亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        扶桑綿粉蚧與長(zhǎng)角立毛蟻的互惠關(guān)系及其對(duì)寄主棉花葉片葉綠素?zé)晒馓匦缘挠绊?/h1>
        2015-02-19 05:39:38夏天風(fēng)李明江
        生物安全學(xué)報(bào) 2015年1期

        黃 俊, 張 娟, 夏天風(fēng), 李明江

        浙江省農(nóng)業(yè)科學(xué)院花卉研究開(kāi)發(fā)中心,浙江省蕭山棉麻研究所,浙江 杭州 311202

        ?

        扶桑綿粉蚧與長(zhǎng)角立毛蟻的互惠關(guān)系及其對(duì)寄主棉花葉片葉綠素?zé)晒馓匦缘挠绊?/p>

        黃俊*, 張娟, 夏天風(fēng), 李明江

        浙江省農(nóng)業(yè)科學(xué)院花卉研究開(kāi)發(fā)中心,浙江省蕭山棉麻研究所,浙江 杭州 311202

        摘要:【背景】草食動(dòng)物對(duì)寄主植物的取食或損傷會(huì)誘導(dǎo)改變植物的光合作用,從而直接影響植株的健康生長(zhǎng)。產(chǎn)蜜昆蟲(chóng)與螞蟻的互惠關(guān)系是物種相互促進(jìn)的一種重要的生態(tài)學(xué)現(xiàn)象,能夠促進(jìn)產(chǎn)蜜昆蟲(chóng)的種群數(shù)量,然而這種互惠關(guān)系及其對(duì)寄主植物光合生理的影響還知之甚少?!痉椒ā吭谑覂?nèi)條件下,運(yùn)用葉綠素?zé)晒鈩?dòng)力學(xué)技術(shù)研究了外來(lái)入侵害蟲(chóng)扶桑綿粉蚧與長(zhǎng)角立毛蟻的互惠對(duì)寄主棉花葉片葉綠素?zé)晒馓匦缘挠绊憽!窘Y(jié)果】隨著扶桑綿粉蚧危害時(shí)間的延續(xù),寄主植物上螞蟻和扶桑綿粉蚧的數(shù)量均呈現(xiàn)顯著上升的趨勢(shì),而在危害后期,螞蟻存在情況下扶桑綿粉蚧的數(shù)量要明顯低于無(wú)螞蟻處理;在扶桑綿粉蚧取食寄主棉花20 d后,有、無(wú)螞蟻存在的棉花葉片的光合利用率α值較無(wú)蟲(chóng)處理分別下降了53.5%和37.0%;存在螞蟻或扶桑綿粉蚧危害后期對(duì)棉花葉片最大相對(duì)電子傳遞效率rETRmax有顯著影響,然而扶桑綿粉蚧單獨(dú)取食或與螞蟻互作的情況下未顯著影響棉花葉片對(duì)強(qiáng)光的耐受能力(Ek)。【結(jié)論與意義】研究明確了扶桑綿粉蚧與長(zhǎng)角立毛蟻的互惠關(guān)系對(duì)寄主棉花葉片的光合生理產(chǎn)生了一定的負(fù)面效應(yīng),為進(jìn)一步解釋扶桑綿粉蚧入侵、擴(kuò)散及暴發(fā)的生態(tài)學(xué)過(guò)程提供了科學(xué)依據(jù)。

        關(guān)鍵詞:互惠; 光合活性; 快速光曲線; 扶桑綿粉蚧; 長(zhǎng)角立毛蟻; 生物入侵

        互惠關(guān)系(Mutualism)是物種相互促進(jìn)的一種重要生態(tài)學(xué)現(xiàn)象,是物種多樣性、生態(tài)系統(tǒng)結(jié)構(gòu)與功能得以維持的重要機(jī)制(Bronstein,1994)。螞蟻與產(chǎn)蜜半翅目昆蟲(chóng)(Honeydew-producing hemipterans)的互惠是動(dòng)物界中的經(jīng)典例子,也是近年研究的熱點(diǎn)問(wèn)題之一(Grinathetal.,2012; Kaplan & Eubanks,2005; Tenaetal.,2013; Way,1963; Wimp & Whitham,2001)。二者互惠對(duì)寄主植物的生理生長(zhǎng)也具有深遠(yuǎn)影響(Styrsky & Eubanks,2007),如螞蟻取食產(chǎn)蜜半翅目昆蟲(chóng)排放的蜜露,同時(shí)也保護(hù)后者免受天敵傷害(Huangetal.,2011; Zhouetal.,2013),并且通過(guò)刺激產(chǎn)蜜半翅目昆蟲(chóng)的取食率、繁殖力和擴(kuò)散力從而加重對(duì)寄主植物的危害(Stadler & Dixon,1998; Yaoetal.,2000; Yao & Akimoto,2002),在此過(guò)程中螞蟻也會(huì)對(duì)植物上其他為害的食草動(dòng)物進(jìn)行捕食或驅(qū)趕(Buckley,1987; Delabie,2001; Way & Khoo,1992)。

        扶桑綿粉蚧PhenacoccussolenopsisTinsley屬半翅目Hemiptera粉蚧科Pseudococcidae(Cockerell,1902),是一種典型的產(chǎn)蜜半翅目昆蟲(chóng),通過(guò)刺吸取食和排泄蜜露對(duì)大田作物、園林觀賞植物、果樹(shù)和蔬菜等經(jīng)濟(jì)作物造成嚴(yán)重危害,且極易隨人為活動(dòng)而遠(yuǎn)距離快速擴(kuò)散傳播(武三安和張潤(rùn)志,2009)。該蟲(chóng)原產(chǎn)于北美,最初被發(fā)現(xiàn)于美國(guó)新墨西哥州的熱帶火蟻Solenopsisgeminata(Fabricius)的蟻巢內(nèi)(Tinsley,1898),該粉蚧較容易與螞蟻如入侵性紅火蟻SolenopsisinvictaBuren(Zhouetal.,2012)和雙針棱胸切葉蟻PristomyrmexpungensMayr(Huangetal.,2012)形成互惠關(guān)系。目前關(guān)于扶桑綿粉蚧與螞蟻的互惠對(duì)寄主植物光合生理的影響等方面還知之甚少。

        光合作用為植物生長(zhǎng)提供所需能量和同化物,是植物生理學(xué)研究的核心(Lawlor,2009)。而草食動(dòng)物對(duì)植物的取食或損傷會(huì)導(dǎo)致對(duì)后者光合生理產(chǎn)生直接影響(Kempemaetal.,2007; Nabityetal.,2009; Samsoneetal.,2012)。葉綠素是一類與光合作用有關(guān)的最重要色素,是影響光合作用的物質(zhì)基礎(chǔ)(Krause & Weis,1991)。由于活體葉綠素具有熒光現(xiàn)象,因此通過(guò)葉綠素?zé)晒鈩?dòng)力學(xué)技術(shù)(Chlorophyll fluorescence kinetics technique)能測(cè)定葉片光合作用過(guò)程中光系統(tǒng)對(duì)光能的吸收、傳遞、耗散、分配等(Nietal.,2009)。該技術(shù)具有快速、靈敏且對(duì)植株不造成損傷的特點(diǎn),已開(kāi)始應(yīng)用于昆蟲(chóng)學(xué)領(lǐng)域。通過(guò)對(duì)葉綠素?zé)晒鈩?dòng)力學(xué)參數(shù)的測(cè)定和分析,發(fā)現(xiàn)俄羅斯小麥蚜蟲(chóng)Diuraphisnoxia(Kurdjumov) (Burd & Elliott,1996)、二斑葉螨Tetranychusurticae(Koch) ( Bounfouretal.,2002; Iatrouetal.,1995)、松大鋸角葉蜂DiprionpiniL.(Schroderetal.,2005)、一種蠟蚧Coccussp.(Retuertoetal.,2004)等通過(guò)取食誘導(dǎo)寄主植物光合生理發(fā)生改變。Huangetal.(2013)應(yīng)用該技術(shù)測(cè)定了不同密度扶桑綿粉蚧危害下番茄葉片的光合活性,結(jié)果表明,該粉蚧初始高密度處理38 d后,番茄SolanumlycopersicumL.葉片的相對(duì)葉綠素含量和光合利用效率分別下降了57.3%和42.4%,最大相對(duì)電子傳遞速率和光飽和參數(shù)分別下降了82.0%和69.7%。本試驗(yàn)以扶桑綿粉蚧、長(zhǎng)角立毛蟻Paratrechinalongicornis(Latreille)和棉花GossypiumhirsutumL.為試材,利用葉綠素?zé)晒鈩?dòng)力學(xué)技術(shù)及快速光曲線的測(cè)定與分析方法,明確扶桑綿粉蚧的危害是否會(huì)影響棉花葉片葉綠素?zé)晒馓匦?,以及蟻—蚧互惠?duì)棉花葉片光合生理活性的影響,為進(jìn)一步解釋扶桑綿粉蚧入侵、擴(kuò)散及暴發(fā)的生態(tài)學(xué)過(guò)程提供科學(xué)依據(jù)。

        1材料與方法

        1.1 供試植物

        盆栽棉花:浙棉607。棉花栽種于裝有滅菌泥炭土的塑料盆(上口徑16 cm)內(nèi),放置在溫室大棚內(nèi),溫度(30±2)℃,相對(duì)濕度(75±5)% RH,水肥按常規(guī)管理,待植株長(zhǎng)至6~8片葉展開(kāi)時(shí)供試。

        1.2 供試?yán)ハx(chóng)

        扶桑綿粉蚧于2011年8月采自浙江省杭州市蕭山區(qū)市郊的大花馬齒莧Portulacagrandiflora(Hook)上,室內(nèi)以盆栽棉花為寄主飼養(yǎng)繼代至今。供試蟲(chóng)態(tài)為3齡若蟲(chóng),蟲(chóng)體從室內(nèi)飼養(yǎng)種群中隨機(jī)挑取,用毛筆將其小心轉(zhuǎn)移至供試棉花上。

        供試螞蟻為長(zhǎng)角立毛蟻,螞蟻種類鑒定參照《廣西螞蟻》(周善義,2001)和《中國(guó)螞蟻》(吳堅(jiān)和王常祿,1995)。該種螞蟻在溫室大棚內(nèi)外的大花馬齒莧、夏堇ToreniafournieriL.、番茄、辣椒CapsicumannuumL.、牛筋草EleusineindicaGaertn.上廣泛存在,并且在植株上有扶桑綿粉蚧的地方活動(dòng)更為頻繁。

        1.3 試驗(yàn)設(shè)計(jì)

        挑選15盆生長(zhǎng)狀況一致的棉花植株,隨機(jī)分成3組并搭配不同處理:(1)扶桑綿粉蚧+長(zhǎng)角立毛蟻;(2)單獨(dú)存在的扶桑綿粉蚧;(3)無(wú)蟲(chóng)害植株。扶桑綿粉蚧的初始蟲(chóng)量為15頭·株-1,每個(gè)處理重復(fù)5次。試驗(yàn)前,對(duì)供試植株進(jìn)行仔細(xì)檢查,在確保無(wú)其他節(jié)肢動(dòng)物存在的情況下,放入螞蟻活動(dòng)范圍內(nèi)。通過(guò)裝滿水的瓷盤(pán)(60 cm×45 cm×5 cm)隔絕螞蟻訪問(wèn)植株,將磚塊(25 cm×10 cm×5 cm)堆放在瓷盤(pán)中間,植株放置在磚塊上,每天往瓷盤(pán)里添加水。分別在0、5、10、15、20 d進(jìn)行棉花葉片葉綠素?zé)晒鈪?shù)的測(cè)定,測(cè)試葉片在植株上部葉片中隨機(jī)挑??;0、10、20 d測(cè)定前還需分別統(tǒng)計(jì)植株上扶桑綿粉蚧和長(zhǎng)角立毛蟻的數(shù)量。

        1.4 葉綠素?zé)晒鈪?shù)測(cè)定

        通過(guò)PAM-2500型便攜式調(diào)制葉綠素?zé)晒鈨x(Walz公司,德國(guó))連體測(cè)定棉花葉片的快速光曲線。使用葉夾2030-B直接進(jìn)行測(cè)定,光化光強(qiáng)度梯度及持續(xù)時(shí)間按操作手冊(cè)說(shuō)明設(shè)置。測(cè)定最終得到ETR(光合電子傳遞速率)隨PAR(光合有效輻射)的變化圖,即為光響應(yīng)曲線,并采用Plattetal.(1980)方法對(duì)快速光曲線進(jìn)行擬合,擬合公式為P=Pm× (1-e-α× PAR/Pm)× e-β× PAR/Pm,各參數(shù)符號(hào)和定義如表1所示。

        表1 快速光曲線擬合公式中參數(shù)符號(hào)和定義

        1.5 數(shù)據(jù)分析

        采用單因素方差分析比較扶桑綿粉蚧不同危害時(shí)間下植株上訪問(wèn)螞蟻的數(shù)量;重復(fù)測(cè)量方差分析比較扶桑綿粉蚧危害過(guò)程中有、無(wú)螞蟻存在的情況下粉蚧數(shù)量的差異性,以及比較扶桑綿粉蚧不同危害時(shí)間下各處理之間葉綠素?zé)晒鈪?shù)的差異性,Tukey檢驗(yàn)比較區(qū)分各處理間的差異顯著性。所有數(shù)據(jù)采用SPSS 14.0軟件進(jìn)行統(tǒng)計(jì)分析,Excel 2003軟件作圖,數(shù)據(jù)以平均數(shù)±標(biāo)準(zhǔn)誤(means±SE)表示。

        2結(jié)果與分析

        在扶桑綿粉蚧的整個(gè)危害過(guò)程中,有、無(wú)螞蟻存在的處理中扶桑綿粉蚧數(shù)量均呈顯著上升趨勢(shì)(F2,16=329.06,P<0.001);扶桑綿粉蚧危害20 d后,有螞蟻訪問(wèn)的粉蚧數(shù)量(343.6頭·株-1)約為起始階段的22.9倍,而無(wú)螞蟻訪問(wèn)的情況下,粉蚧數(shù)量(499.8頭·株-1)約為起始階段的33.3倍。有、無(wú)螞蟻處理對(duì)扶桑綿粉蚧數(shù)量的影響也存在顯著差異(F1,16=7.19,P=0.028),但是處理和危害時(shí)間對(duì)粉蚧數(shù)量無(wú)交互影響(F2,16=14.38,P<0.001)。隨著扶桑綿粉蚧危害時(shí)間的延長(zhǎng),訪問(wèn)螞蟻的數(shù)量呈極顯著上升趨勢(shì)(F=61.80,df=2,P<0.001)(圖1)。

        圖2和表2顯示了各處理棉花葉片的葉綠素?zé)晒鈪?shù)(α,ETRmax和Ek)隨時(shí)間的變化情況。結(jié)果表明,各處理之間α值有顯著差異(F2,48=13.35,P<0.001),然而危害時(shí)間(F4,48=4.45,P=0.0039)以及二者的交互(F8,48=4.0013,P=0.0011)對(duì)α值無(wú)顯著影響(圖2A)。處理和危害時(shí)間對(duì)ETRmax值均有顯著影響(圖2B,F(xiàn)2,48=34.24,P<0.001;F4,48=2.57,P=0.04),然而,二者交互對(duì)該值無(wú)顯著影響(F8,48=1.79,P=0.10)。處理和危害時(shí)間以及二者的交互對(duì)Ek值無(wú)顯著影響(圖2C,F(xiàn)2,48=3.55,P=0.061;F4,48=1.059,P=0.39;F8,48=1.47,P=0.19)。

        3討論

        大量研究表明,互惠能同時(shí)促進(jìn)產(chǎn)蜜半翅目昆蟲(chóng)和訪問(wèn)螞蟻數(shù)量的增長(zhǎng)(Eubanksetal.,2002; Huangetal.,2010; Lach,2003)。本研究也得到一致結(jié)果,即棉花上長(zhǎng)角立毛蟻的數(shù)量隨扶桑綿粉蚧數(shù)量的增加而增加;但在扶桑綿粉蚧危害后期,有螞蟻訪問(wèn)的粉蚧數(shù)量要低于無(wú)螞蟻訪問(wèn),這可能是由于螞蟻的訪問(wèn)影響了扶桑綿粉蚧個(gè)體的存活及繁殖力。從營(yíng)養(yǎng)角度考慮,螞蟻可能更傾向于能排泄大量蜜露的高齡粉蚧個(gè)體,由此導(dǎo)致粉蚧個(gè)體產(chǎn)卵的延遲,相關(guān)研究還有待進(jìn)一步試驗(yàn)驗(yàn)證。

        圖1 不同處理、不同危害時(shí)間下扶桑綿粉蚧及長(zhǎng)角立毛蟻的數(shù)量

        圖2 不同處理棉花葉片的葉綠素?zé)晒鈪?shù)隨扶桑綿粉蚧危害時(shí)間的變化趨勢(shì)

        擬合參數(shù)Fittingparameters因素Factors自由度(分子,分母)df(numerator,denominator)均方MeansquaresFPα處理Treatment2,480.02513.35<0.001時(shí)間Time4,480.00604.450.0039處理×?xí)r間Treatment×time8,480.00544.00130.0011ETRmax處理Treatment2,4849830.7234.24<0.001時(shí)間Time4,489395.822.570.04處理×?xí)r間Treatment×time8,486569.721.790.10Ek處理Treatment2,48464476.733.550.061時(shí)間Time4,48270267.011.0590.39處理×?xí)r間Treatment×time8,48376159.231.470.19

        植物葉片葉綠素?zé)晒馓匦缘臏y(cè)定和分析是植物生理學(xué)研究中的一個(gè)重要途徑。Welter(1989)和Zangerletal.(2002)研究表明,食葉動(dòng)物的取食會(huì)影響未受損葉片的有效量子產(chǎn)率和電子傳遞速率,但是不會(huì)影響最大量子產(chǎn)率。介殼蟲(chóng)的危害使得花葉冬青光合速率顯著提高,并且高溫和光照會(huì)對(duì)這種光合補(bǔ)償效果產(chǎn)生促進(jìn)作用(Retuertoetal.,2004)。扶桑綿粉蚧危害番茄植株38 d后,高蟲(chóng)口密度處理下番茄葉片的α、rETRmax和Ek值分別下降了42.4%、82.0%和69.7%(Huangetal.,2013)。本研究表明,扶桑綿粉蚧的危害導(dǎo)致棉花葉片的光合利用效率發(fā)生了變化,并且其最小值出現(xiàn)在有螞蟻訪問(wèn)的情況下。例如,在粉蚧危害20 d后,無(wú)螞蟻和有螞蟻處理組的α值與對(duì)照組相比分別下降了37.0%和53.5%。rETRmax的變化同樣由扶桑綿粉蚧危害而誘導(dǎo)產(chǎn)生,這種影響在危害后期或在有螞蟻訪問(wèn)的情況下尤為明顯。有研究表明,蚜蟲(chóng)會(huì)根據(jù)訪問(wèn)螞蟻的需求而改變自身的取食行為和蜜露排泄量,這或許是螞蟻與蚜蟲(chóng)互惠誘導(dǎo)寄主植物有機(jī)揮發(fā)性化合物產(chǎn)生變化的一種機(jī)制(Parisetal.,2011)。有些蚜蟲(chóng)種類還會(huì)根據(jù)螞蟻需求而改變它們排泄蜜露的成分(Yao & Akimoto,2002; Yaoetal.,2000)。因此,長(zhǎng)角立毛蟻也可能通過(guò)刺激扶桑綿粉蚧刺探取食而加速影響棉花葉片的部分光合活性,因?yàn)槲浵佋L問(wèn)并未影響葉片的光飽和參數(shù),今后有必要就該方面進(jìn)行深入研究。

        大量事實(shí)證明,螞蟻訪問(wèn)通常會(huì)使它們互惠的同伴獲益(Stadler & Dixon,2005)。Daaneetal.(2007)發(fā)現(xiàn)加利福尼亞沿海的葡萄園中,暗色粉蚧Pseudococcusviburni(Signoret)由于受到阿根廷蟻Linepithemahumile(Mayr)的悉心照料而使其數(shù)量顯著上升;在阿根廷蟻存在的情況下,葡萄園中寄生性天敵Pseudaphycusflavidulus(Brèthes)和Leptomastixnr.epona(Walker)的數(shù)量顯著下降。在本研究中,明確了長(zhǎng)角立毛蟻和扶桑棉粉蚧的互惠對(duì)受危害的棉花葉片的葉綠素?zé)晒馓匦杂胸?fù)面影響。而且在調(diào)查中也發(fā)現(xiàn),螞蟻存在的受危害葉片比無(wú)螞蟻的受危害葉片凋落得更快。因此,在扶桑綿粉蚧發(fā)生區(qū)域?qū)ξ浵佭M(jìn)行管理,或許能有效降低粉蚧的暴發(fā)。

        本研究只考慮了長(zhǎng)角立毛蟻和扶桑綿粉蚧同時(shí)存在的情況,然而大田情況更為復(fù)雜,其他草食動(dòng)物、產(chǎn)蜜昆蟲(chóng)以及它們的自然天敵的存在,也會(huì)對(duì)寄主植物造成直接或間接影響。因此,下一步研究還應(yīng)考慮以上因素,從而綜合評(píng)價(jià)蟻—蚧互惠對(duì)寄主植物光合生理活性的影響。

        致謝: 感謝安徽農(nóng)業(yè)大學(xué)植物保護(hù)學(xué)院動(dòng)植物檢疫系2010級(jí)本科生鄭詩(shī)昱和單丹在儀器操作上提供的幫助。澤泉開(kāi)放實(shí)驗(yàn)室胡靜和韓濤工程師為本研究提供了豐富的技術(shù)信息,在此一并致謝。

        參考文獻(xiàn)

        吳堅(jiān), 王常祿. 1995. 中國(guó)螞蟻. 北京: 中國(guó)林業(yè)出版社, 1-214.

        武三安, 張潤(rùn)志. 2009. 威脅棉花生產(chǎn)的外來(lái)入侵新害蟲(chóng)—扶桑綿粉蚧. 昆蟲(chóng)知識(shí), 46(1): 159-162.

        周善義. 2001. 廣西螞蟻.桂林: 廣西師范大學(xué)出版社, 1-225.

        Bounfour M, Tanigoshi L K, Chen C, Cameron S J and Klauer S. 2002. Chlorophyll content and chlorophyll fluorescence in red raspberry leaves infested withTetranychusurticaeandEotetranychuscarpiniborealis(Acari: Tetranychidae).EnvironmentalEntomology, 31: 215-220.

        Bronstein J L. 1994. Our current understanding of mutualism.QuarterlyReviewofBiology, 69, 31-51.

        Buckley R C. 1987. Interactions involving plants, Homoptera, and ants.AnnualReviewofEcologyandSystematics, 18: 111-135.

        Burd J D and Elliott N C. 1996. Changes in chlorophyll a fluorescence induction kinetics in cereals infested with Russian wheat aphid (Homoptera: Aphididae).JournalofEconomicEntomology, 89: 1332-1337.

        Cockerell T D A. 1902. Two new mealybugs from New Mexico.CanadianEntomologist, 34: 315-316.

        Daane K M, Sime K R, Fallon J and Cooper M L. 2007. Impacts of Argentine ants on mealybugs and their natural enemies in California′s coastal vineyards.EcologicalEntomology, 32: 583-596.

        Delabie J H C. 2001. Trophobiosis between Formicidae and Hemiptera (Sternorrhyncha and Auchenorrhyncha): an overview.NeotropicalEntomology, 30: 501-516.

        Eubanks M D, Blackwell S A, Parrish C J, Delamar Z D and Hull-Sanders H. 2002. Intraguild predation of beneficial arthropods by red imported fire ants in cotton.EnvironmentalEntomology, 31: 1168-1174.

        Grinath J B, Inouye B D, Underwood N and Billick I. 2012. The indirect consequences of a mutualism: comparing positive and negative components of the net interaction between honeydew-tending ants and host plants.JournalofAnimalEcology, 81: 494-502.

        Huang J, Xu Y J, Lu Y Y, Zeng L and Liang G W. 2010. Effects of red imported fire ants on the relationship between native ants and aphids in mung bean fields in China.Sociobiology, 55: 415-425.

        Huang J, Xu Y J, Lu Y Y, Liang G W and Zeng L. 2011. Effects of the invasive antSolenopsisinvicta(Hymenoptera: Formicidae) onMenochilussexmaculatus(Coleoptera: Coccinellidae) as a predators ofAphiscraccivora(Hemiptera: Aphididae) in laboratory conditions.Sociobiology, 57: 565-574.

        Huang J, Zhang J, Wei H X and Li M J. 2012. Effects of a native ant,PristomyrmexpungensMayr (Hymenoptera: Formicidae) on the population dynamics and spatial distribution of invasive mealybugPhenacoccussolenopsisTinsley (Hemiptera: Pseudococcidae).Sociobiology, 59: 719-729.

        Huang J, Zhang P J, Zhang J, Lu Y B, Huang F and Li M J. 2013. Chlorophyll content and chlorophyll fluorescence in tomato leaves infested with an invasive mealybug,Phenacoccussolenopsis(Hemiptera: Pseudococcidae).EnvironmentalEntomology, 42: 973-979.

        Iatrou G, Cook C M, Stamou G and Lanaras T. 1995. Chlorophyll fluorescence and leaf chlorophyll content of bean leaves injured by spider mites (Acari: Tetranychidae).ExperimentalandAppliedAcarology, 19: 581-591.

        Kaplan I and Eubanks M D. 2005. Aphids alter the community-wide impact of fire ants.Ecology, 86: 1640-1649.

        Kempema L A, Cui X P, Holzer F M and Walling L L. 2007. Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids.PlantPhysiology, 143: 849-865.

        Krause G H and Weis E. 1991. Chlorophyll fluorescence and photosynthesis: the basics.AnnualReviewPlantPhysiologyandPlantMolecularBiology, 42: 313-349.

        Lach L. 2003. Invasive ants: unwanted partners in ant-plant interactions?AnnalsoftheMissouriBotanicalGarden, 90: 91-108.

        Lawlor D W. 2009. Musings about the effects of environment on photosynthesis.AnnalsofBotany, 103: 543-549.

        Nabity P D, Zavala J A and DeLucia E H. 2009. Indirect suppression of photosynthesis on individual leaves by arthropod herbivory.AnnalsofBotany, 103: 655-663.

        Ni X Z, Wilson J P and Buntin G D. 2009. Differential responses of forage pearl millet genotypes to chinch bug (Heteroptera: Blissidae) feeding.JournalofEconomicEntomology, 102: 1960-1969.

        Platt T, Gallegos C L and Harrison W G. 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton.JournalofMarineResearch, 38: 687-701.

        Retuerto R, Fernandez B, Rodriguez R and Obeso J R. 2004. Increased photosynthetic performanc in holly trees infested by scale insects.FunctionalEcology, 18: 664-669.

        Samsone I, Andersone U and Ievinsh G. 2012. Variable effect of arthropod-induced galls on photochemistry of photosynthesis, oxidative enzyme activity and ethylene production in tree leaf tissues.EnvironmentalandExperimentalBiology, 10: 15-26.

        Schroder R, Forstreuter M and Hilker M. 2005. A plant notices insect egg deposition and changes its rate of photosynthesis.PlantPhysiology, 138: 470-477.

        Stadler B and Dixon A F G. 1998. Costs of ant attendance for aphids.JournalofAnimalEcology, 67: 454-459.

        Stadler B and Dixon A F G. 2005. Ecology and evolution of aphid-ant interactions.AnnualReviewofEcologyandSystematics, 36: 345-372.

        Styrsky J D and Eubanks M D. 2007. Ecological consequences of interactions between ants and honeydew-producing insects.ProceedingsoftheRoyalSocietyofLondon,SeriesB:BiologicalSciences, 274, 151-164.

        Tena A, Hoddle C D and Hoddle M S. 2013. Competition between honeydew producers in an ant-hemipteran interaction may enhance biological control of an invasive pest.BulletinofEntomologicalResearch, 14: 1-10.

        Tinsley J D. 1898. An ant′s nest coccid from New Mexico.CanadianEntomologist, 30: 47-48.

        Way M J. 1963. Mutualism between ants and honeydew producing Homoptera.AnnualReviewofEntomology, 8: 307-344.

        Way M J and Khoo K C. 1992. Role of ants in pest management.AnnualReviewofEntomology, 37: 479-503.

        Welter S C. 1989. Arthropod impact on plant gas exchange∥Bernays E A.Insect-PlantInteractions. Boca Raton, FL: CRC Press, 135-151.

        Wimp G M and Whitham T G. 2001. Biodiversity consequences of predation and host plant hybridization on an aphid-ant mutualism.Ecology, 82, 440-452.

        Yao I and Akimoto S. 2002. Flexibility in the composition and concentration of amino acids in honeydew of the drepanosiphid aphidTuberculatusquercicola.EcologicalEntomology, 27: 745-752.

        Yao I, Shibao H and Akimoto S. 2000. Costs and benefits of ant attendance to the drepanosiphid aphidTuberculatusquercicola.Oikos, 89: 3-10.

        Zangerl A R, Hamilton J G, Miller T J, Crofts A R, Oxborough K, Berenbaum M R and de Lucial E H. 2002. Impact of folivory on photosynthesis is greater than the sum of its holes.ProceedingsoftheNationalAcademyofSciencesoftheUSA. 99: 1088-1091.

        Zhou A M, Lu Y Y, Zeng L, Xu Y J and Liang G W. 2012. Does mutualism drive co-invasion? The case ofSolenopsisinvictaandPhenacoccussolenopsis.PLoSONE, 7: e41856.

        Zhou A M, Lu Y Y, Zeng L, Xu Y J and Liang G W. 2013.Solenopsisinvicta(Hymenoptera: Formicidae), defendPhenacoccussolenopsis(Hemiptera: Pseudococcidae) against its natural enemies.EnvironmentalEntomology, 42: 247-252.

        (責(zé)任編輯:郭瑩)

        Mutualistic interaction betweenPhenacoccussolenopsisand tending antParatrechinalongcornisand their effects on chlorophyll fluorescence in cotton leaves

        Jun HUANG*, Juan ZHANG, Tian-feng XIA, Ming-jiang LI

        FlowerResearchandDevelopmentCentre,CottonandFlaxResearchInstitute,ZhejiangAcademyofAgriculturalSciences,

        Hangzhou,Zhejiang311202,China

        Abstract:【Background】 Herbivore injury has a direct effect on the growth and performance of host plants through photosynthetic suppression. However, changes in the photosynthetic activity of host plants affected by mutualism between honeydew-producing hemipterans and tending ants remain poorly understood. 【Method】 The effects of interaction between an invasive mealybug Phenacoccus solenopsis and its tending ant Paratrechina longicornis on chlorophyll characteristics of infested cotton Gossypium hirsutum leaves were observed through a chlorophyll fluorescence measurement system under greenhouse conditions. 【Result】 P.longicornis numbers increased with P.solenopsis numbers. However, over time, plants infested with had a lower number of mealybugs than uninfested plants. Changes in light utilization efficiency were induced by P.solenopsis feeding of infested cotton leaves. After P.solenopsis feeding injury for 20 d, the light utilization efficiency compared with the control was reduced by 37.0% and 53.5% for without- and with-ant treatments, respectively. Changes in maximum relative electron transport rate were also induced by P.solenopsis feeding injury, and the influence was more obvious after 20 d or with tending ant infestation. However, the light saturation coefficient describing the resistant capacity of a sample to glare was not influenced by P.solenopsis with or without ants. 【Conclusion and significance】 The interactions between P.solenopsis and P.longicornis and their negative effects on the photosynthetic activity of cotton leaves could have been caused by P.solenopsis feeding rate by P.longicornis.

        Key words:mutualistic interaction; photosynthetic activity; rapid light curves; Phenacoccus solenopsis; Paratrechina longicornis; biological invasion

        DOI:10.3969/j.issn.2095-1787.2015.01.007

        通訊作者*(Author for correspondence), E-mail: guyj@iqtc.cn

        作者簡(jiǎn)介:顧渝娟, 女, 農(nóng)藝師。 研究方向: 有害生物鑒定和分子檢測(cè)

        基金項(xiàng)目:廣東省重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金項(xiàng)目(2014植重-04); 國(guó)家“十二五”科技支撐計(jì)劃項(xiàng)目(2012BAK11B01); 廣西作物病蟲(chóng)害生物學(xué)重點(diǎn)實(shí)驗(yàn)室基金(14-045-50-KF-5); 廣州市科技計(jì)劃項(xiàng)目(2013J4500032); 國(guó)家科技支撐計(jì)劃(2015BAD08B02); 科技部科技伙伴計(jì)劃(KY201402015)

        收稿日期(Received): 2014-11-01接受日期(Accepted): 2014-11-30

        亚洲av偷拍一区二区三区| 亚洲av之男人的天堂网站| 亚洲午夜经典一区二区日韩| 男人天堂av在线成人av| 一性一交一口添一摸视频| 国产av激情舒服刺激| 国产成人久久综合第一区| 亚洲熟妇色xxxxx欧美老妇 | 国内免费高清在线观看| 人妖啪啪综合av一区| 久久伊人网久久伊人网| 亚洲日韩一区二区一无码| 精品无码人妻一区二区三区品| 欲求不満の人妻松下纱荣子| 中文字幕一区二区黄色| 玩弄极品少妇被弄到高潮| 91精品国产免费久久久久久青草| 欧美激情a∨在线视频播放| 妺妺窝人体色www聚色窝仙踪| 亚洲麻豆视频免费观看| 中文字幕一区二区网址| 久久久精品中文无码字幕| 无码人妻精品一区二区三区免费 | 日本最新一区二区三区免费看| 国产精品 高清 尿 小便 嘘嘘| 欧洲精品免费一区二区三区| 人妻无码中文字幕| 国色天香中文字幕在线视频| 亚洲天堂精品成人影院| 五月婷婷开心五月播五月| 日韩av中文字幕亚洲天| 吃下面吃胸在线看无码| 无码久久流水呻吟| 亚洲色图+国产精品| 中文字幕乱码人妻一区二区三区 | 国产亚洲视频在线观看网址| 国产精品无码久久久久| 中国丰满人妻videoshd| 浪货趴办公桌~h揉秘书电影| 香蕉视频在线观看亚洲| 亚洲最大中文字幕在线|