亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Enveloping algebras of generalized H-Hom-Lie algebras

        2015-03-01 09:24:28WangShengxiangWangShuanhong

        Wang Shengxiang  Wang Shuanhong

        (1Department of Mathematics, Southeast University, Nanjing 211189, China)(2School of Mathematics and Statistics, Chuzhou University, Chuzhou 239000, China)

        ?

        Enveloping algebras of generalizedH-Hom-Lie algebras

        Wang Shengxiang1,2Wang Shuanhong1

        (1Department of Mathematics, Southeast University, Nanjing 211189, China)(2School of Mathematics and Statistics, Chuzhou University, Chuzhou 239000, China)

        Abstract:Let H be a Hopf algebra and YD the Yetter-Drinfeld category over H. First, the enveloping algebra of generalized H-Hom-Lie algebra L, i.e., Hom-Lie algebra L in the category YD, is constructed. Secondly, it is obtained that U(L)=T(L)/I, where I is the Hom-ideal of T(L) generated by {l?l′-l(-1)·l′?l,l′∈L}, and u:L→T(L)/I is the canonical map. Finally, as the applications of the result, the enveloping algebras of generalized H-Lie algebras, i.e., the Lie algebras in the category YD and the Hom-Lie algebras in the category of left H-comodules are presented, respectively.

        Key words:enveloping algebra; generalized H-Hom-Lie algebra; Yetter-Drinfeld category

        Received 2013-10-07.

        Biographies:Wang Shengxiang (1979—), male, doctor, wangsx-math@163.com; Wang Shuanhong (corresponding author), male, doctor, professor, shuanhwang@seu.edu.cn.

        Foundation items:The National Natural Science Foundation of China (No.11371088), the Excellent Young Talents Fund of Anhui Province (No.2013SQRL092ZD), the Natural Science Foundation of Higher Education Institutions of Anhui Province (No.KJ2015A294), China Postdoctoral Science Foundation (No.2015M571725), the Excellent Young Talents Fund of Chuzhou University (No.2013RC001).

        Citation:Wang Shengxiang, Wang Shuanhong. Enveloping algebras of generalizedH-Hom-Lie algebras[J].Journal of Southeast University (English Edition),2015,31(4):588-590.[doi:10.3969/j.issn.1003-7985.2015.04.027]

        Hom-Lie algebras were first studied by Hartwig et al. in Ref.[1], where they introduced the structure of the Hom-Lie algebras in the context of the deformations of Witt and Virasoro algebras. The ideal is that the Jacobi identity is replaced by the so-called Hom-Jacobi identity, namely,

        [α(x),[y,z]]+[α(y),[z,x]]+[α(z),[x,y]]=0

        whereαis an endomorphism of Lie algebras. Hom-algebras were first studied by Makhlouf and Silvestrov in Ref.[2], in which the associativity is replaced by the Hom-associativity, namely,

        α(x)(yz)=(xy)α(z)

        Dually, Makhlouf et al.[3-4]gave the Hom-coassociativity for Hom-coalgebras. Later, Chen et al.[5]studied Hom-Lie bialgebras as a natural generalization of Lie bialgerbas. Caenepeel and Goyvaerts[6]studied Hom-Hopf algebras from a categorical view point, and Yau[7]introduced the notion of quasitriangular Hom-Hopf algebras. Also, he proved that each quasitriangular Hom-Hopf algebra produces a solution of the Hom-Yang-Baxter equation, and constructed the enveloping algebras of Hom-Lie algebras in Ref.[8].

        Motivated by Wang et al.[9], we considered Hom-Lie algebras in Yetter-Drinfeld categories and proved that eachH-Hom-algebra gives rise to a generalizedH-Hom-Lie algebra. It is a natural question whether we can construct enveloping algebras of generalizedH-Hom-Lie algebras or not. This paper will give a positive answer to this question.

        Throughout this paper, all algebraic systems are supposed to be over a fieldk. About the Hom-algebras and Hom-Lie algebras, the readers can be referred to Caenepeel and Goyvaerts[6]as general references, about Hopf algebras to Sweedler[10]and Yetter-Drinfeld categories to Radford[11]. IfCis a coalgebra, we use the Sweedler-type notation for the comultiplication:Δ(c)=c1?c2, for allc∈C.

        1GeneralizedH-Hom-Lie Coalgebras

        ρ(h·m)=h1m(-1)S(h3)?h2·m0

        (a(-1)·b)(-1)·a0?(a(-1)·b)0=a?ba,b∈A

        α(a)(bc)=(ab)α(c), α(ab)=α(a)α(b)

        a1A=1Aa=α(a), α(1A)=1Aa,b,c∈A

        1) H-anti-commutativity

        [l, l′]=-[l(-1)·l′, l0]l, l′∈L

        2) H-Hom-Jacobiidentity

        {l?l′?l"}+(τ?1)(1?τ){l?l′?l"}+

        (1?τ)(τ?1){l?l′?l"}=0

        foralll, l′, l"∈L,where{l?l′?l"}denotes[α(l), [l′, l"]].

        Proposition1[9]Let(A, α)beanH-Hom-algebra.AssumethatthebraidingτissymmetriconA.Thenthetriple(A, [,], α)isageneralizedH-Hom-Liealgebra,wherethebracketproductisdefinedby

        [,]:A?A→A, [a, b]=ab-(a(-1)·b)a0a, b∈A

        α-1(c1)?Δ(c2)=Δ(c1)?α-1(c2)

        Δ(α(c))=α(c1)?α(c2)

        c1ε(c2)=α-1(c)=ε(c1)c2, ε(α(c))=ε(c)

        1) H-anti-cocommutativity

        δ=-τδ

        2) H-Hom-coJacobiidentity

        (1+(τ?1)(1?τ)+(1?τ)(τ?1))(α?δ)δ=0

        Proposition2Let(C, Δ, α)beageneralizedH-Hom-coalgebra.AssumethatthebraidingτissymmetriconC.Thenthetriple(C, δ, α)isageneralizedH-Hom-Liecoalgebra,wherethecobracketisdefinedby

        δ:C→C?C, δ(c)=c1?c2-(c1(-1)·c2)?c10c∈C

        δ(h·c)=(h·c)1?(h·c)2-((h·c)1(-1)·(h·c)2)?

        (h·c)10=h1·c1?h2·c2-(h11c1(-1)S(h13))·

        (h2·c2)?h12·c10=h1·c1?h2·c2-

        h1c1(-1)·c2?h2·c10=h·(c1?c2)-

        h·(c1(-1)·c2?c10)

        Soδis leftH-linear. We can also conclude that

        (1?δ)ρ(c)=c(-1)?(c01?c02-c01(-1)·c02?c010)=

        c1(-1)c2(-1)?(c10?c20-c10(-1)·c20?c100)

        ρδ(c)=c1(-1)c2(-1)?c10?c20-(c1(-1)·c2)(-1)c10(-1)?

        (c1(-1)·c2)0?c100=c1(-1)c2(-1)?c10?c20-c1(-1)1c2(-1)S(c1(-1)3)c10(-1)?c1(-1)2·c20?c100=

        c1(-1)c2(-1)?(c10?c20-c10(-1)·c20?c100)

        Hence, (1?δ)ρ=ρδ, that is,δis leftH-colinear.

        Next, we verify that the cobracketδis compatible withα. In fact, for anyc∈C, we obtain

        δα(c)=α(c)1?α(c)2-(α(c)1(-1)·α(c)2)?α(c)10=

        α(c1)?α(c2)-(α(c1)(-1)·α(c2))?α(c1)0=

        α(c1)?α(c2)-c1(-1)·α(c2)?α(c10)=

        α(c1)?α(c2)-α(c1(-1)·c2)?α(c10)

        as required. To show that (C,Δ,α) is a generalizedH-Hom-Lie coalgebra in the sense of Definition 4, we verify theH-anti-cocommutativity andH-Hom-coJacobi identity. However, this is a routine work sinceτis symmetric onC. This completes the proof.

        2Enveloping Algebras of GeneralizedH-Hom-Lie Algebras

        In this section, we will construct the enveloping algebraU(L) of a generalizedH-Hom-Lie algebraL.

        fα1=α2f,f([x,y]L1)=[f(x),f(y)]L2

        for allx,y∈L1.

        h·(l?l′-l(-1)·l′?l0-[l,l′])=

        h1·l?h2·l′-h1l(-1)·l′?h2·l0-[h1·l,h2·l′]=h1·l?h2·l′-(h1·l)(-1)·(h2·l′)?(h1·l)0-[h1·l,h2·l′]=h1·l?h2·l′-h1l(-1)S(h3)·

        (h4·l′)?h2·l0-[h1·l,h2·l′]=h1·l?

        h2·l′-h1·(l(-1)·l′)?h2·l0-[h1·l,h2·l′]∈I

        f([l,l′])=[f(l),f(l′)]=

        f(l)f(l′)-(f(l)(-1)·f(l′))f(l)0

        References

        [1]Hartwig J T, Larsson D, Silvestrov S D. Deformations of Lie algebras using σ-derivations [J].JAlgebra, 2006, 295(2): 314-361.

        [2]Makhlouf A, Silvestrov S D. Hom-algebra structures [J].JGenLieTheory, 2008, 3(2): 51-64.

        [3]Makhlouf A, Silvestrov S D. Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras [C]//GeneralizedLieTheoryinMathematics,PhysicsandBeyond. Berlin:Springer-Verlag, 2009:189-206.

        [4]Makhlouf A, Silvestrov S D. Hom-algebras and Hom-coalgebras [J].JAlgebraAppl, 2010, 9(4): 553-589.

        [5]Chen Y Y, Wang Z W, Zhang L Y. Quasi-triangular Hom-Lie bialgebras [J].JLieTheory, 2012, 22(4):1075-1089.

        [6]Caenepeel S, Goyvaerts I. Monoidal Hom-Hopf algebras [J].CommAlgebra, 2011, 39(6): 2216-2240.

        [7]Yau D. The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras [J].JPhysA, 2009, 42(16): 165202-1-165202-12.

        [8]Yau D. Enveloping algebra of Hom-Lie algebras [J].JGenLieTheoryAppl, 2008, 2(2): 95-108.

        [9]Wang S X, Wang S H. Hom-Lie algebras in Yetter-Drinfeld categories [J].CommAlgebra, 2014, 42(10): 4540-4561.

        [10]Sweedler M E.Hopfalgebras[M]. New York: Benjamin, 1969.

        [11]Radford D E. The structure of Hopf algebra with a projection [J].JAlgebra, 1985, 92(2): 322-347.

        [12]Wang S H. On the generalizedH-Lie structure of associative algebras in Yetter-Drinfeld categories [J].CommAlgebra, 2002, 30(1): 307-325.

        doi:10.3969/j.issn.1003-7985.2015.04.027

        中文字幕无线码中文字幕| 日本a级免费大片网站| 亚洲av永久无码天堂网| 欧洲极品少妇| 精品国产亚洲一区二区三区演员表 | 性久久久久久| 免费观看又色又爽又黄的韩国| 狠狠干视频网站| 亚洲中文字幕综合网站| 秋霞在线视频| 人妻影音先锋啪啪av资源| 色综合色综合久久综合频道| 麻豆视频黄片在线免费观看| 成品人视频ww入口| 日韩精品无码av中文无码版| 久久久久国产精品片区无码| 国产精品综合女同人妖| 熟妇人妻无码中文字幕老熟妇| 国产suv精品一区二区69| 国产AV秘 无码一区二区三区| 中文资源在线一区二区三区av| 国产精品亚洲lv粉色| 尤物99国产成人精品视频| 国内精品人人妻少妇视频| 国产三级视频不卡在线观看| 国产一区二区内射最近更新| 97中文字幕在线观看| 中文字幕亚洲中文第一 | 国产一区资源在线播放| 亚洲国产欧美在线观看| 亚洲国产成人精品女人久久久| 亚洲天堂av社区久久| 亚洲天堂成人av影院| 人妻丝袜无码国产一区| 亚欧乱色束缚一区二区三区| 亚洲一区二区三区重口另类| 国产精品www夜色视频| 不卡高清av手机在线观看| 久久这黄色精品免费久| 人妻少妇精品久久久久久| 十八岁以下禁止观看黄下载链接|