亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Enveloping algebras of generalized H-Hom-Lie algebras

        2015-03-01 09:24:28WangShengxiangWangShuanhong

        Wang Shengxiang  Wang Shuanhong

        (1Department of Mathematics, Southeast University, Nanjing 211189, China)(2School of Mathematics and Statistics, Chuzhou University, Chuzhou 239000, China)

        ?

        Enveloping algebras of generalizedH-Hom-Lie algebras

        Wang Shengxiang1,2Wang Shuanhong1

        (1Department of Mathematics, Southeast University, Nanjing 211189, China)(2School of Mathematics and Statistics, Chuzhou University, Chuzhou 239000, China)

        Abstract:Let H be a Hopf algebra and YD the Yetter-Drinfeld category over H. First, the enveloping algebra of generalized H-Hom-Lie algebra L, i.e., Hom-Lie algebra L in the category YD, is constructed. Secondly, it is obtained that U(L)=T(L)/I, where I is the Hom-ideal of T(L) generated by {l?l′-l(-1)·l′?l,l′∈L}, and u:L→T(L)/I is the canonical map. Finally, as the applications of the result, the enveloping algebras of generalized H-Lie algebras, i.e., the Lie algebras in the category YD and the Hom-Lie algebras in the category of left H-comodules are presented, respectively.

        Key words:enveloping algebra; generalized H-Hom-Lie algebra; Yetter-Drinfeld category

        Received 2013-10-07.

        Biographies:Wang Shengxiang (1979—), male, doctor, wangsx-math@163.com; Wang Shuanhong (corresponding author), male, doctor, professor, shuanhwang@seu.edu.cn.

        Foundation items:The National Natural Science Foundation of China (No.11371088), the Excellent Young Talents Fund of Anhui Province (No.2013SQRL092ZD), the Natural Science Foundation of Higher Education Institutions of Anhui Province (No.KJ2015A294), China Postdoctoral Science Foundation (No.2015M571725), the Excellent Young Talents Fund of Chuzhou University (No.2013RC001).

        Citation:Wang Shengxiang, Wang Shuanhong. Enveloping algebras of generalizedH-Hom-Lie algebras[J].Journal of Southeast University (English Edition),2015,31(4):588-590.[doi:10.3969/j.issn.1003-7985.2015.04.027]

        Hom-Lie algebras were first studied by Hartwig et al. in Ref.[1], where they introduced the structure of the Hom-Lie algebras in the context of the deformations of Witt and Virasoro algebras. The ideal is that the Jacobi identity is replaced by the so-called Hom-Jacobi identity, namely,

        [α(x),[y,z]]+[α(y),[z,x]]+[α(z),[x,y]]=0

        whereαis an endomorphism of Lie algebras. Hom-algebras were first studied by Makhlouf and Silvestrov in Ref.[2], in which the associativity is replaced by the Hom-associativity, namely,

        α(x)(yz)=(xy)α(z)

        Dually, Makhlouf et al.[3-4]gave the Hom-coassociativity for Hom-coalgebras. Later, Chen et al.[5]studied Hom-Lie bialgebras as a natural generalization of Lie bialgerbas. Caenepeel and Goyvaerts[6]studied Hom-Hopf algebras from a categorical view point, and Yau[7]introduced the notion of quasitriangular Hom-Hopf algebras. Also, he proved that each quasitriangular Hom-Hopf algebra produces a solution of the Hom-Yang-Baxter equation, and constructed the enveloping algebras of Hom-Lie algebras in Ref.[8].

        Motivated by Wang et al.[9], we considered Hom-Lie algebras in Yetter-Drinfeld categories and proved that eachH-Hom-algebra gives rise to a generalizedH-Hom-Lie algebra. It is a natural question whether we can construct enveloping algebras of generalizedH-Hom-Lie algebras or not. This paper will give a positive answer to this question.

        Throughout this paper, all algebraic systems are supposed to be over a fieldk. About the Hom-algebras and Hom-Lie algebras, the readers can be referred to Caenepeel and Goyvaerts[6]as general references, about Hopf algebras to Sweedler[10]and Yetter-Drinfeld categories to Radford[11]. IfCis a coalgebra, we use the Sweedler-type notation for the comultiplication:Δ(c)=c1?c2, for allc∈C.

        1GeneralizedH-Hom-Lie Coalgebras

        ρ(h·m)=h1m(-1)S(h3)?h2·m0

        (a(-1)·b)(-1)·a0?(a(-1)·b)0=a?ba,b∈A

        α(a)(bc)=(ab)α(c), α(ab)=α(a)α(b)

        a1A=1Aa=α(a), α(1A)=1Aa,b,c∈A

        1) H-anti-commutativity

        [l, l′]=-[l(-1)·l′, l0]l, l′∈L

        2) H-Hom-Jacobiidentity

        {l?l′?l"}+(τ?1)(1?τ){l?l′?l"}+

        (1?τ)(τ?1){l?l′?l"}=0

        foralll, l′, l"∈L,where{l?l′?l"}denotes[α(l), [l′, l"]].

        Proposition1[9]Let(A, α)beanH-Hom-algebra.AssumethatthebraidingτissymmetriconA.Thenthetriple(A, [,], α)isageneralizedH-Hom-Liealgebra,wherethebracketproductisdefinedby

        [,]:A?A→A, [a, b]=ab-(a(-1)·b)a0a, b∈A

        α-1(c1)?Δ(c2)=Δ(c1)?α-1(c2)

        Δ(α(c))=α(c1)?α(c2)

        c1ε(c2)=α-1(c)=ε(c1)c2, ε(α(c))=ε(c)

        1) H-anti-cocommutativity

        δ=-τδ

        2) H-Hom-coJacobiidentity

        (1+(τ?1)(1?τ)+(1?τ)(τ?1))(α?δ)δ=0

        Proposition2Let(C, Δ, α)beageneralizedH-Hom-coalgebra.AssumethatthebraidingτissymmetriconC.Thenthetriple(C, δ, α)isageneralizedH-Hom-Liecoalgebra,wherethecobracketisdefinedby

        δ:C→C?C, δ(c)=c1?c2-(c1(-1)·c2)?c10c∈C

        δ(h·c)=(h·c)1?(h·c)2-((h·c)1(-1)·(h·c)2)?

        (h·c)10=h1·c1?h2·c2-(h11c1(-1)S(h13))·

        (h2·c2)?h12·c10=h1·c1?h2·c2-

        h1c1(-1)·c2?h2·c10=h·(c1?c2)-

        h·(c1(-1)·c2?c10)

        Soδis leftH-linear. We can also conclude that

        (1?δ)ρ(c)=c(-1)?(c01?c02-c01(-1)·c02?c010)=

        c1(-1)c2(-1)?(c10?c20-c10(-1)·c20?c100)

        ρδ(c)=c1(-1)c2(-1)?c10?c20-(c1(-1)·c2)(-1)c10(-1)?

        (c1(-1)·c2)0?c100=c1(-1)c2(-1)?c10?c20-c1(-1)1c2(-1)S(c1(-1)3)c10(-1)?c1(-1)2·c20?c100=

        c1(-1)c2(-1)?(c10?c20-c10(-1)·c20?c100)

        Hence, (1?δ)ρ=ρδ, that is,δis leftH-colinear.

        Next, we verify that the cobracketδis compatible withα. In fact, for anyc∈C, we obtain

        δα(c)=α(c)1?α(c)2-(α(c)1(-1)·α(c)2)?α(c)10=

        α(c1)?α(c2)-(α(c1)(-1)·α(c2))?α(c1)0=

        α(c1)?α(c2)-c1(-1)·α(c2)?α(c10)=

        α(c1)?α(c2)-α(c1(-1)·c2)?α(c10)

        as required. To show that (C,Δ,α) is a generalizedH-Hom-Lie coalgebra in the sense of Definition 4, we verify theH-anti-cocommutativity andH-Hom-coJacobi identity. However, this is a routine work sinceτis symmetric onC. This completes the proof.

        2Enveloping Algebras of GeneralizedH-Hom-Lie Algebras

        In this section, we will construct the enveloping algebraU(L) of a generalizedH-Hom-Lie algebraL.

        fα1=α2f,f([x,y]L1)=[f(x),f(y)]L2

        for allx,y∈L1.

        h·(l?l′-l(-1)·l′?l0-[l,l′])=

        h1·l?h2·l′-h1l(-1)·l′?h2·l0-[h1·l,h2·l′]=h1·l?h2·l′-(h1·l)(-1)·(h2·l′)?(h1·l)0-[h1·l,h2·l′]=h1·l?h2·l′-h1l(-1)S(h3)·

        (h4·l′)?h2·l0-[h1·l,h2·l′]=h1·l?

        h2·l′-h1·(l(-1)·l′)?h2·l0-[h1·l,h2·l′]∈I

        f([l,l′])=[f(l),f(l′)]=

        f(l)f(l′)-(f(l)(-1)·f(l′))f(l)0

        References

        [1]Hartwig J T, Larsson D, Silvestrov S D. Deformations of Lie algebras using σ-derivations [J].JAlgebra, 2006, 295(2): 314-361.

        [2]Makhlouf A, Silvestrov S D. Hom-algebra structures [J].JGenLieTheory, 2008, 3(2): 51-64.

        [3]Makhlouf A, Silvestrov S D. Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras [C]//GeneralizedLieTheoryinMathematics,PhysicsandBeyond. Berlin:Springer-Verlag, 2009:189-206.

        [4]Makhlouf A, Silvestrov S D. Hom-algebras and Hom-coalgebras [J].JAlgebraAppl, 2010, 9(4): 553-589.

        [5]Chen Y Y, Wang Z W, Zhang L Y. Quasi-triangular Hom-Lie bialgebras [J].JLieTheory, 2012, 22(4):1075-1089.

        [6]Caenepeel S, Goyvaerts I. Monoidal Hom-Hopf algebras [J].CommAlgebra, 2011, 39(6): 2216-2240.

        [7]Yau D. The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras [J].JPhysA, 2009, 42(16): 165202-1-165202-12.

        [8]Yau D. Enveloping algebra of Hom-Lie algebras [J].JGenLieTheoryAppl, 2008, 2(2): 95-108.

        [9]Wang S X, Wang S H. Hom-Lie algebras in Yetter-Drinfeld categories [J].CommAlgebra, 2014, 42(10): 4540-4561.

        [10]Sweedler M E.Hopfalgebras[M]. New York: Benjamin, 1969.

        [11]Radford D E. The structure of Hopf algebra with a projection [J].JAlgebra, 1985, 92(2): 322-347.

        [12]Wang S H. On the generalizedH-Lie structure of associative algebras in Yetter-Drinfeld categories [J].CommAlgebra, 2002, 30(1): 307-325.

        doi:10.3969/j.issn.1003-7985.2015.04.027

        日本国产一区二区在线观看| 国产欧美日韩一区二区三区在线| 91精品啪在线观九色| 久久人人爽av亚洲精品| 国产伦精品一区二区三区免费| 国产精品一区二区韩国AV| 亚洲av第一区综合激情久久久| 成人大片免费视频播放一级| 日本肥老妇色xxxxx日本老妇| 亚洲精品国产v片在线观看| 日韩在线视频不卡一区二区三区 | 国语对白嫖老妇胖老太| 男女爽爽无遮挡午夜视频| 亚洲伊人久久一次| 成年女人毛片免费视频| 中文字幕av无码一区二区三区电影| 男女搞基视频免费网站| 亚洲日韩精品无码av海量| 国产精品国产三级国产av′| 大屁股少妇一区二区无码| 国产毛片视频一区二区三区在线| 偷看农村妇女牲交| 大地资源中文在线观看官网第二页| 亚洲国产剧情一区在线观看| av手机免费在线观看高潮| 成人国产精品一区二区网站公司 | 亚洲AV无码不卡无码国产| 国产激情视频在线观看首页| AV中文字幕在线视| 国产丝袜爆操在线观看| 国产成人精品a视频| 日韩区在线| 国产网友自拍视频在线观看| 精品无码av无码专区| 国产免费av片在线观看播放| 午夜亚洲国产精品福利| 亚洲天堂亚洲天堂亚洲色图| 一区二区三区乱码在线 | 欧洲| 亚洲日本欧美产综合在线| 国产亚洲无码1024| 亚洲乱码中文字幕视频|