan, Yang Guofeng. Definition and Application of Tight Oil and Shale Oil Terms[J]. Oil &Gas Geology, 2012,33(4):541-544,570.
[6] 孫紅軍,劉立群,吳世祥,等. 從深水油氣勘探到頁(yè)巖油氣開(kāi)發(fā)[J]. 石油與天然氣地質(zhì),2009,30(5):1-5. Sun Hongjun, Liu Liqun, Wu Shixiang, et al. From Deep Water Area Oil and Gas Exploring to Development of Shale Oil and Gas[J]. Oil & Gas Geology, 2009,30(5):1-5.
[7] Pollastro R M,Roberts L N R,Cook T A. Geologic Assessment of Technically Recoverable Oil in the Devonian and Mississippian Bakken Formation[R]. Reston: U S Geological Survey, 2011:4-5.
[8] Haid J H. Tectonic Subsidence Analysis of the Williston Basin[D]. Saskatchewan:University of Saskatchewan, 1991:1-2.
[9] Pitman J K, Price L C, LeFever J A. Diagenesis and Fracture Development in the Bakken Formation, Williston Basin: Implications for Reservoir Quality in the Middle Member[R]. Denver: U S Geological Survey,2001:2-3.
[10] Sloss L L.Sequences in the Cratonic Interior of North America[J]. Bulletin of the Geological Society of America, 1963,74:93-113.
[11] Sloss L L. The Williston Basin in the Family of Cratonic Basins[C]// Longman M W. Williston Basin: Anatomy of a Cratonic Oil Province. Denver:Denver Rocky Mountain Association of Geologists,1987:1-8.
[12] Green A G,Weber W,Hajnal Z.Evolution of Proterozoic Terranes Beneath the Williston Basin[J]. Geology, 1985, 13:624-628.
[13] Gerhard L C, Anderson S B. Geology of the Williston Basin (United States Portion)[C]// Sloss L L. Sedimentary Cover-North American Craton. Boulder: Geological Society of America, The Geology of North America,1988: 221-241.
[14] Sonnenberg S A, Vickery J, Theloy C, et al. Middle Bakken Facies, Williston Baisn, USA: A Key to Prolific Production[EB/OL].[2012-11-05]. http://www. searchanddiscovery. Com /abstracts /html / 2011 /annual / abstracts / Sonnenberg3. Html.
[15] Nordeng S H. The Bakken Petroleum System: An Example of a Continuous Petroleum Accumulation[J]. DMR Newsletter, 2010, 36(1):21-24.
[16] Halabura S,Buatois L,Angulo S,et al.From Source to Trap: A Review of the Bakken Petroleum System, Upper Devonian-Mississippian, Southeastern Saskatchewan[J]. Saskatchewan Geological Survey,2007(1):1-8.
[17] Smith M G, Bustin R M. Sedimentology of the Late Devonian and Early Mississippian Bakken Formation, Williston Basin[C]//Hunter L D V,Schalla R A. 7th International Williston Basin Symposium Guidebook. Billings: Montana Geological Society,1995:103-114.
[18] Le Fever J A, Martiniuk C D, Dancsok E F R, et al. Petroleum Potential of the Middle Member,Bakken Formation,Williston Basin[C]//Christopher J E,Haidl F.6th International Williston Basin Symposium. Regina: Saskatchewan Geological Society,1991:74-94.
[19] Smith M G, Bustin R M. Production and Preservation of Organic Matter During Deposition of the Bakken Formation (Late Devonian and Early Mississippian), Williston Basin[J]. Palaeogeog Palaeoclim Palaeoecol,1998,142:185-200.
[20] Sonnenberg S A,Parmudito A. Petroleum Geology of the Giant Elm Coulee Field, Williston Basin[J]. AAPG Bulletin,2009,93(9):1127-1153.
[21] Alexandre C S, Sonnenberg S A,Sarg J F. Reservoir Characterization and Petrology of the Bakken Formation, Elm Coulee Field, Richland County, MT[EB/OL].[2012-11-05]. http://www. Searchanddiscovery. Com/abstracts/html/2011/annual/abstracts/Alexandre. html.
[22] Berwick B. Depositional Environment, Mineralogy, and Sequence Stratigraphy of the Late Devonian Sanish(Upper Three Forks Formation), Williston Basin, North Dakota[D]. Colorado:Colorado School of Mines,2009:263.
[23] Gantyno A. Sequence Stratigraphy and Microfacies Analysis of the Late Devonian Upper Three Forks Formation, Williston Basin, North Dakota and Montana,USA[D]. Colorado:Colorado School of Mines,2010:201.
[24] Sonnenberg S A, Gantyno A,Sarg R. Petroleum Potential of the Upper Three Formation, Williston Basin,USA[EB/OL].[2012-11-05].http://www. searchanddiscovery. Com / abstracts / html / 2011 / annual /abstracts / Sonnenberg3.html.
[25] Almanza A. Integrated Three Dimensional Geological Model of the Devonian Bakken Formation Elm Coulee Field, Williston Basin: Richland County, Montana[D]. Colorado:Colorado School of Mines,2011:2-8.
[26] Hill R, Kuhn P, diPrimio R, et al. Integrated Geochemistry and Basin Modelling Study of the Bakken Formation, Williston Basin, USA[EB/OL].[2012-11-05].http://www. searchanddiscovery. Com /abstracts /html /2011/ annual /abstracts / Hill.html.
[27] Sonnenberg S A, Appleby S K,Sarg J R. Quantitative Mineralogy and Microfractures in the Middle Bakken Formation, Williston Basin, North Dakota[EB/OL].[2012-11-05]. http://www. searchanddiscovery. Com /abstracts /html /2010/ annual /abstracts / Sonnenberg. html.
[28] Coskey R J,Leonard J L. Bakken Oil Accumulations:What’s the Trap?[EB/OL].[2012-11-05].http://www. searchanddiscovery. Com /abstracts /html /2009/ annual /abstracts / Coskey. html.
[29] Bohrer M, Fried S, Helms L, et al. State of North Dakota Bakken Formation Resource Study Project[R]. North Dakota: North Dakota Department of Mineral Resources,2008.
[30] Kuhn P P, Primio R, Horsfield B. Inconsistency of Hydrocarbon Generation Potential and Production Data of the Bakken Play of North Dakota[R]. London:The Geological Society,2009.
[31] Jarvie D M.Components and Processes Affecting Producibility and Commerciality of Shale Resource System[C]// Li M W. Abstracts of International Symposium on Shale Oil Technologies. Wuxi: Sinopec Key Laboratory of Petroleum Accumulation Mechanisms,2012:8-9.
[32] LeFever, J. Oil Production from the Bakken Formation: A Short History[J]. North Dakota Geological Survey Newsletter, 2005, 32(1):5-10.
[33] 鄒才能,楊智,崔景偉,等. 頁(yè)巖油形成機(jī)制、地質(zhì)特征及發(fā)展對(duì)策[J]. 石油勘探與開(kāi)發(fā),2013,40(1):14-26. Zou Caineng, Yang Zhi, Cui Jingwei, et al. Formation Mechanism, Geological Characteristics and Development Strategy of Nonmarine Shale Oil in China[J]. Petroleum Exploration and Development, 2013,40(1):14-26.
[34] Larter S, Huang Haiping, Bennett B. What Don’t We Know About Self Sourced Oil Reservoirs: Challenges and Potential Solutions[R]. Calgary:Society of Petroleum Engineers,2012:1-4.
[35] 陳祥,王敏,嚴(yán)永新,等. 泌陽(yáng)凹陷陸相頁(yè)巖油氣成藏條件[J]. 石油與天然氣地質(zhì),2011,32(4):568-575. Chen Xiang , Wang Min , Yan Yongxin , et al. Accumulation Conditions for Continental Shale Oil and Gas in the Biyang Depression[J]. Oil & Gas Geology,2011,32(4):568-575.
[36] 馬永生,馮建輝,牟澤輝,等. 中國(guó)石化非常規(guī)油氣資源潛力及勘探進(jìn)展[J]. 中國(guó)工程科學(xué),2012,14(6):22-30. Ma Yongsheng, Feng Jianhui, Mu Zehui, et al. The Potential and Exploring Progress of Unconventional Hydrocarbon Resources in Sinopec[J]. China Engineering Sciences, 2012,14(6):22-30.
[37] 中國(guó)石化勝利油田分公司. 勝利油田2012年勘探工作進(jìn)展及2013年部署建議[R]. 東營(yíng):中國(guó)石化勝利油田分公司, 2012. Shengli Oil Field Branch Company, Sinopec. The Exploring Progress of 2012 Year and the Suggestion of Exploring Planning of 2013 Year in Shengli Oil Field[R]. Dongying: Shengli Oil Field Branch Company, Sinopec,2012.
Characteristics of Typical Hybrid Shale-Oil System in North America and Its Implications
Li Zhiming1,2, Rui Xiaoqing1,2, Li Maowen1,2, Cao Tingting1,2,Xu Ershe1,2, Tao Guoliang1,2, Jiang Qigui1,2
1.WuxiResearchInstituteofPetroleumGeology,RIPEP,SINOPEC,Wuxi214151,Jiangsu,China2.KeyLaboratoryofPetroleumAccumulationMechanisms,SINOPEC,Wuxi214126,Jiangsu,China
The Bakken Formation of Williston basin in North America is a typical hybrid shale-oil system. The characteristics of geology and geochemistry, porosity and permeability, micro-fracture development, and shale oil for organic-rich shales and juxtaposed organic-lean intervals, are systematically analyzed in this paper. The results show that the shale oil sweet point is mainly controlled by the mature shale, which is rich in organic matter and high content of light oils, abnormal pressure, well-developed micro-fractures, and dolomitization in organic-lean intervals all together. Meanwhile, organic-lean intervals are the main shale oil productive layer in hybrid shale oil system due to its relative high porosity, permeability, and low adsorptive capacity. This has an important implication for discovering the causes that the continental shale oil exploring results are not desirable in Eastern China. The subjective factor is that only organic rich shale and mudstone are taken as shale oil exploration targets; while the objective factors are that the development of natural micro-fracture is limited in organic-rich shale and mudstone but the organic-lean intervals, and the retained oil is mainly existed in organic matter with high wax generated from lacustrine source rocks relative to marine source rocks; the maturity of organic-rich shale and mudstone is not high enough to generate lighter oil. Therefore, we suggest to enhance a fine evaluation and an exploration of organic-lean carbonate or silt and fine sandstone with thin intervals in mature organic-rich shale system; and mature organic-rich shale with open fractures is proposed for shale oil exploring in lacustrine face basins of Eastern China.
hybrid shale-oil system;Bakken Formation;Williston basin;shale oil exploring;Eastern China;North America; shale oil
10.13278/j.cnki.jjuese.201504110.
2014-11-25
國(guó)家“973”計(jì)劃項(xiàng)目(2014CB239101);中國(guó)石油化工股份有限公司科技開(kāi)發(fā)部項(xiàng)目(P12012)
李志明(1968--),男,高級(jí)工程師,主要從事油氣地球化學(xué)研究與石油地質(zhì)綜合評(píng)價(jià),E-mail:lizm.syky@sinopec.com。
10.13278/j.cnki.jjuese.201504110
P618.12
A
李志明,芮曉慶,黎茂穩(wěn),等.北美典型混合頁(yè)巖油系統(tǒng)特征及其啟示.吉林大學(xué)學(xué)報(bào):地球科學(xué)版,2015,45(4):1060-1072.
Li Zhiming, Rui Xiaoqing, Li Maowen,et al.Characteristics of Typical Hybrid Shale-Oil System in North American and Its Implications.Journal of Jilin University:Earth Science Edition,2015,45(4):1060-1072.doi:10.13278/j.cnki.jjuese.201504110.