許蒙蒙,車 龍,徐盛玉,吳 德
(四川農(nóng)業(yè)大學(xué)動(dòng)物營(yíng)養(yǎng)研究所,雅安 625014)
哺乳動(dòng)物原始卵泡的形成和發(fā)育及影響因素
許蒙蒙,車 龍,徐盛玉*,吳 德
(四川農(nóng)業(yè)大學(xué)動(dòng)物營(yíng)養(yǎng)研究所,雅安 625014)
原始卵泡形成和發(fā)育是成年動(dòng)物卵巢發(fā)揮最優(yōu)生產(chǎn)潛能的重要事件,在卵巢發(fā)育過(guò)程中起著至關(guān)重要的作用,然而卵巢發(fā)育相關(guān)研究中,人們更多地關(guān)注生長(zhǎng)卵泡而忽視了原始卵泡。研究表明,不同物種的哺乳動(dòng)物原始卵泡形成時(shí)間存在差異,影響原始卵泡形成和發(fā)育的主要因素有信號(hào)通路、生長(zhǎng)因子、轉(zhuǎn)錄因子以及激素。本文就哺乳動(dòng)物原始卵泡形成和發(fā)育以及影響因素作一綜述。
原始卵泡;卵母細(xì)胞;生殖細(xì)胞巢;減數(shù)分裂;信號(hào)通路
原始卵泡的形成和發(fā)育決定哺乳動(dòng)物的繁殖性能和繁殖壽命,原始卵泡被激活進(jìn)入生長(zhǎng)卵泡池的數(shù)量與原始卵泡池中卵泡的衰竭率密切相關(guān)。原始卵泡是生殖細(xì)胞巢程序性破裂后組裝形成,被一層扁平的顆粒細(xì)胞所包圍。隨后大部分的原始卵泡保持靜止,少量的原始卵泡被激活進(jìn)入生長(zhǎng)池,發(fā)育為生長(zhǎng)卵泡,直至發(fā)育成熟排卵,所以成熟卵泡是原始卵泡發(fā)育的結(jié)果,原始卵泡的生長(zhǎng)發(fā)育對(duì)于雌性動(dòng)物的繁殖力很關(guān)鍵。本文對(duì)原始卵泡形成和發(fā)育以及影響因素的研究進(jìn)行綜述,旨在引起人們對(duì)原始卵泡形成和發(fā)育研究的關(guān)注,并為正確理解或減少畜禽生產(chǎn)中原始卵泡發(fā)育不良引起的卵巢疾病提供可靠的理論支持。
1.1 原始生殖細(xì)胞巢的形成
不同物種的哺乳動(dòng)物生殖細(xì)胞巢形成時(shí)間存在差異。雌性小鼠原始生殖細(xì)胞(Primordial germ cells,PGCs)于交配后的10.5 d(10.5 day postcoitum,10.5 dpc)遷移至生殖嵴,10.5~13.5 dpc階段進(jìn)行胞質(zhì)分裂,形成卵原細(xì)胞和生殖細(xì)胞巢[1];胎牛生殖細(xì)胞開(kāi)始到達(dá)生殖嵴大約在妊娠期35 d,此時(shí)至卵泡組裝,PGCs數(shù)目由1.6×104增加到2.7×106,其生殖細(xì)胞巢在妊娠期的57~60 d形成[2];而胎羊PGCs在妊娠23 d遷移至生殖嵴[3],PGCs數(shù)目在妊娠75 d時(shí)達(dá)到最大值8.05×105[4];但是這個(gè)時(shí)期關(guān)于豬的報(bào)道并不多,胎豬18 d即可以觀察到生殖嵴,在20 d左右PGCs開(kāi)始進(jìn)行有絲分裂,50 d左右PGCs數(shù)目由5×103增加到1.1×106[5]。盡管PGCs的發(fā)育時(shí)間在不同物種中不同,但是他們卻具有相同的遷移和增殖行為,這表明PGCs的發(fā)育在不同的物種間高度保守。
1.2 減數(shù)分裂的啟動(dòng)
雌性鼠13.5 dpc卵原細(xì)胞有絲分裂終止并分批進(jìn)入減數(shù)分裂階段,至出生后5 d時(shí)停滯在雙線期[6];牛PGCs進(jìn)入減數(shù)分裂始于妊娠期75~82 d[7],此過(guò)程為一個(gè)逐步而漫長(zhǎng)的階段,因?yàn)槌錾鷷r(shí)仍有一些生殖細(xì)胞處于減數(shù)分裂期;羊PGCs進(jìn)入減數(shù)分裂首先是在妊娠55 d時(shí)發(fā)現(xiàn),這些PGCs迅速進(jìn)入減數(shù)分裂[8];豬PGCs進(jìn)行減數(shù)分裂始于妊娠期47 d[9]。
1.3 卵泡的形成
生殖細(xì)胞巢中的卵母細(xì)胞通過(guò)巢的破裂分開(kāi),進(jìn)入原始卵泡(由一個(gè)卵母細(xì)胞和一些相關(guān)的顆粒細(xì)胞組成)組裝期。在這個(gè)過(guò)程中一些生殖細(xì)胞巢通過(guò)程序性死亡,最后僅剩1/3存活。鼠生殖細(xì)胞巢的破裂及丟失同時(shí)發(fā)生,暗示著他們是一個(gè)整體過(guò)程。與此一致的觀點(diǎn)為程序性死亡調(diào)節(jié)因子(Bcl-2 Assaciated X protein,Bax)突變卵巢較野生型卵巢具有更多的卵母細(xì)胞[10]。鼠卵母細(xì)胞丟失和巢的破裂最早始于17.5 dpc卵巢髓質(zhì)部,同時(shí)原始卵泡開(kāi)始在皮質(zhì)部形成[11]。關(guān)于牛卵泡形成的具體時(shí)間存在爭(zhēng)議,盡管有學(xué)者早在妊娠74 d觀察到原始卵泡[12],但是仍有研究表明直到妊娠130 d才首次觀察到原始卵泡,而現(xiàn)在比較認(rèn)同的時(shí)間是妊娠90 d[13]。羊原始卵泡首先形成于卵巢皮質(zhì)部和髓質(zhì)部的交界處,隨后逐漸移向皮質(zhì)部淺層,原始卵泡首次出現(xiàn)在妊娠66~75 d[14],75%左右的生殖細(xì)胞伴隨著原始卵泡的形成凋亡。但是關(guān)于其他的哺乳動(dòng)物原始卵泡的信息較少,豬卵泡開(kāi)始形成在妊娠56 d左右[15]。
1.4 卵泡的發(fā)育
原始卵泡由卵母細(xì)胞和少量扁平狀的顆粒細(xì)胞組成,保持靜止?fàn)顟B(tài)直到被激活,電子顯微鏡下觀察到顆粒細(xì)胞由扁平狀變?yōu)榱⒎叫?,預(yù)示著卵泡被激活,此時(shí)的卵泡被稱為初級(jí)卵泡。在許多哺乳動(dòng)物中,原始卵泡發(fā)育為初級(jí)卵泡存在時(shí)間間隔。牛上觀察到原始卵泡在妊娠90 d出現(xiàn),但是初級(jí)卵泡在140 d才出現(xiàn),卵母細(xì)胞一直停滯在雙線期直至141 d[14],這表明原始卵泡發(fā)育為初級(jí)卵泡,卵母細(xì)胞處于雙線期是必要條件。羊卵泡形成起始于妊娠66~75 d,但是初級(jí)卵泡卻在100 d才出現(xiàn)[16]。國(guó)外品種豬妊娠第56天原始卵泡形成,初級(jí)卵泡出現(xiàn)在妊娠75 d[14],而地方豬種二花臉原始卵泡在妊娠70 d左右出現(xiàn),初級(jí)卵泡在妊娠90 d形成[17]。
2.1 影響生殖細(xì)胞形成的因素
前人研究發(fā)現(xiàn),影響PGCs的因素主要可分為兩類,一類調(diào)控PGCs形成數(shù)目,主要為KIT、轉(zhuǎn)化生長(zhǎng)因子β(Transforming growth factor,TGF-β)等;另一類主要調(diào)控PGCs數(shù)目的丟失,主要為β-連環(huán)蛋白(β-catenin,β-cat)、卵泡抑制素(Follistatin,FS)、骨巢蛋白(Nanos homolog 3,Nanos3)、胚胎干細(xì)胞關(guān)鍵蛋白Oct4(Octamer-binding transcription factor 4,Oct4)等[18]。目前關(guān)于影響PGCs的因素主要集中在某些蛋白和調(diào)控細(xì)胞程序性死亡的因子上。例如,PGCs遷移至生殖嵴,若KIT蛋白的配體(KIT ligand,KITL)表達(dá)降低將導(dǎo)致PGCs增殖受阻以及存活數(shù)目減少;骨形態(tài)發(fā)生蛋白4(Bone morphogenetic protein 4,BMP4)對(duì)PCGs的增殖無(wú)影響,但是加速了PCGs的凋亡[19];抗凋亡因子Bcl-x和Bax作為Bcl2家族成員,參與調(diào)控PGCs的存活,若Bcl亞等位基因在15.5 dpc缺失,PGCs數(shù)目減少,但是當(dāng)Bcl-x和Bax同時(shí)缺失,PGCs數(shù)目則恢復(fù)[20];作為調(diào)節(jié)細(xì)胞程序性死亡因子的Bcl2和天冬氨酸特異性半胱氨酸蛋白酶2(Cycteinylaspartate specific protease 2,Caspase 2)也與卵母細(xì)胞的存活以及PGCs的數(shù)目有關(guān)[21]。
2.2 影響哺乳動(dòng)物雌性生殖細(xì)胞減數(shù)分裂的因素
調(diào)控卵原細(xì)胞減數(shù)分裂的因素很多。前人的研究主要探討一些基因的DNA錯(cuò)義修復(fù)和重組導(dǎo)致PGCs減數(shù)分裂異常。例如毛細(xì)血管擴(kuò)張性共濟(jì)失調(diào)癥突變基因(Ataxia telangiectasia-mutated gene,Atm)、減數(shù)分裂特異基因(Disrupted meiotic cDNA 1,DMC1)、Mut同源蛋白4(MutS homolog 4,msh4)、Mut同源蛋白5(MutS homolog 5,msh5)等基因DNA異常,均會(huì)使16.5 dpc鼠生殖細(xì)胞停留在減數(shù)分裂的粗線期,最終卵母細(xì)胞丟失,使雌性動(dòng)物不孕[18]。也有研究表明,聯(lián)會(huì)復(fù)合體蛋白1(Synaptonemal complex protein 1,scyp1)基因突變也會(huì)導(dǎo)致不孕,卵母細(xì)胞丟失,若抑制scyp1表達(dá),減數(shù)分裂雙線期以及原始卵泡組裝提早[22]。最近研究表明,維甲酸(Retinoic acid,RA)誘導(dǎo)雌性生殖細(xì)胞減數(shù)分裂啟動(dòng),若抑制RA受體表達(dá),雌性生殖細(xì)胞不能進(jìn)入減數(shù)分裂期,而添加外源性RA則誘導(dǎo)雌性動(dòng)物生殖細(xì)胞進(jìn)入減數(shù)分裂細(xì)線期[23]。目前研究還表明抑制Notch信號(hào),RA表達(dá)量下調(diào),無(wú)精子癥缺失同源基因(Deleted in azoospermia-like,DAZL)、DMC1等調(diào)控減數(shù)分裂的基因表達(dá)量降低,減數(shù)分裂延遲以及卵母細(xì)胞生長(zhǎng)率下降[24]。
2.3 影響原始卵泡形成的因素
2.3.1 信號(hào)通路對(duì)原始卵泡形成的影響 一個(gè)卵泡中含多個(gè)卵母細(xì)胞,稱為多卵母細(xì)胞卵泡(Multiple oocyte follicles,MOFs),由于巢未完全破裂所導(dǎo)致的。Notch信號(hào)通路是一個(gè)高度保守的細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)系統(tǒng),存在于大多數(shù)多細(xì)胞生物體中,目前研究表明Notch信號(hào)通路調(diào)控原始卵泡形成。胎鼠卵巢培養(yǎng)液中加入γ-分泌酶抑制劑DAPT(γ-secretase inhibitor DAPT,DAPT)抑制Notch信號(hào)通路,原始卵泡形成過(guò)程中LIM同源框蛋白8(LIM homeobox protein 8,Lhx8)、生殖系α因子(Factor in germline alpha,F(xiàn)igla)、堿性螺旋蛋白2(Spermatogenesis and oogenesis-specific basic helix-loop-helix 2,Sohlh2)、新生兒卵巢同源基因(Newborn ovary homeobox gene,Nobox) mRNA表達(dá)下調(diào),且LIM和Nobox蛋白的表達(dá)降低,進(jìn)一步對(duì)新生鼠卵巢體外培養(yǎng)3 d,進(jìn)行生殖細(xì)胞巢中生殖細(xì)胞數(shù)百分比和卵巢中原始卵泡計(jì)數(shù),結(jié)果顯示生殖細(xì)胞巢的生殖細(xì)胞數(shù)顯著的上調(diào),原始卵泡數(shù)目顯著下調(diào)(P<0.05)[25],這表明Notch信號(hào)通路可能調(diào)節(jié)鼠中原始卵泡的形成。證明此觀點(diǎn)的還有對(duì)Notch信號(hào)刺激和抑制邊緣化的信號(hào),即邊緣性神經(jīng)錯(cuò)亂同源基因(Luna-ticfringe,Lfng)突變,可導(dǎo)致不育和MOFs[26]。
前人研究表明,KIT信號(hào)對(duì)卵巢的許多功能起著重要作用,包括生殖細(xì)胞的存活和偏移[27]。隨后的研究也發(fā)現(xiàn),KIT信號(hào)可以保護(hù)竇前卵泡的凋亡,對(duì)隨后卵泡的發(fā)育是必需的[28]。而目前的研究表明,鼠卵巢培養(yǎng)液中加入外源性KIT,原始卵泡的數(shù)目增多,這表明KIT信號(hào)對(duì)原始卵泡池的建立也很重要。進(jìn)一步抑制KIT信號(hào),卵母細(xì)胞巢的破裂大量減少,僅有47%單個(gè)卵母細(xì)胞,而KITL處理組卵母細(xì)胞巢的破裂數(shù)增加,含有84%的單個(gè)卵母細(xì)胞[29]。KIT信號(hào)促進(jìn)原始卵泡的形成。若KIT磷酸化后,磷脂酰肌醇3激酶(Phosphatidylinositol-3-Kinase,PI3K)的調(diào)節(jié)亞基p85的主要結(jié)合位點(diǎn)KIT酪氨酸殘基719將被磷酸化,隨后PI3K被激活。小鼠KIT受體突變不能結(jié)合PI3Kp85,使KIT下游的PI3K途徑受阻,但是鼠仍可進(jìn)行正常的卵母細(xì)胞巢破裂和原始卵泡的形成[29],這表明PI3K途徑不參與原始卵泡的形成。
2.3.2 神經(jīng)營(yíng)養(yǎng)因子以及TGFB家族蛋白對(duì)原始卵泡形成的影響 也有證據(jù)表明神經(jīng)營(yíng)養(yǎng)因子調(diào)節(jié)巢的破裂和原始卵泡的形成。神經(jīng)生長(zhǎng)因子(NGF)突變,會(huì)導(dǎo)致僅少量的卵母細(xì)胞存在于原始卵泡,而更多地卵母細(xì)胞仍然留在生殖細(xì)胞巢中1周左右。抑制神經(jīng)營(yíng)養(yǎng)因子4(Neurotrophin 4,NT4)和腦源性神經(jīng)營(yíng)養(yǎng)因子(Brainderived neurotrophic factor,BDNF)表達(dá),存活的卵母細(xì)胞數(shù)減少,若其受體異常,可導(dǎo)致同樣結(jié)果[30]。國(guó)內(nèi)研究表明,BDNF在哺乳動(dòng)物中的作用是阻止原始卵泡向初級(jí)卵泡轉(zhuǎn)化[31]。有研究表明,TGFB家族蛋白可能參與巢的破裂和卵泡形成。敲除骨形態(tài)發(fā)生蛋白15(BMP15)、生長(zhǎng)分化因子9(GDF9)導(dǎo)致MOFs[32],進(jìn)行GDF9 siRNA干擾GDF9表達(dá)處理組原始卵泡形成目數(shù)減少,由于巢的異常破裂MOFs發(fā)生率提高2倍[33],而敲除BMP15抑制蛋白,即人骨形態(tài)形成蛋白拮抗蛋白1(Human grem1,Grem1),卵母細(xì)胞數(shù)目減少但是生殖細(xì)胞巢的數(shù)目增加[34]。其家族另一個(gè)成員RA,可促進(jìn)卵泡形成,若其抑制劑抑制素B過(guò)度表達(dá)會(huì)增加MOFs比率。卵泡抑素(RA負(fù)向調(diào)控因子)突變使生育能力降低,延遲巢的破裂和卵泡形成[18]。
2.3.3 轉(zhuǎn)錄因子對(duì)原始卵泡形成的影響 Figla是一個(gè)螺旋-環(huán)-螺旋結(jié)構(gòu)的轉(zhuǎn)錄因子。Figla因子敲除,小鼠出生后卵母細(xì)胞開(kāi)始丟失,雖然仍有卵母細(xì)胞出現(xiàn),但并不能形成原始卵泡,miR-212可結(jié)合Figla mRNA非編碼區(qū)損害其mRNA表達(dá),影響卵泡發(fā)育[35]。Nobox是卵母細(xì)胞特異表達(dá)的同源基因,不僅在卵母細(xì)胞巢中表達(dá),而且存在于卵泡中。敲除Nobox的結(jié)果是卵母細(xì)胞丟失增加,新生兒卵母細(xì)胞巢的破裂延遲。有研究表明,Lhx8基因在雌性動(dòng)物卵子發(fā)生時(shí)優(yōu)先表達(dá),對(duì)早期卵子的發(fā)生很關(guān)鍵。若對(duì)鼠卵巢進(jìn)行化學(xué)破壞處理,F(xiàn)igle、Nobox、Lhx8表達(dá)顯著下降,產(chǎn)后7 d卵母細(xì)胞缺失[36]。2.3.4 激素對(duì)原始卵泡形成的調(diào)節(jié) 外源性雌激素刺激胎牛卵巢,原始卵泡激活被抑制。激素不僅與原始卵泡的激活相關(guān)而且調(diào)控原始卵泡形成。E.E.Nilsson等[37]發(fā)現(xiàn)自原始卵泡形成時(shí)卵巢的雌激素和孕酮水平下降,而對(duì)體外培養(yǎng)卵巢進(jìn)行孕酮處理嚴(yán)重阻礙了卵泡的組裝。羊方面的試驗(yàn)同樣證明了孕酮水平與卵母細(xì)胞減數(shù)分裂開(kāi)始相關(guān)。應(yīng)用孕酮或者孕酮樣復(fù)合物處理雌性鼠卵巢,出現(xiàn)更多的MOFs,這表明孕酮在巢的破裂和原始卵泡組裝方面起著重要作用。在其他動(dòng)物,孕酮對(duì)卵泡的形成具有促進(jìn)作用,孕酮促進(jìn)倉(cāng)鼠卵泡的組裝,若孕酮被阻止,靈長(zhǎng)類動(dòng)物生殖細(xì)胞巢的破裂和卵泡形成終止[26]。這些表明高濃度的孕酮抑制卵泡的組裝而低濃度孕酮促進(jìn)其組裝。
2.4 影響卵泡發(fā)育的因素
2.4.1 信號(hào)通路對(duì)原始卵泡發(fā)育的影響 有研究發(fā)現(xiàn)PI3K信號(hào)通路在調(diào)節(jié)原始卵泡發(fā)育過(guò)程中發(fā)揮重要作用。3-磷酸肌醇依賴性蛋白激酶1(3-phosphoinositide dependent protein kinase-1,PDPK1)通過(guò)磷酸化AKT介導(dǎo)PI3K影響原始卵泡發(fā)育,雌性動(dòng)物PDPK1突變誘導(dǎo)卵泡過(guò)早激活成熟,逐步喪失生產(chǎn)力,AKT異常只會(huì)影響一部分卵泡過(guò)早激活。Pten(Phosphatase and tensin homolog deleted on chromosome,Pten)作為PI3K的負(fù)向調(diào)節(jié)因子,缺失將會(huì)導(dǎo)致原始卵泡池過(guò)度激活,過(guò)早衰竭。PI3K下游的信號(hào)因子叉行頭轉(zhuǎn)錄因子FOXO3(Forkhead box O3,F(xiàn)OXO3)、P27、核糖體蛋白s6(Ribosomal protein s6,RPs6)也會(huì)導(dǎo)致卵泡過(guò)早成熟和不育。FOXO3a似乎并不參與原始卵泡發(fā)育的過(guò)程。通過(guò)添加TGF-β(Transforming growth factor-β)以及SD208(TGF-β抑制劑)觀察到FOXO3a含量沒(méi)有發(fā)生變化,而且敲除FOXO3a,小鼠原始卵泡形成、初級(jí)卵泡形成以及其比例正常也證實(shí)了這一觀點(diǎn)[38]。
有研究表明mTOR信號(hào)通路同樣對(duì)原始卵泡的發(fā)育起著重要的作用。TGF-β介導(dǎo)的mTOR信號(hào)存在于卵母細(xì)胞中,而mTORC1的特異性抑制劑雷帕霉素可部分逆轉(zhuǎn)SD208對(duì)卵母細(xì)胞生長(zhǎng)中的作用,降低生長(zhǎng)卵泡的數(shù)量,TGF-β介導(dǎo)的mTOR信號(hào)通路對(duì)于維護(hù)原始卵泡的休眠池起著重要的生理作用,而且其中通過(guò)激活P70S6激酶1(S6K1)/ RPS6信號(hào)在鼠卵巢中發(fā)揮作用[37]。
2.4.2 轉(zhuǎn)錄因子、轉(zhuǎn)化生長(zhǎng)因子和其他因素對(duì)原始卵泡發(fā)育的影響 一些轉(zhuǎn)錄因子可以引起原始卵泡的閉鎖和卵母細(xì)胞的凋亡,最后導(dǎo)致不育。提示,這些因子參與原始卵泡的激活和發(fā)育。Lhm8突變,引起原始卵泡閉鎖,Nobox也會(huì)導(dǎo)致部分卵泡停留在原始卵泡期不發(fā)育[39]。有研究發(fā)現(xiàn),轉(zhuǎn)化生長(zhǎng)因子家族成員也與原始卵泡的發(fā)育密切相關(guān)。其中BMP4在卵泡生長(zhǎng)分化過(guò)程中起著重要調(diào)控作用,促進(jìn)原始卵泡的存活與發(fā)育,同時(shí)促進(jìn)原始卵泡向初級(jí)卵泡的轉(zhuǎn)變,是原始卵泡生存的必需因子[40]??姑桌展芗に?Anti-mullerian inhibiting hormone,AMH)抑制卵泡的發(fā)育,雌性小鼠敲除AMH,原始卵泡的數(shù)量下降,生長(zhǎng)卵泡的數(shù)量增加,導(dǎo)致卵巢重量的增加,而新生鼠卵巢在含有AMH的培養(yǎng)基中培養(yǎng),生長(zhǎng)卵泡的數(shù)量明顯減少,卵泡募集受阻[41]。其他一些因素可以使原始卵泡激活,但卻致使卵泡停留在初級(jí)卵泡期。例如GDF9突變初級(jí)卵泡形成后停滯發(fā)育,造成不孕[42]。一些酪氨酸激酶受體(KIT/KITL、SCF)也產(chǎn)生相同的效果[18]。而Foxl2缺失的小鼠卵巢上含有扁平顆粒細(xì)胞包裹的卵母細(xì)胞,但是沒(méi)有進(jìn)一步發(fā)育的卵泡結(jié)構(gòu)出現(xiàn)[43]。研究表明,促進(jìn)原始卵泡向初級(jí)卵泡轉(zhuǎn)化的主要因子還有堿性成纖維生長(zhǎng)因子、表皮生長(zhǎng)因子、干細(xì)胞因子、白血病抑制因子[44]。2.4.3 激素對(duì)原始卵泡發(fā)育的影響 研究表明,雄激素對(duì)原始卵泡的發(fā)育起著重要作用。通過(guò)對(duì)83和101 d的妊娠母豬注射氟他胺(雄激素抑制劑),結(jié)果發(fā)現(xiàn)原始卵泡向初級(jí)卵泡轉(zhuǎn)化比例增加,進(jìn)一步的研究證明,IGF-1、IGF-1R存在于初級(jí)卵母細(xì)胞和初級(jí)卵泡中,而且其mRNA含量較對(duì)照組增加[45],暗示雄激素誘導(dǎo)卵母細(xì)胞中IGF-1信號(hào),從而影響原始卵泡的發(fā)育。這與前人研究的提高原始卵泡中IGF-1R mRNA的水平,促進(jìn)原始卵泡發(fā)育相一致[46]。
原始卵泡作為卵泡發(fā)育過(guò)程中最初和最重要的生理事件,在卵泡發(fā)育過(guò)程中具有不可忽視的作用。目前關(guān)于原始卵泡形成和發(fā)育的相關(guān)研究相對(duì)較少,有關(guān)原始卵泡的形成和發(fā)育在基因以及環(huán)境的共同調(diào)控下完成的具體的機(jī)制仍有待進(jìn)一步研究;通過(guò)增加對(duì)原始卵泡形成和發(fā)育過(guò)程以及生長(zhǎng)因子、信號(hào)通路、激素等對(duì)原始卵泡影響的認(rèn)識(shí),啟示人們需要更加深入地了解這些調(diào)控因素,以便為更好地解決生殖障礙和生產(chǎn)力低下等問(wèn)題提供理論支持。
[1] SEKI Y,OKASHITA N.Epigenetic reprogramming in primordial germ cells in mice[J].JMammOvaRes,2013,30(3):95-100.
[2] GARVERICK H A,JUENGEL J L,SMITH P,et al.Development of the ovary and ontongeny of mRNA and protein for P450 aromatase(arom) and estrogen receptors(ER) α and β during early fetal life in cattle[J].AnimReprodSci,2010,117(1):24-33.
[3] JUENGEL J L,SAWYER H R,SMITH P R,et al.Origins of follicular cells and ontogeny of steroidogenesis in ovine fetal ovaries[J].MolCellEndocrinol,2002,191(1):1-10.
[4] SMITH P,HUDSON N L,SHAW L,et al.Effects of the Booroola gene(FecB) on body weight,ovarian development and hormone concentrations during fetal life[J].JReprodFertil,1993,98(1):41-54.
[5] BLACK J L,ERICKSON B H.Oogenesis and ovarian development in the prenatal pig[J].AnatRec,1968,161(1):45-55.
[6] BORUM K.Oogenesis in the mouse:a study of the meiotic prophase[J].ExpCellRes,1961,24(3):495-507.
[7] RUSSE I.Oogenesis in cattle and sheep[J].BiblAnat,1983,24:77.
[8] JUENGEL J L,SAWYER H R,SMITH P R,et al.Origins of follicular cells and ontogeny of steroidogenesis in ovine fetal ovaries[J].MolCellEndocrinol,2002,191(1):1-10.
[9] BRISTOL S K,KREEGER P K,SELKIRK C G,et al.Postnatal regulation of germ cells by activin:the establishment of the initial follicle pool[J].DevBiol,2006,298(1):132-148.
[10] GREENFELD C R,PEPLING M E,BABUS J K,et al.BAX regulates follicular endowment in mice[J].Reproduction,2007,133(5):865-876.
[11] PEPLING M E,SUNDMAN E A,PATTERSON N L,et al.Differences in oocyte development and estradiol sensitivity among mouse strains[J].Reproduction,2010,139(2):349-357.
[12] NILSSON E E,SKINNER M K.Progesterone regulation of primordial follicle assembly in bovine fetal ovaries[J].MolCellEndocrinol,2009,313(1):9-16.
[13] YANG M Y,F(xiàn)ORTUNE J E.The capacity of primordial follicles in fetal bovine ovaries to initiate growthinvitrodevelops during mid-gestation and is associated with meiotic arrest of oocytes[J].BiolReprod,2008,78(6):1153-1161.
[14] JUENGEL J L,SAWYER H R,SMITH P R,et al.Origins of follicular cells and ontogeny of steroidogenesis in ovine fetal ovaries[J].MolCellEndocrinol,2002,191(1):1-10.
[15] BIELANSKA-OSUCHOWSKA Z.Oogenesis in pig ovaries during the prenatal period:ultrastructure and morphometry[J].ReprodBiol,2006,6:161-193.
[16] SAWYER H R,SMITH P,HEATH D A,et al.Formation of ovarian follicles during fetal development in sheep[J].BiolReprod,2002,66(4):1134-1150.
[17] DING W,WANG W,ZHOU B,et al.Formation of primordial follicles and immunolocalization of PTEN,PKB and FOXO3A proteins in the ovaries of fetal and neonatal pigs[J].JReprodDev,2010,56(1):162-168.
[18] PEPLING M.Oocyte development before and during folliculogenesis[J].OocytePhysiolDevDomestAnim,2013,45:1-19.
[19] CHILDS A J,KINNELL H L,COLLINS C S,et al.BMP signaling in the human fetal ovary is developmentally regulated and promotes primordial germ cell apoptosis[J].StemCells,2010,28(8):1368-1378.
[20] RUCKER III E B,DIERISSEAU P,WAGNER K U,et al.Bcl-x and Bax regulate mouse primordial germ cell survival and apoptosis during embryogenesis[J].MolEndocrinol,2000,14(7):1038-1052.
[21] BERGERON L,PEREZ G I,MACDONALD G,et al.Defects in regulation of apoptosis in caspase-2-deficient mice[J].Genes&Dev,1998,12(9):1304-1314.
[22] DEVRIES F A T,DEBOER E,VAN B M,et al.Mouse Sycp1 functions in synaptonemal complex assembly,meiotic recombination,and XY body formation[J].Genes&Dev,2005,19(11):1376-1389.
[23] MU X,WEN J,GUO M,et al.Retinoic acid derived from the fetal ovary initiates meiosis in mouse germ cells[J].JCellPhysiol,2013,228(3):627-639.
[24] FENG Y M,LIANG G J,PAN B,et al.Notch pathway regulates female germ cell meiosis progression and early oogenesis events in fetal mouse[J].CellCycle,2014,13(5):782-791.
[25] CHEN C L,F(xiàn)U X F,WANG L Q,et al.Primordial follicle assembly was regulated by notch signaling pathway in the mice[J].MolBiolRep,2014,41(3):1891-1899.
[26] HAHN K L,JOHNSON J,BERES B J,et al.Lunatic fringe null female mice are infertile due to defects in meiotic maturation[J].Development,2005,132(4):817-828.
[27] HUANG E J,MANOVA K,PACKER A I,et al.The murine steel panda mutation affects kit ligand expression and growth of early ovarian follicles[J].DevBiol,1993,157(1):100-109.
[28] YOSHIDA H,TAKAKURA N,KATAOKA H,et al.Stepwise requirement of c-kit tyrosine kinase in mouse ovarian follicle development[J].DevBiol,1997,184(1):122-137.
[29] JOHN G B,SHIDLER M J,BESMER P,et al.Kit signaling via PI3K promotes ovarian follicle maturation but is dispensable for primordial follicle activation[J].DevBiol,2009,331(2):292-299.
[30] KERR B,GARCIA-RUDAZ C,DORFMAN M,et al.NTRK1 and NTRK2 receptors facilitate follicle assembly and early follicular development in the mouse ovary[J].Reproduction,2009,138(1):131-140.
[31] 王 勇.NGF及其受體對(duì)卵泡發(fā)育調(diào)控的分子機(jī)制研究[D].合肥:中國(guó)科學(xué)技術(shù)大學(xué),2013. WANG Y.NGF and its receptor on the molecular mechanism of regulation of follicular development[D].Hefei:University of Science and Technology of China,2013.(in Chinese)
[32] YAN C,WANG P,DEMAYO J,et al.Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function[J].MolEndocrinol,2001,15(6):854-866.
[33] WANG C,ROY S K.Expression of growth differentiation factor 9 in the oocytes is essential for the development of primordial follicles in the hamster ovary[J].Endocrinology,2006,147(4):1725-1734.
[34] MYERS M,TRIPURANI S K,MIDDLEBROOK B,et al.Loss of gremlin delays primordial follicle assembly but does not affect female fertility in mice[J].BiolReprod,2011,85(6):1175-1182.
[35] TRIPURANI S K,WEE G,LEE K B,et al.MicroRNA-212 post-transcriptionally regulates oocyte-specific basic-Helix-Loop-Helix transcription factor,factor in the germline alpha(FIGLA),during bovine early embryogenesis[J].PLoSONE,2013,8(9):e76114.
[36] PARK M R,CHOI Y J,KWON D N,et al.Intraovarian transplantation of primordial follicles fails to rescue chemotherapy injured ovaries[J].SciRep,2013,3:1384.doi:10.1038/srep01384.
[37] NILSSON E E,SKINNER M K.Progesterone regulation of primordial follicle assembly in bovine fetal ovaries[J].MolCellEndocrinol,2009,313(1):9-16.
[38] WANG Z P,MU X Y,GUO M,et al.Transforming growth factor-β signaling participates in the maintenance of the primordial follicle pool in the mouse ovary[J].JBiolChem,2014,289(12):8299-8311.
[39] CHOI Y,BALLOW D J,XIN Y,et al.Lim homeobox gene,lhx8,is essential for mouse oocyte differentiation and surviva l[J].BiolReprod,2008,79(3):442-449.
[40] DONG J,ALBERTINI D F,NISHIMORI K,et al.Growth differentiation factor-9 is required during early ovarian folliculogenesis[J].Nature,1996,383:531-535.
[41] 張 馳,周建設(shè),秦 楠,等.骨形態(tài)發(fā)生蛋白4與哺乳動(dòng)物卵泡發(fā)育的研究進(jìn)展[J].中國(guó)畜牧獸醫(yī),2010,(3):141-144. ZHANG C,ZHOU J S,QIN N,et al.Progress on bone morphogenetic protein 4 on mammalian follicular development[J].ChinaAnimalHusbandryandVeterinaryMedicine,2010,(3):141-144.(in Chinese)
[42] 田允波,曾書(shū)琴,陳學(xué)進(jìn),等.哺乳動(dòng)物原始卵泡生長(zhǎng)啟動(dòng)的調(diào)控[J].農(nóng)業(yè)生物技術(shù)學(xué)報(bào),2006,14(4):618-624. TIAN Y B,ZENG S Q,CHEN X J,et al.Regulation of initiation of primordial follicle growth in mammals[J].JournalofAgriculturalBiotechnology,2006,14(4):618-624.(in Chinese)
[43] SCHMIDT D,OVITT C E,ANLAG K,et al.The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance[J].Development,2004,131(4):933-942.
[44] 孫理蘭,谷朝勇,潘慶杰,等.原始卵泡形成與早期卵泡發(fā)育的遺傳調(diào)控[J].生物技術(shù)通訊,2008,19(1):120-124. SUN L L,GU C Y,PAN Q J,et al.Genetic regulation of the primordial follicle formation and earliest follicular development[J].LettersinBiotechnology,2008,19(1):120-124.(in Chinese)
[45] KNAPCZYK-STWORA K,GRZESIAK M,DUDA M,et al.Effect of flutamide on folliculogenesis in the fetal porcine ovary-regulation by kit ligand/c-kit and IGF1/IGF1R systems[J].AnimReprodSci,2013,142(3):160-167.
[46] VENDOLA K,ZHOU J,WANG J,et al.Androgens promote insulin-like growth factor-I and insulin-like growth factor-I receptor gene expression in the primate ovary[J].HumReprod,1999,14(9):2328-2332.
(編輯 程金華)
Influencing Factors and Assembly and Development of Primordial Follicle in the Mammalian
XU Meng-meng,CHE Long,XU Sheng-yu*,WU De
(InstituteofAnimalNutrition,SichuanAgriculturalUniversity,Ya’an625014,China)
The formation and development of primordial follicle are the most important events in the ovary activation and exerting the optimum reproductive potency of an adult.Most researches about the follicular development were focused on the growing follicular,but not the primordial follicle.However,studies have shown that assembly timing of primordial follicle are differ between species.The signaling pathways,growth factor,transcription factors,hormone and other aspects collaborate to regulate the formation and development of primordial follicle.This paper will review the primordial follicle assembly,development and the influencing factors in the mammalian.
primordial follicle;oocyte;germ cell cyst;meiotic;signaling pathway
10.11843/j.issn.0366-6964.2015.01.003
2014-07-03
四川省教育廳重點(diǎn)項(xiàng)目(13ZA0259);川豬遺傳改良與安全生產(chǎn)教育部創(chuàng)新團(tuán)隊(duì)(IRT13083)
許蒙蒙(1988-),女,河南安陽(yáng)人,碩士生,主要從事動(dòng)物營(yíng)養(yǎng)與飼料科學(xué)研究,E-mail:xumengmeng2013@126.com
*通信作者:徐盛玉,助理研究員,E-mail:shengyuxu@sicau.edu.cn
S814
A
0366-6964(2015)01-0020-06