亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        A(k,n-k)Conjugate Boundary Value Problem with Semipositone Nonlinearity

        2015-02-13 06:59:40YAoQINGLIU

        YAo QING-LIU

        (Department of Applied Mathematics,Nanjing University of Finance and Economics, Nanjing,210003)

        Communicated by Shi Shao-yun

        A(k,n-k)Conjugate Boundary Value Problem with Semipositone Nonlinearity

        YAo QING-LIU

        (Department of Applied Mathematics,Nanjing University of Finance and Economics, Nanjing,210003)

        Communicated by Shi Shao-yun

        The existence of positive solution is proved for a(k,n-k)conjugate boundary value problem in which the nonlinearity may make negative values and may be singular with respect to the time variable.The main results of Agarwalet al.(Agarwal R P,Grace S R,O’Regan D.Semipositive higher-order diferential equations.Appl.Math.Letters,2004,14:201-207)are extended.The basic tools are the Hammerstein integral equation and the Krasnosel’skii’s cone expansion-compression technique.

        higher order ordinary diferential equation,boundary value problem, semipositone nonlinearity,positive solution

        1 Introduction

        Letn≥2,1≤k≤n-1 be two positive integers andλ>0 be a positive parameter.In this paper,we study the existence of positive solution to the following nonlinear(k,n-k) conjugate boundary value problem:

        The solutionu?of the problem(P)is called positive ifu?(t)>0 for 0<t<1.

        For the functionf(t,x),we use the following assumptions:

        (A1)f:(0,1)×[0,+∞)→(-∞,+∞)is continuous.

        (A2)There exists a nonnegative functionh∈L1[0,1]∩C(0,1)such that

        (A3)For eachr>0,there exists a nonnegative functionjr∈L1[0,1]∩C(0,1)such that

        The assumptions(A2)and(A3)show thatf(t,x)may be singular att=0 andt=1, and may not have any numerical lower bound.Therefore,the problem(P)is singular and semipositone.The problems of this type arise naturally in chemical reactor theory,see[1].

        In applications,one is interested in showing the existence of positive solution for someλ.Whenh(t)≡M≥0,the problem(P)has been frequently investigated in recent years, for example,see[2-9]and the references therein.

        In 2004,Agarwalet al.[8]established the following existence theorem of positive solution:Theorem 1.1([8],Theorem 2.3)Suppose that the following conditions are satisfed:

        (a1)f:[0,1]×[0,+∞)→(-∞,+∞)is continuous and there exists a constant M>0such that f(t,x)+M≥0for any(t,x)∈[0,1]×[0,+∞);

        (a2)There exists a continuous and nondecreasing function ζ:[0,+∞)→[0,+∞)such that

        and

        (a5)There exists an ε with

        such that

        where

        Then the problem(P)has at least one positive solution

        In Theorem 1.1,G(t,s)is the Green function of the problem(P)withf(t,x)≡0.For the expression ofG(t,s),see Section 2.The functionh(t)≡Mis a constant and the nonlinearityf(t,x)is continuous on[0,1]×[0,+∞).

        The purpose of this paper is to extend Theorem 1.1.In this paper,we study the problem (P)under the assumptions(A1)-(A3).Therefore,we allowh(t)to be an integral function on[0,1]andf(t,x)to be singular att=0 andt=1.

        We apply the Anuradha’s substitution technique and the Krasnosel’skii’s cone expansioncompression method to the problem(P)(see[10-12]).By introducing two height functions and considering the integrals of the height functions,we establish a local existence theorem. Finally,we verify that the theorem extends the Theorem 1.1 and illustrate that our extend is true by an example.

        2 Preliminaries

        Firstly,we list some symbols used in this paper.

        LetC[0,1]be the Banach space of all continuous functions on[0,1]equipped with the norm

        Let the polynomials

        Let the sets

        ThenKis a cone of nonnegative functions inC[0,1].

        LetG(t,s)be the Green function of the homogeneous linear(k,n-k)boundary value problem(P)withf(t,x)≡0.ThenG(t,s)has the exact expression

        By[2],

        Let

        Then

        Let the constants

        If(A1)-(A3)hold,thenT:K→C[0,1]is well-defned andTu∈C[0,1].

        Secondly,we need the following lemmas in order to prove the main results.

        Let[c]?=max{0,c}.Foru∈K,defne the operatorTas follows:

        Lemma 2.1Assume u∈Cn-1[0,1]∩Cn(0,1)such that

        Then

        Proof.See Lemma 2.1 in[8].

        Proof.See Lemma 2.1 and Theorem 1 in[7].

        Proof.It is easy to see that

        By Lemma 2.2,we have

        Lemma 2.4If(A1)-(A3)hold,then T:K→K is completely continuous.

        Proof.T(K)?Kis derived from Lemma 2.1.The remainder is a standard argument,for example,see Step II in the proof of Theorem 2.2 in[12]or Step II in the proof of Theorem 1 in[13].

        Lemma 2.5Ifˉu∈K is a fxed point of the operator T and‖ˉu‖>λη,then u?(t)is a positive solution of the problem(P),where u?=ˉu-λw.

        Proof.By the defnition ofη,we have

        Since‖ˉu‖>λη,one has

        It shows that

        By the equality andTˉu=ˉu,one has

        Since

        by the properties ofw(t),we get

        This shows thatu?(t)is a solution of the problem(P).Since

        the solutionu?(t)is positive.

        3 Main Results

        We use the following control functions:

        In geometry,φ(t,r)is the maximum height off(t,[u-λw(t)]?)+h(t)on the set{t}×[rp(t),r],ψ(t,r)is the minimum height off(t,[u-λw(t)]?)+h(t)on the same set.If (A1)-(A3)hold,thenφ(t,r)andψ(t,r)are nonnegative integrable function on[0,1]for anyr>0.

        We obtain the following local existence results.

        Theorem 3.1Assume that(A1)-(A3)hold and there exist two positive numbers r2>r1>λη such that one of the following conditions is satisfed:

        Then the problem(P)has at least one positive solution u?such that

        Proof.We only prove the case(b1).

        Ifu∈??(r1),then

        By the defnition ofφ(t,r1),we have

        It follows

        Ifu∈??(r2),then

        By the defnition ofψ(t,r2),one has

        It follows

        by Lemma 2.5,we known thatu?=ˉu-λwis a positive solution of the problem(P).Further,

        Corollary 3.1Assume that(A1)-(A3)hold and there exist two positive numbers r1and r2with r2>r1>λη such that one of the following conditions is satisfed:

        Then the problem(P)has at least one positive solution u?such that

        Proof.We only prove the case(c1).

        By Lemma 2.3 and(c1),one has

        By Theorem 3.1(b1),the proof is completed.

        4 A New Extend

        In this section,we demonstrate that Theorem 3.1 extends Theorem 1.1.

        Proposition 4.1Theorem1.1is a special case of Theorem3.1(b1).

        Proof.Letr1,r2,ζ(x),ξ(x)be as in Theorem 1.1.

        Sinceζ(x)is nondecreasing on[0,+∞),by(a2)and(a3),one has,for 0<t<1,

        It follows

        Let

        Then

        Sinceh(t)≡M,by Lemma 2.2 in[8],one has

        So

        By(a5),if

        then

        Sinceξ(x)is nondecreasing on(0,+∞),by(a4),one has,forδ≤t≤1-δ,

        By(a5),we get

        Since(A1)-(A3)hold,Theorem 1.1 now can be derived from Theorem 3.1(b1).

        Example 4.2Consider the(2,4-2)conjugate boundary value problem {

        In this problem,

        Since

        But the problem has one positive solution for someλ>0.

        In fact,let

        Since

        one has

        For any 0≤t≤1,one has

        Sincew(t)≤ηq(t),ifλ≤192 andx≥30,then for 0≤t≤1,

        Since

        If 11.6830≤λ≤81.92,then

        By Theorem 3.2(c2),the problem has a positive solutionu?such that

        for anyλwith 11.6830≤λ≤81.92.

        [1]Aris A.Introduction to the Analysis of Chemical Reactors.New Jeesey:Prentice Hall,1965.

        [2]Agarwal R P,O’Regan D.Positive solutions for(p,n-p)conjugate boundary value problems.J.Diferential Equations,1998,150:462-473.

        [3]Agarwal R P,Bohner M,Wong P J Y.Positive solutions and eigenvalue of conjugate boundary value problems.Proc.Edinburgh Math.Soc.,1999,42:349-374.

        [4]Ma R Y.Positive solutions for semipositone(k,n-k)conjugate boundary value problems.J. Math.Anal.Appl.,2000,252:220-229.

        [5]Jiang D Q.Multiple positive solutions to singular boundary value problems for superlinear higher order ODEs.Comput.Math.Appl.,2000,40:249-259.

        [6]Agarwal R P,O’Regan D.Multiplicity results for singular conjugate,focal,and(n,p)problems.J.Diferential Equations,2001,170:142-156.

        [7]Kong L J,Wang J Y.The Green’s function for(k,n-k)conjugate boundary value problems and its applications.J.Math.Anal.Appl.,2001,255:404-422.

        [8]Agarwal R P,Grace S R,O’Regan D.Semipositive higher-order diferential equations.Appl. Math.Letters,2004,14:201-207.

        [9]Yao Q L.Classical Agarwal-O’Regan method on singular nonlinear boundary value problems (in Chinese).Acta Math.Sinica,2012,55:903-918.

        [10]Anuradha V,Hai D D,Shivaji R.Existence results for superlinear semipositone BVP’s.Proc. Amer.Math.Soc.,1996,124:757-763.

        [11]Agarwal R P,O’Regan D.A note on existence of nonnegative solutions to singular semipositone problems.Nonlinear Anal.,1999,36:615-622.

        [12]Yao Q L.An existence theorem of positive solution to a semipositone Sturm-Liouville boundary value problem.Appl.Math.Letters,2010,23:1401-1406.

        [13]Yao Q L.Positive solution to a class of singular semipositone third-order two-point boundary value problems(in Chinese).J.Northeast Normal Univ.,2011,43(3):23-27.

        A

        1674-5647(2015)01-0051-11

        10.13447/j.1674-5647.2015.01.06

        Received date:Dec.18,2012.

        Foundation item:The NSF(11071109)of China.

        E-mail address:yaoqingliu2002@hotmail.com(Yao Q L).

        2010 MR subject classifcation:34B15,35B18

        国产精品欧美韩国日本久久| 亚洲无av在线中文字幕| 色欲人妻综合aaaaa网| 中国凸偷窥xxxx自由视频| 国产97色在线 | 免| 中文字幕一区,二区,三区| 精品不卡视频在线网址| av在线观看一区二区三区| 国产乱人激情h在线观看| 成人做爰高潮尖叫声免费观看| a午夜国产一级黄片| 美腿丝袜一区在线观看| 亚洲av成人av三上悠亚| 人人人妻人人澡人人爽欧美一区| 免费a级毛片无码无遮挡| 亚洲中文字幕av天堂| 国产精品久久婷婷六月| 视频在线观看免费一区二区| 国产在线精品一区二区中文| 国产精品成人99一区无码| 成人国产精品免费网站| 亚洲一区二区三区18| 日本妇人成熟免费2020| 亚洲av无码一区二区三区不卡| 好爽…又高潮了毛片免费看| 日韩av一区二区三区精品| 漂亮人妻出轨中文字幕| 婷婷色香五月综合缴缴情 | 国产在线精品成人一区二区三区| 国模无码视频专区一区| 亚洲一区二区三区乱码在线| 三区中文字幕在线观看| 国产精品成人va在线观看| 国产精品久久久久免费a∨| 中文字幕在线人妻视频| 亚洲女同恋av中文一区二区| 国产精品久久久久9999吃药| 学生妹亚洲一区二区| 一区二区三区四区在线观看视频| 亚洲色图专区在线视频| 狼人青草久久网伊人|