王本鋒, 李景葉, 陳小宏, 曹靜杰
1 中國石油大學(xué)(北京)油氣資源與探測國家重點(diǎn)實(shí)驗(yàn)室, 北京 102249 2 中國石油大學(xué)(北京)CNPC物探重點(diǎn)實(shí)驗(yàn)室, 北京 102249 3 石家莊經(jīng)濟(jì)學(xué)院, 石家莊 050031
?
基于Curvelet變換與POCS方法的三維數(shù)字巖心重建
王本鋒1,2, 李景葉1,2*, 陳小宏1,2, 曹靜杰3
1 中國石油大學(xué)(北京)油氣資源與探測國家重點(diǎn)實(shí)驗(yàn)室, 北京 102249 2 中國石油大學(xué)(北京)CNPC物探重點(diǎn)實(shí)驗(yàn)室, 北京 102249 3 石家莊經(jīng)濟(jì)學(xué)院, 石家莊 050031
隨著頁巖氣勘探與開發(fā)的深入,研究頁巖裂隙的三維空間展布成為頁巖巖石物理研究的必要步驟之一.但由于儀器的限制,頁巖切片在深度上具有不連續(xù)性, 以及數(shù)字巖心縱向上成像最小間隔與橫向分辨率的不一致成為影響裂隙表征和數(shù)字巖石物理模擬精度提高的重要因素.為了更好的研究裂隙在三維的空間展布,本文將curvelet稀疏變換與凸集投影(POCS)迭代算法有效結(jié)合,實(shí)現(xiàn)三維數(shù)字巖心重建.首先對X射線掃描砂巖得到的三維數(shù)據(jù)體進(jìn)行隔片抽稀,利用本文方法實(shí)現(xiàn)三維數(shù)據(jù)體重建,重建結(jié)果與完整數(shù)據(jù)體具有很好的一致性,且優(yōu)于現(xiàn)有方法(spgl1),驗(yàn)證了新方法的有效性與先進(jìn)性.其次對聚焦離子束掃描電鏡(FIB-SEM)得到的納米級(jí)頁巖二維切片在深度上進(jìn)行了加密重建,獲得縱向上成像最小間隔與橫向分辨率基本一致的三維數(shù)字巖心,由于儀器限制引起的頁巖切片深度上的不連續(xù)性得到減弱,裂隙展布更加清晰.砂巖CT圖像以及頁巖FIB-SEM成像數(shù)據(jù)的重建結(jié)果驗(yàn)證了本文方法的有效性與先進(jìn)性.
Curvelet變換; 凸集投影(POCS); 三維數(shù)字巖心; 頁巖; 重建
隨著勘探程度的日益加深,勘探難度逐漸增加.近幾年頁巖氣的研究成為非常規(guī)能源的研究熱點(diǎn),頁巖氣可成為日益減少的石油能源的替代能源之一.但是頁巖氣的勘探與開發(fā)具有很大的挑戰(zhàn)性,頁巖氣主要富集于頁巖之中,而頁巖的孔隙性低、滲透率低成為頁巖氣開發(fā)的主要瓶頸.因此研究頁巖裂隙的精細(xì)空間展布,是勘探開發(fā)頁巖氣十分重要的環(huán)節(jié).三維數(shù)字巖心技術(shù)可在孔隙尺度上描述巖石的微觀結(jié)構(gòu),為精細(xì)研究頁巖裂隙的空間展布提供技術(shù)支持.姚軍等(2005)對數(shù)字巖心的現(xiàn)狀作了總結(jié),指出現(xiàn)有數(shù)字巖心重建方法的不足,包括過程法無法對復(fù)雜的沉積體系進(jìn)行模擬以及隨機(jī)法建立的數(shù)字巖心不具有大范圍的傳導(dǎo)性等缺點(diǎn);還探討了數(shù)字巖心技術(shù)在微觀滲流研究、巖心驅(qū)替模擬實(shí)驗(yàn)以及評價(jià)驅(qū)油劑效果等方面的應(yīng)用.常用的三維數(shù)字巖心重建方法有兩種:X射線層析掃描成像(CT)和基于巖石二維切片的三維重建技術(shù),基于二維切片的三維重建技術(shù)又分為過程法以及隨機(jī)法(?ren and Bakke, 2002; Okabe et al., 2004;Liu et al., 2009a,b; 劉學(xué)鋒等,2013).劉學(xué)鋒等(2013)基于砂巖分析比較了不同方法重建三維數(shù)字巖心的效果,并對三維數(shù)字巖心的發(fā)展進(jìn)行了展望,指出X射線掃描方法精度的局限性以及聚焦離子束掃描電鏡納米級(jí)高精度的優(yōu)勢;同時(shí),將孔隙和骨架進(jìn)行二值化處理,雖然重建出的三維數(shù)字巖心孔隙展布的分辨率較高,但是忽略了裂隙的強(qiáng)度,會(huì)對后續(xù)的解釋產(chǎn)生影響.X射線方法可以得到三維數(shù)字巖心,但其精度較低,對裂隙的空間展布表征較粗糙,難以滿足頁巖納米-微米級(jí)孔隙成像的要求.而高精度的聚焦離子束掃描電鏡可以實(shí)現(xiàn)頁巖納米級(jí)孔隙的精確成像,但該設(shè)備在保證巖石縱向上成像最小間隔與橫向分辨率一致方面存在困難,影響了頁巖數(shù)字巖心數(shù)據(jù)處理及其相關(guān)模擬分析精度的提高.頁巖氣勘探與有效開發(fā)的深入迫切需要對頁巖裂隙的縱向展布進(jìn)行精確成像,因此,對聚焦離子束掃描電鏡掃描獲得二維頁巖切片進(jìn)行高精度三維重建,顯得尤為重要.
頁巖孔隙結(jié)構(gòu)復(fù)雜,傳統(tǒng)的線性數(shù)據(jù)重建方法很難滿足其三維重建精度要求.Curvelet變換是一種新興的稀疏變換,屬于多尺度數(shù)學(xué)變換的范疇;相對于小波變換,其增加了方向性,更適合表征曲線奇異性,已被應(yīng)用于圖像去噪(Candès, 2001; Starck et al., 2002)、圖像重構(gòu)(Starck et al., 2001)、地震數(shù)據(jù)去噪(Neelamani et al., 2008)、地震數(shù)據(jù)插值(Hennenfent and Herrmann, 2008; Herrmann and Hennenfent, 2008; Naghizadeh and Sacchi, 2010; 曹靜杰等, 2012)以及多次波的去除(Herrmann et al., 2007)等方面,體現(xiàn)出其巨大的優(yōu)勢.凸集投影方法 (POCS) 首先由Bregman (1965,1967)提出,并被用于圖像重建(Stark and Oskoui, 1989; Youla and Webb, 1982);Abma 和 Kabir (2006)將POCS方法引入非規(guī)則地震數(shù)據(jù)插值方面,此后,若干學(xué)者在計(jì)算量和閾值選取等方面對該方法進(jìn)行了改進(jìn),大幅提高了收斂速度和計(jì)算精度 (Gao et al., 2010, 2012; Yang et al., 2012; 張華和陳小宏, 2013).
針對頁巖孔隙結(jié)構(gòu)的復(fù)雜性,研究將POCS方法與curvelet稀疏變換有效結(jié)合,充分發(fā)揮兩者的優(yōu)勢,對高精度聚焦離子束掃描電鏡獲得的納米級(jí)二維頁巖切片進(jìn)行三維圖像重建,得到三維數(shù)字巖心,分析表明其裂隙的縱向空間展布更連續(xù),可為后續(xù)頁巖數(shù)字巖心數(shù)據(jù)處理及其相關(guān)模擬分析精度提高奠定基礎(chǔ).為了驗(yàn)證新方法的有效性,研究首先對X射線掃描砂巖得到的三維數(shù)字巖心進(jìn)行處理試驗(yàn),分析比較重建前后的三維巖心數(shù)據(jù)體的異同,驗(yàn)證新方法的有效性;其次利用本文方法對聚焦離子束掃描電鏡掃描得到的納米級(jí)頁巖切片進(jìn)行三維重建,使得裂隙的縱向空間展布更連續(xù).砂巖以及實(shí)際頁巖的數(shù)據(jù)處理均驗(yàn)證了本文方法的有效性.
2.1 Curvelet變換
Curvelet變換相對小波變換增加了角度的參數(shù),使得其更適合于曲線奇異性的表征,適合頁巖的復(fù)雜孔隙結(jié)構(gòu)特征.Curvelet變換經(jīng)歷了ridgelet變換、第一代curvelet變換以及第二代curvelet變換,現(xiàn)在常用的curvelet變換為第二代curvelet變換(Candès et al., 2006),其表達(dá)式為
(1)
2.2 凸集投影方法(POCS)
由于儀器設(shè)備的限制,聚焦離子束掃描電鏡獲得的納米級(jí)二維頁巖切片在深度上具有不連續(xù)性,兩片之間存在一定的間隔.為了更好地滿足頁巖數(shù)字巖心數(shù)據(jù)處理及其相關(guān)模擬分析精度要求,需要將其考慮成圖片重建問題,對三維數(shù)據(jù)體的每一縱切片進(jìn)行處理,計(jì)算公式為
(2)
其中,dobs為不連續(xù)巖石切片組成三維數(shù)據(jù)體的縱切片,R為采樣矩陣,d0為加密后的三維數(shù)據(jù)體的縱切片.基于壓縮感知理論,通過稀疏變換以及稀疏促進(jìn)策略,可以得到重建后的圖片,即深度上加密的巖石縱切片.Curvelet曲波變換是一種多尺度、多方向的稀疏變換,假設(shè)d0在曲波域是稀疏的,可更好的應(yīng)用稀疏促進(jìn)策略,得到加密后的巖石縱切片.
方程(2)的求解是不適定的,考慮到d0在curvelet域的稀疏性,采用稀疏促進(jìn)策略,構(gòu)建目標(biāo)泛函為
(3)
其中,x為曲波系數(shù)向量,CT為curvelet逆變換(C為curvelet變換),P(x)為稀疏約束.則推導(dǎo)得到基于curvelet變換和POCS方法的巖石縱切片重建方程為
(4)
其中,dk是第k次更新得到的解,Tλk是閾值函數(shù),λk是閾值,可由指數(shù)閾值函數(shù)確定,其公式為
(5)
Blumensath和Davies(2008, 2009) 以及Loris(2010)指出,當(dāng)P(x)=‖x‖1時(shí),Tλk滿足條件為
(6)
其中,xi為x的第i個(gè)分量,λk=0.5μ.當(dāng)P(x)=‖x‖0時(shí),Tλk滿足條件為
(7)
首先基于X射線掃描產(chǎn)生的砂巖三維數(shù)據(jù)體進(jìn)行處理試驗(yàn)與分析,證明本文方法的有效性.先對X射線掃描產(chǎn)生的砂巖三維數(shù)據(jù)體在深度上進(jìn)行隔片抽稀,利用新方法以及常用的spgl1方法 (Van Den Berg and Friedlander, 2008) 對每一縱切片進(jìn)行重建,將重建后的縱切片與原始三維數(shù)據(jù)體中的縱切片進(jìn)行比較,對比不同方法重建結(jié)果的優(yōu)劣,分析新方法的優(yōu)勢以及有效性.其次利用新方法對聚焦離子束掃描電鏡掃描得到納米級(jí)的二維實(shí)際頁巖切片進(jìn)行三維重建,對比分析三維重建前后裂隙縱向連續(xù)性以及空間展布,證明方法的有效性.
3.1 砂巖
由于頁巖孔隙通常在納米-微米級(jí),目前X .但X射線掃描方法可以對砂巖進(jìn)行全方位掃描,得到砂巖全三維數(shù)據(jù)體.由X射線方法掃描得到的砂巖的橫、縱切片如圖2所示,可以觀測 ,其分辨率為13.4923 μm,即采樣點(diǎn)之間距離為13.4923 μm,精度較低.圖2中砂巖樣品橫切片的實(shí)際采樣點(diǎn)數(shù)為500×500,實(shí)際尺寸為6.74615×6.74615 mm,縱切片的實(shí)際采樣點(diǎn)數(shù)為500×100,實(shí)際尺寸為6.74615×1.34923 mm.
圖1 結(jié)合POCS方法與Curvelet稀疏變換三維數(shù)字巖心重建流程圖Fig.1 Flow chart of the 3D digital core reconstruction with the POCS method in the curvelet domain
圖2 砂巖的橫、縱切片F(xiàn)ig.2 Horizontal and vertical slices of the sandstone
圖3 抽稀后的砂巖橫縱、縱切片F(xiàn)ig.3 Horizontal and vertical slices of the sandstone sampled in depth
圖4 重建得到的砂巖橫、縱切片(a) 本文方法; (b) spgl1方法.Fig.4 Horizontal and vertical sandstone slices after reconstruction(a) Using the proposed method; (b) Using the spgl1 method.
為驗(yàn)證本文重建方法的有效性,首先將砂巖三維數(shù)據(jù)體在深度上進(jìn)行隔片抽稀,抽稀后的橫、縱切片如圖3所示.對抽稀后的巖石縱切片分別利用本文研究方法以及spgl1方法進(jìn)行重建,最大迭代次數(shù)設(shè)置為50次,重建后砂巖的橫、縱切片如圖4a以及4b所示.將砂巖原始、隔片抽稀以及重建后的巖石縱切片進(jìn)行放大顯示,如圖5所示,其中圖5a表示砂巖原始縱切片,圖5b表示深度上抽稀的縱切片,圖5c表示本文方法重建得到的縱切片,圖5d表示spgl1方法重建得到的縱切片.
觀察完整三維數(shù)據(jù)體圖2、縱切片重建結(jié)果圖4、以及縱切片的放大顯示圖5可以看出,本文方法以及spgl1方法均能實(shí)現(xiàn)對抽稀后的砂巖進(jìn)行重建,但本文方法的精度更高;另外每次迭代中,本文方法僅做正反變換以及閾值處理,而spgl1方法需要做正反變換、計(jì)算更新步長等運(yùn)算,因此,本文方法計(jì)算效率更高.抽稀后砂巖三維數(shù)據(jù)重建,驗(yàn)證了本文方法的有效性,且與spgl1方法的效果進(jìn)行對比,體現(xiàn)了本文方法的優(yōu)勢,為后續(xù)將其應(yīng)用于具有納米-微米級(jí)復(fù)雜孔隙結(jié)構(gòu)頁巖三維數(shù)字巖心重建奠定了基礎(chǔ).
3.2 頁巖三維數(shù)字巖心重建
聚焦離子束掃描電鏡可以實(shí)現(xiàn)頁巖納米級(jí)孔隙的精確成像,但由于設(shè)備的局限,頁巖切片在深度上具有不連續(xù)性,即設(shè)備在保證巖石縱向上成像最小間隔與橫向分辨率一致方面存在困難,限制了裂隙縱向空間展布的表征,影響了頁巖數(shù)字巖心數(shù)據(jù)處理及其相關(guān)模擬分析精度的提高,因此利用二維頁巖切片進(jìn)行三維圖像重建獲得三維數(shù)字巖心,成為數(shù)字巖石物理研究的最重要步驟之一.研究基于聚焦離子束掃描電鏡得到的192個(gè)頁巖切片進(jìn)行三維圖像重建獲得三維數(shù)字巖心,其中縱切片間的距離為10 nm,橫切片分辨率為5.56 nm,垂直方向和水平方向像素?cái)?shù)分別為2048與1768.頁巖巖石橫、縱切片如圖6所示.
為了更好表征頁巖裂隙空間展布,提高頁巖數(shù)字巖心數(shù)據(jù)處理及其相關(guān)模擬分析精度,研究利用本文方法對原始頁巖切片在深度上進(jìn)行加密處理,最大值迭代次數(shù)設(shè)置為50次,形成縱向上成像最小間隔與橫向分辨率基本一致的三維數(shù)字巖心數(shù)據(jù),頁巖切片是原始切片數(shù)的兩倍,其縱切片如圖7與圖8所示.對比分析圖7和圖8可知,重建得到的縱切片中,切片之間的距離減半,縱向連續(xù)性得到保持,裂隙展布更加清晰,由于儀器限制引起的頁巖切片深度上的不連續(xù)性得到減弱.
將重建前后的巖石切片進(jìn)行局部三維顯示,如圖9所示,重建后裂隙的連續(xù)性更好,巖石縱向上成像最小間隔與橫向分辨率基本一致,且重建過程中沒有引入虛假裂隙,證明了本文方法利用頁巖切片實(shí)現(xiàn)高精度三維數(shù)字巖心重建的有效性.
基于curvelet變換與凸集投影(POCS)方法利用巖石切片實(shí)現(xiàn)了三維數(shù)字巖心重建.對砂巖的三維數(shù)字巖心重建試驗(yàn)表明,與目前廣泛應(yīng)用的spgl1方法相比較,本文方法能更好對巖石切片進(jìn)行了有效的重建,且耗時(shí)較少、精度更高.對聚焦離子束掃描電鏡掃描得到的納米級(jí)頁巖切片進(jìn)行三維數(shù)字巖心重建試驗(yàn)表明,重建后裂隙的縱向展布更加清晰,保證了數(shù)字巖心縱向上成像最小間隔與橫向分辨率的一致性,為后期頁巖數(shù)字巖心數(shù)據(jù)處理及其相關(guān)模擬分析精度提高奠定基礎(chǔ).基于砂巖巖石切片和納米級(jí)頁巖巖石二維切片的三維數(shù)字巖心重建與效果分析均驗(yàn)證了本文方法的有效性.發(fā)展更高效的稀疏變換及直接對三維數(shù)據(jù)體進(jìn)行處理的方法將是下一步研究工作的重點(diǎn).
圖5 砂巖縱切片的放大顯示Fig.5 Enlarged vertical slice of the sandstone
圖6 原始頁巖切片組成三維數(shù)據(jù)體的橫、縱切片F(xiàn)ig.6 Horizontal and vertical slices of the 3D dataset composed of raw shale slices
圖7 頁巖深度上加密前后的縱切片(a) 頁巖加密前的縱切面; (b) 本文方法重建后頁巖的縱切片.Fig.7 Vertical shale slice before and after reconstruction(a) Before reconstruction; (b) After reconstruction by the proposed method
圖8 另一方向頁巖深度上加密前后的縱切片(a) 頁巖加密前的縱切面; (b)本文方法重建后頁巖的縱切片.Fig.8 Same as Fig.7 but in another direction
Abma R, Kabir N. 2006. 3D interpolation of irregular data with a POCS algorithm.Geophysics, 71(6): E91-E97, doi: 10.1190/1.2356088.
Blumensath T, Davies M E. 2008. Iterative thresholding for sparse approximations.JournalofFourierAnalysisandApplications, 14(5-6): 629-654, doi: 10.1007/s00041-008-9035-z.Blumensath T, Davies M E. 2009. Iterative hard thresholding for compressed sensing.AppliedandComputationalHarmonicAnalysis, 27(3): 265-274, doi: 10.1016/j.acha.2009.04.002.
Bregman L. 1965. The method of successive projection for finding a common point of convex sets (Theorems for determining common point of convex sets by method of successive projection). Soviet Mathematics, 6: 688-692.
Bregman L. 1967. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming.USSRComputationalMathematicsandMathematicalPhysics, 7(3): 200-217.
Candès E. 2001. The curvelet transform for image denoising. Proceedings 2001 International Conference on Image Processing. Thessaloniki: IEEE.Candès E, Demanet L, Donoho D, et al. 2006. Fast discrete curvelet transforms.MultiscaleModeling&Simulation, 5(3): 861-899.
Cao J, Wang Y F, Yang C C. 2012. Seismic data restoration based on compressive sensing using the regularization and zero-norm sparse optimization.ChineseJ.Geophys. (in Chinese), 55(2): 596-607, doi: 10.6038/j.issn.0001-5733.2012.02.022.
Gao J J, Chen X H, Li J Y, et al. 2010. Irregular seismic data reconstruction based on exponential threshold model of POCS method.AppliedGeophysics, 7(3): 229-238, doi: 10.1007/s11770-010-0246-5.
Gao J J, Stanton A, Naghizadeh M, et al. 2012. Convergence improvement and noise attenuation considerations for beyond alias projection onto convex sets reconstruction.GeophysicalProspecting, 61(Suppl. 1): 138-151, doi: 10.1111/j.1365-2478.2012.01103.x.
Hennenfent G, Herrmann F J. 2008. Simply denoise: Wavefield reconstruction via jittered undersampling.Geophysics, 73(3): V19-V28, doi: 10.1190/1.2841038.
Herrmann F J, B?niger U, Verschuur D J E. 2007. Non-linear primary-multiple separation with directional curvelet frames.GeophysicalJournalInternational, 170(2): 781-799, doi: 10.1111/j.1365-246X.2007.03360.x.
Herrmann F J, Hennenfent G. 2008. Non-parametric seismic data recovery with curvelet frames.GeophysicalJournalInternational, 173(1): 233-248, doi: 10.1111/j.1365-246X.2007.03698.x. Liu X F, Sun J M, Wang H T. 2009a. Reconstruction of 3-D digital cores using a hybrid method.AppliedGeophysics, 6(2): 105-112, doi: 10.1007/s11770-009-0017-y.
Liu X F, Sun J M, Wang H T. 2009b. Numerical simulation of rock electrical properties based on digital cores.AppliedGeophysics, 6(1): 1-7, doi: 10.1007/s11770-009-0001-6.Liu X F, Zhang W W, Sun J M. 2013. Methods of constructing 3-D digital cores: A review.ProgressinGeophys. (in Chinese), 28(6): 3066-3072, doi: 10.6038/pg20130630.
Loris I, Douma H, Nolet G, et al. 2010. Nonlinear regularization techniques for seismic tomography.JournalofComputationalPhysics, 229(3): 890-905, doi: 10.1016/j.jcp.2009.10.020.Naghizadeh M, Sacchi M D. 2010. Beyond alias hierarchical scale curvelet interpolation of regularly and irregularly sampled seismic data.Geophysics, 75(6): WB189-WB202, doi: 10.1190/1.3509468.
Neelamani R, Baumstein A, Gillard D, et al. 2008. Coherent and random noise attenuation using the curvelet transform.TheLeadingEdge, 27(2): 240-248, doi: doi: 10.1190/1.2840373.Okabe H, Blunt M J. 2004. Prediction of permeability for porous media reconstructed using multiple-point statistics.PhysicalReviewE, 70(6): 066135, doi: 10.1103/PhysRevE.70.066135. ?ren P E, Bakke S. 2002. Process based reconstruction of sandstones and prediction of transport properties.TransportinPorousMedia, 46(2-3): 311-343.
Starck J L, Donoho D L, Candes E J. 2001. Very high quality image restoration by combining wavelets and curvelets. //Proc. SPIE 4478, Wavelets: Applications in Signal and Image Processing IX, 9, doi:10.1117/12.449693 .
Starck J L, Candès E J, Donoho D L. 2002. The curvelet transform for image denoising.IEEETransactionsonImageProcessing, 11(6): 670-684.
Stark H, Oskoui P. 1989. High-resolution image recovery from image-plane arrays, using convex projections.JOSAA, 6(11): 1715-1726.
Van Den Berg E, Friedlander M P. 2008. Probing the Pareto frontier for basis pursuit solutions.SIAMJournalonScientificComputing, 31(2): 890-912.
Yang P L, Gao J H, Chen W C. 2012. Curvelet-based POCS interpolation of nonuniformly sampled seismic records.JournalofAppliedGeophysics, 79: 90-99, doi: 10.1016/j.jappgeo.2011.12.004.
Yao J, Zhao X C, Yi Y J, et al. 2005. The current situation and prospect on digital core technology.PetroleumGeologyandRecoveryEfficiency(in Chinese), 12(6): 52-54.
Youla D C, Webb H. 1982. Image Restoration by the Method of Convex Projections: Part 1-Theory.IEEETransactionsonMedicalImaging, 1(2): 81-94.
Zhang H, Chen X H. 2013. Seismic data reconstruction based on jittered sampling and curvelet transform.ChineseJ.Geophys. (in Chinese), 56(5): 1637-1649, doi: 10.6038/cjg20130521.
附中文參考文獻(xiàn)
曹靜杰, 王彥飛, 楊長春. 2012. 地震數(shù)據(jù)壓縮重構(gòu)的正則化與零范數(shù)稀疏最優(yōu)化方法. 地球物理學(xué)報(bào), 55(2): 596-607, doi: 10.6038/j.issn.0001-5733.2012.02.022.
劉學(xué)鋒, 張偉偉, 孫建孟. 2013. 三維數(shù)字巖心建模方法綜述. 地球物理學(xué)進(jìn)展, 28(6): 3066-3072, doi: 10.6038/pg20130630.
姚軍, 趙秀才, 衣艷靜等. 2005. 數(shù)字巖心技術(shù)現(xiàn)狀及展望. 油氣地質(zhì)與采收率, 12(6): 52-54.
張華, 陳小宏. 2013. 基于jitter采樣和曲波變換的三維地震數(shù)據(jù)重建. 地球物理學(xué)報(bào), 56(5): 1637-1649, doi: 10.6038/cjg20130521.
(本文編輯 張正峰)
Curvelet-based 3D reconstruction of digital cores using the POCS method
WANG Ben-Feng1,2, LI Jing-Ye1,2*, CHEN Xiao-Hong1,2, CAO Jing-Jie3
1StateKeyLaboratoryofPetroleumResourcesandProspecting,ChinaUniversityofPetroleum,Beijing102249,China2CNPCKeyLaboratoryofGeophysicalProspecting,ChinaUniversityofPetroleum,Beijing102249,China3ShijiazhuangUniversityofEconomics,Shijiazhuang050031,China
With the development of shale-gas exploration and exploitation, it is necessary to study the 3D spatial distribution of shale-gas fractures for research on shale rock physics. Because of the limitation of instruments, accurate shale slice is discontinuous in depth, and the minimum interval between adjacent slices is inconsistent with horizontal resolution of digital cores. These are the main factors which hamper accuracy improvement of fracture representation and physical modeling for digital cores. In order to study the 3D spatial distribution of fractures, we doubled the vertical slices increasing the vertical resolution to make it consistent with the horizontal resolution.The curvelet transform and projection onto convex sets (POCS) method are used to achieve the reconstruction of 3D digital cores. The curvelet transform is a sparse transform which has been widely used in seismic data denoising and interpolation and image denoising. The POCS method is an efficient method for seismic data interpolation and can be used in the reconstruction of 3D digital cores. This method is applied on each vertical slice and the 3D digital cores can be obtained after all the vertical slices are processed. Besides, the proposed method is superior to the spgl1 method.With the proposed method, we achieve the 3D digital cores from the cores which were sampled one per two slices in depth for the 3D volume of sandstone obtained by X ray scanner. The reconstruction result is consistent with the original one and superior to the spgl1 method, which proves the validity and superiority of the proposed method. Then the proposed method is applied to the shale cores, of which the 2D horizontal slices are obtained using focused ion beam scanning electron microscopy (FIB-SEM). Because of instrumental limitations, the vertical resolution is almost halved compared with the horizontal resolution. With the proposed method, we can double the horizontal slice in depth, which can help improve the vertical resolution to make it consistent with the horizontal one, weakening the discontinuity of shale slices in depth caused by the instrument limitation, resulting in a clearer fracture distribution.3D digital cores are reconstructed from the 2D shale slices based on the projection onto convex sets (POCS) method in the curvelet domain. The sand reconstruction test of 3D digital cores demonstrates that the proposed method is more suitable for rock slice reconstruction with high efficiency and accuracy compared with the popular spgl1 method. The shale reconstruction test of 3D digital cores from nano-scale shale slices obtained by FIB-SEM indicates that vertical spatial distribution of fractures is more clear and the minimum interval between adjacent vertical slices is basically consistent with the horizontal resolution after reconstruction, which can lay the foundation for the subsequent data processing and related simulation analysis of shale digital cores. 3D digital cores reconstruction numerical tests on 2D sand and shale slices demonstrate the validity of the proposed method. The methods based on direct 3D datasets and efficient sparse transform will be developed in future work.
Curvelet transform; Projection onto convex sets (POCS); 3D digital cores; Shale; Reconstruction
10.6038/cjg20150621.
2014-05-16,2015-04-23收修定稿
國家自然科學(xué)基金項(xiàng)目(U1262207,41204075)、中國石油科技創(chuàng)新基金項(xiàng)目(2013D-5006-0303)和國家科技重大專項(xiàng)課題(2011ZX05023-005-005,2011ZX05019-006)聯(lián)合資助.
王本鋒,男,1986年生,在讀博士生,主要從事地震資料處理以及反演方面的研究.E-mail:wbf1232007@126.com
*通訊作者 李景葉,男,1978年生,教授,博導(dǎo),2005年獲得中國石油大學(xué)(北京)博士學(xué)位,研究方向?yàn)閮?chǔ)層地球物理.E-mail:ljy3605@sina.com
10.6038/cjg20150621
P631
王本鋒, 李景葉, 陳小宏等. 2015. 基于Curvelet變換與POCS方法的三維數(shù)字巖心重建.地球物理學(xué)報(bào),58(6):2069-2078,
Wang B F, Li J Y, Chen X H, et al. Curvelet-based 3D reconstruction of digital cores using the POCS method.ChineseJ.Geophys. (in Chinese),58(6):2069-2078,doi:10.6038/cjg20150621.