張 旺,顧佳俊,蘇慧蘭,張 荻
(上海交通大學 金屬基復合材料國家重點實驗室,上海 200240)
?
第一作者:張旺,男,1981年生,副研究員
zhangdi@sjtu.edu.cn.
啟迪于蝶翅分級精細結構的遺態(tài)功能材料
張旺,顧佳俊,蘇慧蘭,張荻
(上海交通大學 金屬基復合材料國家重點實驗室,上海 200240)
摘要:傳統(tǒng)設計與制備技術手段往往難以實現預期精細結構與功能構筑,從而限制了材料結構-性能之間新現象的發(fā)現與新機理的建立。借用經億萬年自然優(yōu)化的生物自身多層次、多維和多尺度的本征結構為模板,通過物理和化學手段,在保留生物精細分級結構的同時,置換生物模板的化學組分為所需功能組分,利用生物精細結構與人工組分之間的耦合關系,可制備既遺傳自然生物精細形態(tài),又有人為賦予特性的新材料——遺態(tài)材料。圍繞具有蝶翅精細結構的遺態(tài)光功能材料,分別以金屬-半導體功能蝶翅的紅外吸收增強及光熱轉換、金屬功能蝶翅的表面等離子體拉曼增強為例,介紹了遺態(tài)材料的設計思路、制備方法、性能表征及相關機理探索過程。相關思路與方法為解決分級精細結構難以制備的難題提供了新途徑,并為新材料構型設計提供了前瞻性思路和原理驗證。
關鍵詞:遺態(tài)材料;分級結構;光功能材料;仿生材料
1前言
材料是人類賴以生存及發(fā)展的基礎,其發(fā)展水平為衡量人類社會文明程度的標志之一。隨著科技的進步、工業(yè)水平的提高以及社會的發(fā)展,材料的應用領域不斷擴展、應用環(huán)境不斷更新,對材料的功能與性能要求也日益提高,其中先進功能材料已經成為通訊、電子、能源、交通、生物和醫(yī)療等領域發(fā)展的基礎。目前,僅限于材料本征特性的功能材料已不足以滿足人類社會發(fā)展的需要。伴隨著現代科學技術及交叉學科的發(fā)展,為實現材料的多維度、多組分、多功能及高性能的有效結合和統(tǒng)一,結構功能一體化新型功能材料應運而生。材料與分級功能結構耦合不僅可優(yōu)化功能材料的性能,而且可以拓展材料的功能,從而從廣度和深度上促進功能材料的發(fā)展。因此開發(fā)和研究結構功能一體化新型功能材料具有重要的學術價值和現實意義。
在過去的數十年里,結構和功能一體化新型功能材料得到了長足的發(fā)展,如三維銅光子晶體[1]、超薄等離子體超吸收材料[2]、具有漁網結構的負折射率材料[3]、超寬波段微波吸收材料[4]、寬波段減反射硅納米材料[5]、具有加強磁性能的磁性納米孔陣列[6]、單壁碳納米管整列黑體吸收材料[7]及具有加強光吸收及載流子收集性能的硅線陣列[8]等。然而,受技術條件限制,目前很難在亞微米尺度上制備具出有復雜精細分級功能結構的結構功能一體化新型功能材料。反觀自然界生物體經億萬年的自然選擇、進化,為生存與繁衍進化出了一系列具有相應功能的多尺度(從宏觀尺度到納米尺度)功能結構,其復雜及精細程度遠超人工加工水平。這些經自然選擇所得的設計方案為制備具有分級精細功能結構的結構功能一體化新型功能材料提供了靈感?!皫煼ㄗ匀弧?, 以自然界精細分級功能結構為模板,將其復制為特定功能材料,將生物功能結構與材料本征特性相結合,從而創(chuàng)制出一系列功能強大且通過其他方法難以獲取的新型功能材料(遺態(tài)材料)[16],為開發(fā)高性能材料,發(fā)現相關新現象、新機理從而指導材料的人工設計提供了一條有效捷徑[9-15]。
典型生物中,鱗翅目昆蟲(蝴蝶和飛蛾)為一巨大屬群,有近180 000種[17]。其主要特征為翅膜上普遍覆蓋著數以萬計的鱗片。為適應生存環(huán)境和配偶繁殖的需要,這些鱗片經長期進化具有了不同的納米-亞微米尺度的分級結構,呈現各種色彩[17]。此類分級精細結構已被廣泛用于設計遺態(tài)材料,在氣敏器件[18-19]、結構色控制[20]、太陽能電池[21]、光學防偽[22]、高速紅外成像[23]、光解水制氫[24]、拉曼增強[25-26]、pH值響應[27]、磁光響應[28]和光吸收[29]等領域展現出優(yōu)異的性能。
本文針對黑色吸光蝶翅的光吸收、金屬-半導體功能蝶翅的紅外吸收增強及光熱轉換性能、金屬功能蝶翅的表面等離子體拉曼增強等分別進行概述。這些微納結構與材料本征特性的成功耦合為材料性能的突破、功能的拓展提供了獨特的實現途徑,為相關構效關系的研究提供了大量材料原型,并為新材料的設計提供了前瞻性思路與借鑒。
2黑色蝶翅的光吸收性能
微納減反射吸光結構在鳳蝶的黑色鱗片中廣泛存在,呈現為一種微納孔陣結構。由菲涅爾定律可知,在材料和環(huán)境的光滑界面處當兩者折射率差異較大時,可產生較高的反射率[30]。如在一光滑硅片表面,垂直入射光的反射率可達34%,但是一旦將其表面改為亞波長孔結構,其反射率可銳減至1%[31]。
通過對鳳蝶蝶翅的微納孔陣結構研究發(fā)現,光吸收率可隨孔徑增大、孔壁變薄和孔深變淺而下降。通過對孔壁厚度D、孔深度H和孔大小L進行仿真模擬發(fā)現,不同的D、H和L值組成結構的吸收率差別很大。D、H和L值決定了結構所消耗材料的多少。因此可以找到以較少材料實現較大吸收的D、H和L值。研究結果顯示,相對于簡單膜結構,微納孔陣結構在600 nm單波長可以節(jié)省84%的材料,而在可見光波段可以節(jié)省59%的材料,如圖1所示。
圖1 不同波長下孔陣結構和薄膜結構的吸收率對比:(a) 波長為600 nm; (b) 為結構模型;(c) 波長為400~800 nm。Fig.1 Optimization of the micro/nano-hole structure: (a) the optimized results under wavelength 600 nm by contrast with thin film structure, (b) the models of micro/nano-hole structure and thin film structure,and (c) the optimized results under broad wavelength range from 400~800 nm by contrast with thin film structure
此外微納孔陣結構的孔形狀主要影響材料對不同角度入射光的吸收性能。人工制備的規(guī)則四方結構、六方結構和圓孔結構的吸收譜會呈現與其對稱結構對應的角度取向,從而會使得吸收譜中存在一些光吸收盲點,不利于光的充分吸收。而鳳蝶的微納孔陣結構呈現為長程有序、短程無序的特點,可以很好規(guī)避吸收盲點,使其能吸收各個方向的入射光,從而實現全向光吸收性能。其結構圖如圖2所示,吸收譜如圖3所示。
圖2 結構模型和邊界條件: (a)基于Papilio ulysses蝶翅結構的帶脊結構的不規(guī)則孔陣結構M0:a-1:球坐標系,位相角和仰角的示意圖,a-2:M0的一個周期,a-3:Papilio ulysses的錐形脊結構;(b) 3個對稱結構M1,M2和M3的模型,它們的占空比和孔面積保持與M0相同,分別為0.27和0.176 μm2;(c)在水平方向(x和y方向)為周期性邊界條件(PBC),而在豎直方向(z方向)為吸收性邊界條件(PML), 光源設置為平面波光源Fig.2 Structure model and boundary conditions: (a) M0: the dissymmetric model with ridges derived from the Papilio ulysses, a-1: the sketch map of polar angle θ, azimuth angle φ and coordinate system, a-2: one period of the M0, a-3: the tapered ridges of Papilio ulysses; (b) three symmetric model of M1, M2 and M3, the filling ratio and the hole’s area are fixed at 0.27 and 0.176 μm2;and (c) periodic boundary conditions (PBC) and absorbing boundary conditions by perfectly matched layer (PML) are applied in horizontal (x & y) directions and vertical (z) directions, respectively
微納孔陣結構加強光吸收的內在原因可歸結如下:①由于孔的存在,其等效折射率可以看成是空氣的折射率和硅的折射率的結合,等效折射率小于完整的納米硅片結構,而折射率決定了反射率的大小[32],所以納米孔結構的反射率小于硅片結構,即納米孔結構的光吸收大于硅片結構。②硅片在長波長區(qū)域的折射率虛部較小,導致此部分的透射率比較大。而在微納孔陣結構中,由于等效折射率常數減小,故透射率比硅片要大。但是因為微納孔陣結構的尺寸效應,它在短波長和硅片中有著差不多的透射率。當微納孔陣結構的尺寸比入射光波長要小時,幾何光學理論將不再適應,孔陣結構將會同時吸收孔陣表面的光和附近的光,這會降低體積平均導致的折射率減弱效應,從而增加光吸收[33]。③由于電磁波諧振作用,微納孔陣結構周期性的邊長會具有較好的光吸收。以上特征為利用鳳蝶蝶翅結構制備光吸收遺態(tài)功能材料創(chuàng)造了條件。
3金屬-半導體蝶翅遺態(tài)材料的光熱轉換
近年來通過大量的研究,科學家們制備了具有高吸收和高紅外光熱轉換性能的紅外光熱材料,如當被800 nm紅外光輻照后表現出優(yōu)異的紅外光熱轉換性能的銀納米殼(13%)、金納米桿(21%)和硒化銅(Cu2-xSe)納米材料(22%)[43],當被980 nm紅外光輻照后表現出優(yōu)異的紅外光熱轉換性能的親水性Cu9S5納米晶(25.7%)及金納米桿(23.7%)[44]。然而,以上這些光熱轉換材料僅僅由單一成分組成,從而限制了其多功能性能應用。目前,大量多成分納米復合材料被合成(如:金屬/金屬[45-46]、金屬/半導體[47-52]及半導體/半導體復合成分[53-54]),并被廣泛應用于光學、生物醫(yī)學、催化作用、太陽能轉換、電子學、磁學[55-56]及光熱轉換[51-52]。
圖3 模型M0~M3在600 nm波長的極化等值線吸收譜。同時給出了偏振s、p和非偏振態(tài)以及對應的平均值、標準差、極小值和極大值Fig.3 Polar contour plots of absorption with model M0 to M3 at a wavelength of 600 nm. The polarized s, p and unpolarized light, and average, standard deviation, minimum, maximum were applied, respectively
為了增強寬波段的太陽光譜吸收及提高紅外光熱轉換性能,功能材料需要具有高光吸收和低反射光學功能結構。自組裝這些多成分復合納米顆粒成為薄膜或塊體材料,特別是具有相應功能的亞微米功能結構的薄膜或塊體材料,可進一步擴展多成分復合材料的多功能性應用[56]。然而,由于受當今傳統(tǒng)制備工藝的限制,如自發(fā)外延形核、形核點生長技術等,很難制備出由多成分復合納米顆粒組成的,且具有亞微米功能結構的宏觀厘米級多功能薄膜材料[45-56]。
為了突破傳統(tǒng)制備工藝的的限制,可采用仿生遺態(tài)模板法,以裳鳳蝶前翅鱗片(T_FW)為模板,在宏觀厘米尺度下制備具有光吸收特性的金屬/半導體復合功能蝶翅(Au-CuS_T_FW)。所制備的Au-CuS_T_FW具有加強的寬波段光譜吸收性能,特別在紅色光及紅外光波段其加強寬波段光吸收性能更為明顯;并且具有優(yōu)異的紅外光熱轉換性能,如圖4-5所示。
圖4 裳鳳蝶的光學照片(a); 裳鳳蝶前翅(T_FW)的掃描電鏡照片(b);Au-CuS_T_FW的掃描電鏡照片(c)Fig.4 Optical image of Troides Helena (a), SEM image of the T_FW (b) , and cross-section SEM image of T_FW (c)
圖5 Au-CuS_T_FW及相應對比材料在300~2 500 nm (a)和2.5~15 μm (b)光波長范圍內的光吸收圖譜;光功率為0.439 W/cm2 980 nm近紅外光照射時,Au-CuS_T_FW及相應對比材料分別通過光熱轉換加熱測溫系統(tǒng)測量的溫度變化圖 (c);Au-CuS_T_FW的熱傳遞時間常數的分析圖 (d)Fig.5 The absorption spectra of the Au-CuS_T_FW and other contrast samples over the wavelength range of 300~2 500 nm (a) and 2.5~15 μm (b), the temperature elevation of the system included the water, the beaker bottom and the photothermal conversion material (Au-CuS_T_FW, CuS_T_FW, Au_T_FW, T_FW and BlueTec eta plus_Cu) during a continuous irradiation period by a 0.439 W/cm2 NIR laser at 980 nm(c), the time constant for heat transfer from the system (Au-CuS_T_FW) was determined to be τs=195 s by applying the linear time data from the heating period (20 min) versus negative natural logarithm of 1 subtracted driving force temperature(d)
經分析可知,Au-CuS_T_FW優(yōu)異的寬波段光吸收性能,特別是在紅色光區(qū)域和紅外光區(qū)域的光吸收加強機制首先源于Au納米顆粒和CuS納米顆粒的等離子體-激子/等離子體耦合效應。該效應可促進入射電磁場在納米材料表面聚集、增強,促進光吸收。其次,近鄰等離子體相互作用加強寬波段紅外吸收。再次,等離子體-激子/等離子體耦合效應和近鄰等離子體相互作用與T_FW的AQPS耦合,實現功能結構與功能材料一體化,進一步加強寬波段光吸收[57-60]。同時Au-CuS_T_FW中的Au納米顆粒的等離子體擾動加強光吸收,使入射光場聚集、增強,從而增強擾動促使CuS納米顆粒的激子躍遷和CuS納米顆粒載荷子的等離子體振蕩,加強振蕩促進光熱轉換;并且近鄰等離子體共振相互作用可進一步加強等離子擾動促進光熱轉換;等離子體-激子/等離子體與T_FW的AQPS結構耦合,使入射光場在沉積有Au-CuS納米材料的AQPS表面,特別是在AQPS中三角屋頂狀脊結構表面,匯集、放大,加強納米晶載荷子振蕩,加速振蕩載荷子的動能轉換為熱能,從而進一步促進光熱轉換。
將Au-CuS_T_FW粘貼在與BlueTec eta plus_Cu一樣的銅基板上所得的Au-CuS_T_FW太陽能吸收膜(Au-CuS_T_FW_APCF),其太陽能吸收比高達98%,高于大多數優(yōu)異的商用太陽能集熱器的光吸收膜及實驗室制備的光吸收膜。于此同時,Au-CuS_T_FW_APCF的熱發(fā)射比僅為0.566。與表1中目前商用化太陽能吸收膜和實驗室制備的太陽能吸收膜相比(91.0%-97.6%),對于熱發(fā)射比小于0.600的參照物,Au-CuS_T_FW_APCF具有最高的太陽光吸收比(98%),而且還具有優(yōu)異的太陽能光熱轉換性能,并能有效地應用于低溫(T<60 ℃)太陽能光熱集熱器。
表1 太陽能集熱器光吸收膜的吸收比和發(fā)射比
進而可通過模擬Au-CuS_T_FW的紅外光吸收及光熱轉換特性。圖6說明了等離子體振蕩、近鄰等離子體相互作用與AQPS耦合促進入射電磁場聚集、擴大等離子體材料附近電場強度。由圖6f所示,熱源產生于光熱轉換材料(Au納米顆粒和CuS納米顆粒)。并且在兩個近鄰等離子體區(qū)域,其熱源密度更強,從而說明了近鄰等離子體振蕩系統(tǒng)的耦合效應增強熱能產生。由圖6i所示,Au-CuS_T_FW的熱源來自于覆蓋有光熱材料的(Au納米顆粒和CuS納米顆粒)的AQPS結構表面。并且結合圖6d和6h所示,進一步佐證了T_FW的AQPS通過準周期性排列的三角屋頂狀脊結構多次減反射,聚集增強入射光場在AQPS內部分布;通過微納孔狀窗口結構延伸、擴展入射光場的分布空間,從而加強入射光場與吸光、光熱材料的相互作用。其強電磁場進一步有利于加強等離子體材料的振蕩,因此促進并加強光吸收、光熱轉換,使AQPS表面具有明顯的強電磁場能流密度分布和強熱源密度分布。
該工作充分利用了自然界的精細光吸收結構,實現了金屬等離子與半導體耦合,為制備具有亞微米精細光吸收功能結構的金屬/半導體復合材料提供了有力支持,并對促進、擴展紅外應用具有重要意義。Au-CuS_T_FW材料有望應用于太陽能光吸收、光熱轉換薄膜,特別是針對紅外光波段的光吸收及光熱轉換薄膜。
圖6 當入射光波長為980 nm時,(a)、(b)、 (c)和(d)分別為Au-CuS NPs、Au-CuS NPs_Chitin、T_FW和Au-CuS_T_FW的電磁場能流密度分布圖;(e)和(h)分別為Au-CuS NPs_Chitin和 Au-CuS_T_FW的分布圖;(f)和(i) 分別為Au-CuS NPs_Chitin和Au-CuS_T_FW的熱源密度分布圖;(g)和(j) 分別為Au-CuS NPs_Chitin和Au-CuS_T_FW的溫度分布圖,(i)中的插圖為相應白框區(qū)域內圖像的放大圖Fig.6 Maps of the electromagnetic field energy flux density amplitude of Au-CuS_NPs(a), Au-CuS_NPs_Chitin(b), T_FW (c) and Au-CuS_T_FW(d), intensity distribution maps of Au-CuS_NPs_Chitin (e) and Au-CuS_T_FW (h), and heat source density maps of Au-CuS_NPs_Chitin (f) and Au-CuS_T_FW (i), temperature maps of Au-CuS_NPs_Chitin (g) and Au-CuS_T_FW (j), the insets of (i) are the heat source density distributions in the white rectangular regions at a higher magnification. The wavelength of the incident light is fixed under 980 nm
4金屬蝶翅遺態(tài)材料表面增強拉曼散射
金屬等離子體材料因其可以通過高效率的表面等離子體共振響應(SPR)以調控光的傳輸而獲得廣泛的研究和關注,其等離子體特性不僅由金屬本征特性,更由其亞波長維度的微納結構決定,因此具有精細新穎的微納結構的金屬等離子材料的設計和制備成為近年的研究熱點。鑒于人工制備方法的低效率與高費用,自然界提供的各種具有精細分級多層維納結構的生物模板為我們提供了新的思路。
圖7 金屬蝶翅鱗片:(a)和(b)為E. mulciber;(c)蝶翅鱗片的光鏡照片;(d)7種金屬蝶翅鱗片遺態(tài)材料[34-35]Fig.7 Metallic wing-scale replicas:(a) and (b) E.mulciber, (c)optical microscopy image of scales, (d) seven metallic replicas. Reproduced with permission. [34-35] Copyright 2011 and 2012, John Wiley and Sons
例如以異型紫斑蝶蝶翅紫色區(qū)域具有三維樹枝狀結構的鱗片作為模板,可通過蝶翅模板表面功能化、金屬離子化學沉積、模板去除等步驟制備出7種具有原始生物模板三維精細結構的金屬等離子體材料(圖7)。在制備過程中,蝶翅先經乙二胺活化,可獲得更多的銨基基團,有利于吸附更多AuCl4離子,為蝶翅的活化處理和化學鍍過程奠定了基礎。進而采用NaBH4溶液還原吸附在蝶翅表面的AuCl4離子,可在蝶翅鱗片表面形成一層大小均一的金納米顆粒,為進一步形成各種金屬納米層提供催化核心。經化學金屬沉積后,在室溫下利用H3PO4去除生物模板,相比傳統(tǒng)的高溫燒結方法,低溫溶解法更精準地保留原始蝶翅的微納結構,從而獲得具有蝶翅精細分級結構的金屬材料。所得材料在亞微米水平上完好保留了原始蝶翅的三維有序精細微納結構(圖8)[34-35],為高效構筑結構復雜、性能強大的金屬微納器件提供了設計新思路和創(chuàng)制新方法。
圖8 原始蝶翅鱗片和7種金屬蝶翅鱗片的形貌對比[34-35]Fig.8 FESEM images of an original butterfly wing scale and seven metallic replicas (Co, Ni, Cu, Pd, Ag, Pt, and Au). Reproduced with permission. [34-35] Copyright 2011 and 2012, John Wiley and Sons
作為典型演示范例,以Au蝶翅作為SERS基片來研究其拉曼增強特性,發(fā)現在基于SERS現象的痕量物質識別方面,Au蝶翅與國際流行的商用SERS基板Klarite?(Au)相比可將羅丹明6G分子的檢出靈敏度提高整整一個數量級(10-13M),在檢出信號重復性相當的同時價格僅為Klarite的1/10,展現出優(yōu)異的拉曼信號增強性能及廣泛的實際應用前景[34-35]。為闡明相關機理并在多達17萬種的蝴蝶與蛾類中尋找最佳的生物模板構型,依據蝶翅鱗片的三維精細構造建模,并利用基于麥克斯韋方程組的有限元方法對其在光激發(fā)條件下內部的電磁場局域模式進行了研究解析。結果表明金屬蝶翅內部尺度為20~30 nm的肋狀層結構[34-35],在光場激發(fā)下,可將電磁場局域增強區(qū)沿第三維方向拓展,從而提升金屬蝶翅的SERS性能,且拉曼增強效果隨著蝶翅的肋狀層數目的增加而提高(圖9)。該發(fā)現同時也為今后人工制備具有超越自然蝶翅肋狀層數,從而具備超高性能的SERS基片提供了理論設計依據。隨后這一理論被人工制備的具有多層結構的納米柱陣列證實[36]。
除了蝶翅的樹枝狀結構,生物界還提供了許多其他的具有精細納米結構的生物模板,例如具有納米針陣列的蟬翅減反射結構、玫瑰花瓣等都被成功地用作生物模板制備金屬等離子體材料,并用于物理、化學、生物領域分子的SERS檢測[37-40]。這些精細的維納結構不僅可以直接作為模板制備金屬等離子材料,還可以為人工設計和制備金屬等離子體材料提供新的思路,另外研究者們已經開始嘗試通過納米壓印等方法準確的復制生物模板的結構[41-42]。通過選擇合適的模板,合理的控制金屬的體積分數,以及適當的結構修飾,可獲得具有更高SPR效率和更多功能的金屬等離子體材料。
圖9 具有不同脊數目的Cu蝶翅掃描電鏡照片(a),樹枝狀結構的理論電磁場分布(b);(b)中所對應Cu蝶翅對10-4 M濃度R6G的SERS檢測信號(c) [34-35]Fig.9 SEM images of five different wing scales with different number of ribs(a), theoretical distribution of EM fields under excitation on metal scales of E.mulciber(b) , and SERS of R6G with a concentration of 10-4 M collected on the scales demonstrated in (b)(c). Reproduced with permission. [34-35] Copyright 2011 and 2012, John Wiley and Sons
5結語
遺態(tài)材料的思路與方法將天然生物結構直接與人工材料組分相結合,建立了將生物結構轉化為具備光、電、磁、熱、催化等多種氧化物、金屬及其復合材料的技術原理及實現手段,揭示了一系列分級精細結構與組分的耦合機理,為構筑新型高性能結構-功能一體化材料提供了設計思路、理論依據和實用途徑。由于本文篇幅所限,無法涵蓋所有的相關研究。目前該思路已在大量材料體系中得到貫徹,在獲得一系列高性能功能材料的同時,促進了新現象的發(fā)現與新機理的提出,并為新材料的設計、制備提供了理論依據與前瞻性的實現途徑。未來研究一方面需通過學科交叉,圍繞特定需求,尋找經自然優(yōu)化、具有相應功能特性的生物結構;另一方面,需依據常見生物質的化學特性,開發(fā)具有共性特征的遺態(tài)材料制備流程,為此類材料的標準化與規(guī)?;瘧玫於ɑA。
參考文獻References
[1]Tal A, Chen Y S, Williams H E,etal. Fabrication and Characterization of Three-Dimensional Copper Metallodielectric Photonic Crystals[J].OpticsExpress, 2007, 15 (26): 18 283-18 293.
[2]Aydin K, Ferry V E, Briggs R M,etal. Broadband Polarization-Independent Resonant Light Absorption Using Ultrathin Plasmonic Super Absorbers[J].NatureCommunications, 2011, 2:193-198.
[3]Xiao S, Drachev V P, Kildishev A V,etal. Loss-Free and Active Optical Negative-Index Metamaterials[J].Nature, 2010, 466: 735-738.
[4]Ding F, Cui Y, Ge X,etal. Ultra-Broadband Microwave Metamaterial Absorber[J].AppliedPhysicsLetters, 2012,100: 103 506.
[5]Huang Y F, Chattopadhyay S, Jen Y J,etal. Improved Broadband and Quasi-omnidirectional Anti-reflection Properties with Biomimetic Silicon Nanostructures[J].NatureNanotechnology, 2007, 2: 770-774.
[6]Duong B, Khurshid H, Gangopadhyay P,etal. Enhanced Magnetism in Highly Ordered Magnetite Nanoparticle-Filled Nanohole Arrays[J].Small, 2014,10: 2 840-2 848.
[7]Mizuno K, Ishii J, Kishida H,etal. A Black Body Absorber from Vertically Aligned Single-Walled Carbon Nanotubes[J].ProceedingsoftheNationalAcademyofSciences, 2009,106: 6 044-6 047.
[8]Kelzenberg M D, Boettcher S W, Petykiewicz J A,etal. Enhanced Absorption and Carrier Collection in Si Wire Arrays for Photovoltaic Applications[J].NatureMaterials, 2010, 9: 239-244.
[9]Gu J, Zhang W, Su H,etal. Morphology Genetic Materials Templated from Natural Species[J].AdvancedMaterials, 2015,27: 464-478.
[10]Tao P, Shang W, Song C,etal. Bioinspired Engineering of Thermal Materials[J].AdvancedMaterials,2015,27: 428-463.
[11]Yu K, Fan T, Lou S,etal. Biomimetic Optical Materials: Integration of Nature’s Design for Manipulation of Light[J].ProgressinMaterialsScience, 2013, 58: 825-873.
[12]Liu K, Jiang L. Bio-inspired Design of Multiscale Structures for Function Integration[J].NanoToday, 2011, 6: 155-175.
[13]Zhang D, Zhang W, Gu J,etal. Inspiration from Butterfly and Moth Wing Scales: Characterization, Modeling, and Fabrication[J].ProgressinMaterialsScience, 2015, 68: 67-96.
[14]Wegst U G, Bai H, Saiz E,etal. Bioinspired Structural Materials[J].NatureMaterials, 2014,14(5866): 1 053-1 054.
[15]Bhushan B. Biomimetics: Lessons from Nature-An Overview, Philosophical Transactions of the Royal Society A: Mathematical[J].PhysicalandEngineeringSciences, 2009, 367: 1 445-1 486.
[16]Zhang Wang(張 旺). 蝶翅分級結構功能氧化物的制備與耦合性能的探索研究[D].Shanghai:ShanghaiJiaoTongUniversity(上海交通大學), 2008.
[17]Foottit R G, Adler P H. Insect Biodiversity: Science and Society[J].JohnWiley&Sons, 2009.
[18]Potyrailo R A, Ghiradella H, Vertiatchikh A,etal. Morpho Butterfly Wing Scales Demonstrate Highly Selective Vapour Response[J].NaturePhotonics, 2007,1: 123-128.
[19]Zhang W, Tian J, Wang Y,etal. Single Porous SnO2Microtubes Templated from Papilio Maacki Bristles: New Structure towards Superior Gas Sensing[J].JournalofMaterialsChemistryA, 2014, 2: 4 543-4 550.
[20]Huang J, Wang X, Wang Z L. Controlled Replication of Butterfly Wings for Achieving Tunable Photonic Properties[J].NanoLetters, 2006, 6: 2 325-2 331.
[21]Zhang W, Zhang D, Fan T,etal. Novel Photoanode Structure Templated from Butterfly Wing Scales[J],ChemistryofMaterials, 2008, 21: 33-40.
[22]Kolle M, Salgard Cunha P M, Scherer M R,etal. Mimicking the Colourful Wing Scale Structure of the Papilio Blumei Butterfly[J].NatureNanotechnology, 2010, 5 :511-515.
[23]Pris A D, Utturkar Y, Surman C,etal. Towards High-Speed Imaging of Infrared Photons with Bio-inspired Nanoarchitectures[J].NaturePhotonics, 2012, 6: 195-200.
[24]Chen J, Su H, Liu Y,etal. Efficient Photochemical Hydrogen Production under Visible-Light over Artificial Photosynthetic Systems[J].InternationalJournalofHydrogenEnergy, 2013,38: 8 639-8 647.
[25]Tan Y, Gu J, Zang X,etal. Versatile Fabrication of Intact Three-Dimensional Metallic Butterfly Wing Scales with Hierarchical Sub-micrometer Structures[J].AngewandteChemie, 2011, 123: 8 457-8 461.
[26]Tan Y, Gu J, Xu L,etal. High-Density Hotspots Engineered by Naturally Piled-Up Subwavelength Structures in Three-Dimensional Copper Butterfly Wing Scales for Surface-Enhanced Raman Scattering Detection[J].AdvancedFunctionalMaterials, 2012,22: 1 578-1 585.
[27]Yang Q, Zhu S, Peng W,etal. Bioinspired Fabrication of Hierarchically Structured, pH-Tunable Photonic Crystals with Unique Transition[J],ACSNano, 2013, 7: 4 911-4 918.
[28]Peng W, Zhu S, Wang W,etal. 3D Network Magnetophotonic Crystals Fabricated on Morpho Butterfly Wing Templates[J].AdvancedFunctionalMaterials, 2012,22: 2 072-2 080.
[29]Zhao Q, Fan T, Ding J,etal. Super Black and Ultrathin Amorphous Carbon Film Inspired by Anti-reflection Architecture in Butterfly Wing[J].Carbon, 2011, 49: 877-883.
[30]Jin R, Cao Y, Mirkin CA,etal. Photoinduced Conversion of Silver Nanospheres to Nanoprisms[J].Science, 2002, 294: 1 901-1 903.
[31]Yin Y, Alivisatos A P. Colloidal Nanocrystal Synthesis and the Organic-Inorganic Interface[J].Nature, 2005, 437: 664-670.
[32]Piller H, Palik E. Handbook of Optical Constants of Solids[J],PartII:Critiques.Subpart,1985, 2.
[33]Hu L, Chen G. Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications[J].NanoLett, 2007,7: 3 249-3 252.
[34]Tan Y, Gu J, Xu L,etal. High-Density Hotspots Engineered by Naturally Piled-up Subwavelength Structures in Three-Dimensional Copper Butterfly Wing Scales for Surface-Enhanced Raman Scattering Detection[J].AdvFunctMater, 2012, 22: 1 578-1 585.
[35]Tan Y, Gu J, Zang X,etal. Versatile Fabrication of Intact Three-Dimensional Metallic Butterfly Wing Scales with Hierarchical Sub-micrometer Structures[J].AngewChemIntEdit, 2011, 50: 8 307-8 311.
[36]Jeon H C, Jeon T Y, Shim T S,etal. Direct Fabrication of Hexagonally Ordered Ridged Nanoarchitectures via Dual Interference Lithography for Efficient Sensing Applications[J].Small, 2014,10: 1 490-1 494.
[37]Garrett N L, Vukusic P, Ogrin F,etal. Spectroscopy on the Wing: Naturally Inspired SERS Substrates for Biochemical Analysis[J].JBiophotonics, 2009, 2: 157-166.
[38]Stoddart P, Cadusch P, Boyce T,etal. Optical Properties of Chitin: Surface-Enhanced Raman Scattering Substrates Based on Antireflection Structures on Cicada Wings[J].Nanotechnology, 2006, 17: 680.
[39]Xu B B, Zhang Y L, Zhang W Y,etal. Silver-Coated Rose Petal: Green, Facile, Low-Cost and Sustainable Fabrication of a SERS Substrate with Unique Superhydrophobicity and High Efficiency[J].AdvOpticalMater, 2013, 1: 56-60.
[40]Kumar C S. Raman Spectroscopy for Nanomaterials Characterization[J].SpringerScience&BusinessMedia, 2012.
[41]Kostovski G, White D, Mitchell A,etal. Nanoimprinted Optical Fibres: Biotemplated Nanostructures for SERS Sensing[J].BiosensBioelectron, 2009, 24: 1 531-1 535.
[42]Kostovski G, Chinnasamy U, Jayawardhana S,etal. Sub-15 nm Optical Fiber Nanoimprint Lithography: A Parallel, Self-aligned and Portable Approach[J].AdvMater, 2011, 23: 531-535.
[43]Hessel C M, Pattani V P, Rasch M,etal. Copper Selenide Nanocrystals for Photothermal Therapy[J].NanoLett, 2011,11: 2 560-2 566.
[44]Tian Q, Jiang F, Zou R,etal. Hydrophilic Cu9S5Nanocrystals: A Photothermal Agent with a 25.7% Heat Conversion Efficiency for Photothermal Ablation of Cancer Cells in Vivo[J].ACSNano, 2011,5: 9 761-9 771.
[45]Huang X, Tang S, Liu B,etal. Enhancing the Photothermal Stability of Plasmonic Metal Nanoplates by a Core-Shell Architecture[J].AdvancedMaterials, 2011, 23: 3 420-3 425.
[46]Teng X, Han W, Wang Q,etal. Hybrid Pt/Au Nanowires: Synthesis and Electronic Structure[J].JPhysChemC, 2008, 112: 14 696-14 701.
[47]Carbone L, Cozzoli P D. Colloidal Heterostructured Nanocrystals: Synthesis and Growth Mechanisms[J].NanoToday, 2010, 5: 449-493.
[48]Mokari T, Aharoni A, Popov I,etal. Diffusion of Gold into InAs Nanocrystals[J].AngewandteChemieInternationalEdition, 2006, 45: 8 001-8 005.
[49]Yang J, Elim H I, Zhang Q,etal. Rational Synthesis, Self-assembly, and Optical Properties of PbS-Au Heterogeneous Nanostructures via Preferential Deposition[J].JAmChemSoc, 2006, 128: 11 921-11 926.
[50]Zhang L, Blom D A, Wang H. Au-Cu2O Core-Shell Nanoparticles: A Hybrid Metal-Semiconductor Heteronanostructure with Geometrically Tunable Optical Properties[J].ChemistryofMaterials, 2011, 23: 4 587-4 598.
[51]Lakshmanan S B, Zou X, Hossu M,etal. Local Field Enhanced Au/CuS Nanocomposites as Efficient Photothermal Transducer Agents for Cancer Treatment[J].JournalofBiomedicalNanotechnology, 2012, 8: 883-890.
[52]Yang C, Ma L, Zou X,etal. Surface Plasmon-Enhanced Ag/CuS Nanocomposites for Cancer Treatment[J].CancerNanotechnology, 2013,4: 81-89.
[53]Kim S, Fisher B, Eisler H J,etal. Type-II Quantum Dots: CdTe/CdSe (Core/Shell) and CdSe/ZnTe (Core/Shell) Heterostructures[J].JAmChemSoc, 2003, 125: 11 466-11 467.
[54]Chen Z, Moore J, Radtke G,etal. Binary Nanoparticle Superlattices in the Semiconductor-Semiconductor System: CdTe and CdSe[J].JAmChemSoc, 2007, 129: 15 702-15 709.
[55]Costi R, Saunders A E, Banin U. Colloidal Hybrid Nanostructures: A New Type of Functional Materials[J].AngewChemIntEd, 2010, 49: 4 878-4 897.
[56]Shi W, Zeng H, Sahoo Y,etal. A General Approach to Binary and Ternary Hybrid Nanocrystals[J].NanoLetters, 2006, 6: 875.
[57]Li X, Choy W C, Huo L,etal. Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells[J].AdvancedMaterials, 2012, 24: 3 046-3 052.
[58]Wang W, Wu S, Reinhardt K,etal. Broadband Light Absorption Enhancement in Thin-Film Silicon Solar Cells[J].NanoLetters, 2010,10: 2 012-2 018.
[59]Le F, Brandl D W, Urzhumov Y A,etal. Metallic Nanoparticle Arrays: A Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption[J].ACSNano, 2008, 2: 707-718.
[60]Ye Z, Chaudhary S, Kuang P,etal. Broadband Light Absorption Enhancement in Polymer Photovoltaics Using Metal Nanowall Gratings as Transparent Electrodes[J].OpticsExpress, 2012, 20: 12 213-12 221.
[61]Selvakumar N, Santhoshkumar S, Basu S,etal. Spectrally Selective CrMoN/CrON Tandem Absorber for Mid-temperature Solar Thermal Applications[J].SolarEnergyMaterialsandSolarCells, 2013, 109: 97-103.
[62]Yin Y, Pan Y, Hang L,etal. Direct Current Reactive Sputtering Cr-Cr2O3Cermet Solar Selective Surfaces for Solar Hot Water Applications[J].ThinSolidFilms, 2009, 517: 1 601-1 606.
[63]Juang R C, Yeh Y C, Chang B H,etal. Preparation of Solar Selective Absorbing Coatings by Magnetron Sputtering from a Single Stainless Steel Target[J].ThinSolidFilms, 2010, 518: 5 501-5 504.
[64]Geng Q F, Zhao X, Gao X H,etal. Sol-Gel Combustion-Derived CoCuMnOx Spinels as Pigment for Spectrally Selective Paints[J].JournaloftheAmericanCeramicSociety, 2011, 94: 827-832.
[65]Crnjak Orel Z, Klanj?ek Gunde M. Spectrally Selective Paint Coatings: Preparation and Characterization[J].SolarEnergyMaterialsandSolarCells, 2001, 68: 337-353.
[66]Saxena V, Rani R U, Sharma A. Studies on Ultra High Solar Absorber Black Electroless Nickel Coatings on Aluminum Alloys for Space Application[J]SurfaceandCoatingsTechnology, 2006, 201: 855-862.
[67]Rani R U, Sharma A, Minu C,etal. Studies on Black Electroless Nickel Coatings on Titanium Alloys for Spacecraft Thermal Control Applications[J].JournalofAppliedElectrochemistry, 2010, 40: 333-339.
(編輯蓋少飛)
特約撰稿人任曉兵
任曉兵:男,1966年生,國家“千人計劃”學者、“973”計劃鐵性智能材料項目首席科學家。現任西安交通大學前沿科學研究院院長、教授。主要研究方向為先進智能材料,包括形狀記憶合金、無鉛壓電材料及巨磁致伸縮材料等。在Nature,Science,NatureMaterials,PhysicalReviewLetters等期刊發(fā)表論文180余篇,論文被引用近8 000篇次(Google Scholar統(tǒng)計);單篇最高被引用1 000余篇次, 單篇引用率在形狀記憶合金領域國際排名第一(Web of Science統(tǒng)計)。其2009年報道新型無鉛壓電材料BZT-BCT的論文已被引用超過500次,單篇論文引用率在近5年壓電材料領域國際排名第四。曾獲日本金屬學會“功勛獎”等多項榮譽。
特約撰稿人張 荻
張荻:男,1957年生,教授,博士生導師。教育部“長江學者獎勵計劃”材料學科特聘教授(2002年),金屬基復合材料國家重點實驗室主任,上海交通大學復合材料研究所所長。國家“973”計劃先進金屬基復合材料制備科學首席科學家。先后任中國復合材料學會常務理事,金屬基及陶瓷基復合材料專業(yè)委員會主任,中國航空學會非聚合物基復合材料專業(yè)委員會委員,材料復合技術國家重點實驗室學術委員會委員等。國際期刊《Composites Science and Technology》、《Bioinspired, Biomimetic and Nanobiomaterials》、《International Journal of Precision Engineering and Manufacturing》編委,《復合材料學報》副主編,《金屬學報》、《科學通報》編委。主要從事金屬基復合材料及仿生遺態(tài)復合材料制備科學的研究與教學工作,開辟和奠定了“遺態(tài)材料”這一學術新領域,在生物分級精細結構與功能組分的耦合規(guī)律研究方面取得了重要成果。先后主持國家“973”、“863”、國家自然基金重點項目等課題,在ProgMaterSci,AdvMater,AngewChem,ACSNano等學術期刊發(fā)表SCI論文300余篇,SCI他引4 200余次,在國際上撰寫并由Springer 出版社出版了遺態(tài)材料領域的第一部英文學術專著。獲上海市自然科學獎一等獎2 項、二等獎1 項(排名均為第一),上海市科學技術進步一等獎1 項(排名第二),上海市教學成果二等獎1 項(排名第一);指導研究生獲全國優(yōu)秀博士論文2 篇次。
Morpho-Genetic Materials Inspired fromButterfly Wing Scales
ZHANG Wang, GU Jiajun, SU Huilan, ZHANG Di
(State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China)
Abstract:Traditional design and manufacture method is less likely to duplicate the expected elaborate structures and functions, which seriously hinders the discovery of new phenomenon and the establishment of new mechanism between structures and functions. The chemical constituents within the organism can be replaced with the desired functional constituents by using the multi-level, multi-dimensional and multi-scale intrinsic bio-structure as template, through physical and chemical process. This innovative material, which endows the desired function while maintains the original bio-structure at the same time, is named morpho-genetic material. This manuscript presents the design, manufacture, characterization and mechanism of optical function morpho-genetic material, illustrates by two typical examples:metal-semiconductor functional wings enhanced infrared absorption and photothermal conversion, metal wing surface enhanced Raman scattering. The research thought and synthesis method mentioned here offer a new solution for the synthesis of multi-level fine structure. Furthermore, it provides a foresight and theoretical support for proposal of the novel material.
Key words:morpho-genetic material; hierarchical structure; optical function material; biomimetic material
中圖分類號:TB39
文獻標識碼:A
文章編號:1674-3962 (2015)09-0630-10
DOI:10.7502/j.issn.1674-3962.2015.09.01
通訊作者:張荻,男,1957年生,教授,博士生導師,Email:
基金項目:上海市重點項目(14JC1403300);上海市科委國際合作項目(14520710100)
收稿日期:2015-08-21