趙清清, 席貽龍, 李志超, 潘 玲
安徽師范大學(xué)生命科學(xué)學(xué)院, 安徽省高校生物環(huán)境與生態(tài)安全省級重點(diǎn)實(shí)驗(yàn)室, 蕪湖 241000
不同藻密度下Zn2+濃度對萼花臂尾輪蟲實(shí)驗(yàn)種群增長參數(shù)的影響
趙清清, 席貽龍*, 李志超, 潘 玲
安徽師范大學(xué)生命科學(xué)學(xué)院, 安徽省高校生物環(huán)境與生態(tài)安全省級重點(diǎn)實(shí)驗(yàn)室, 蕪湖 241000
為了比較不同食物密度下污染物濃度對受試生物的慢性毒性,篩選出以輪蟲為受試生物對水環(huán)境中Zn2+污染進(jìn)行監(jiān)測的敏感指標(biāo),在不同斜生柵藻(Scenedesmusobliquus)密度(1.0×106、2.0×106和4.0×106個/mL)下不同濃度(0、0.1、0.3、0.5、0.7、0.9 mg/L)的Zn2+對萼花臂尾輪蟲(Brachionuscalyciflorus)實(shí)驗(yàn)種群增長參數(shù)的影響。結(jié)果表明,25℃以及1.0×106、2.0×106和4.0×106個/mL藻密度下Zn2+對萼花臂尾輪蟲的24 hLC50值分別是6.647、8.102和5.873 mg/L。與各食物密度下的對照組相比,當(dāng)食物密度為1.0×106個/mL時,各濃度的Zn2+對萼花臂尾輪蟲的各種群增長參數(shù)均無顯著性影響(P>0.05)。當(dāng)食物密度為2.0×106個/mL時,各濃度的Zn2+均顯著延長了輪蟲的生命期望、世代時間和平均壽命,提高了輪蟲的凈生殖率;除0.3 mg/L外,其他濃度的Zn2+顯著提高了輪蟲的種群內(nèi)稟增長率。當(dāng)食物密度為4.0×106個/mL時,0.1、0.3和0.7 mg/L的Zn2+顯著提高了輪蟲的種群內(nèi)稟增長率,0.7和0.9 mg/L的Zn2+顯著提高了輪蟲的后代混交率。藻密度對輪蟲的生命期望、世代時間、凈生殖率、種群內(nèi)稟增長率、平均壽命和后代混交率均有極顯著性影響(P<0.01),Zn2+濃度對輪蟲的生命期望、世代時間、凈生殖率、種群內(nèi)稟增長率和后代混交率均有極顯著性影響(P<0.01),藻密度和Zn2+濃度之間的交互作用對輪蟲的生命期望、種群內(nèi)稟增長率和后代混交率均有顯著性影響(P<0.05)。2.0×106個/mL食物密度下,Zn2+濃度與輪蟲的生命期望、世代時間、凈生殖率和平均壽命之間具有顯著的劑量-效應(yīng)關(guān)系;4.0×106個/mL食物密度下,Zn2+濃度與輪蟲的后代混交率間也具有顯著的劑量-效應(yīng)關(guān)系。
Zn2+濃度; 斜生柵藻密度; 萼花臂尾輪蟲; 種群增長參數(shù)
隨著工農(nóng)業(yè)生產(chǎn)的快速發(fā)展,各種重金屬通過冶金和電鍍等工業(yè)廢水、金屬設(shè)備的腐蝕以及上游礦產(chǎn)地區(qū)的地表徑流等多種途徑進(jìn)入水體,污染水生生物,并通過食物鏈的富集作用危害到人類的健康。鋅不溶于水,但是鋅鹽如氯化鋅、硫酸鋅、硝酸鋅等,則易溶于水。和鉛、隔和汞等重金屬不同,鋅是所有生物有機(jī)體新陳代謝必須的[1]。但是,高濃度的鋅會影響包括浮游動物在內(nèi)的大多數(shù)水生動物的存活和生殖[2- 3]。水體中鋅含量過高對植物生長也是有害的[4]。可食用的植物,如果鋅含量過高,對人體健康具有潛在的危害[4]。鋅影響哺乳動物的內(nèi)分泌過程和生殖[5],一定程度的鋅富集可能有益于發(fā)頭裸腹溞(Moinairrasa)的生殖[6]。因此研究鋅對水生生物存活、生殖和種群增長等的影響具有重要的意義。
輪蟲具有世代時間短、個體小、繁殖快、易培養(yǎng)、對常見的毒物敏感性強(qiáng)等特點(diǎn),在水生態(tài)系統(tǒng)的物質(zhì)循環(huán)和能量傳遞過程中具有重要的作用;自20 世紀(jì)70 年代起便被應(yīng)用于水生態(tài)毒理學(xué)研究。迄今為止,以輪蟲為受試生物研究重金屬等的急性和慢性毒性作用已有較多的報道[7- 13]??紤]到環(huán)境中食物密度的時空變化可能會對急性毒性實(shí)驗(yàn)結(jié)果產(chǎn)生影響,Azuara-Garcí等[14]、Sarma等[15]、Nandini[16]等、石娟等[17]以輪蟲為受試生物研究了重金屬污染物濃度和藻類等食物密度對輪蟲實(shí)驗(yàn)種群增長參數(shù)的影響,得到了諸如平均壽命、凈生殖率、世代時間和種群增長率等可用于重金屬污染物生物監(jiān)測的指標(biāo);但有關(guān)不同藻密度下Zn2+濃度對萼花臂尾輪蟲實(shí)驗(yàn)種群增長參數(shù)的影響還未見報道。本文以淡水中常見的萼花臂尾輪蟲為受試生物,采用生命表實(shí)驗(yàn)方法,研究了3 種藻密度下不同濃度的Zn2+對輪蟲實(shí)驗(yàn)種群增長參數(shù)的影響;旨在篩選出敏感的指標(biāo)用于水環(huán)境中Zn2+污染的生物監(jiān)測。
1.1 輪蟲的來源和培養(yǎng)
受試生物萼花臂尾輪蟲采于蕪湖市鏡湖,實(shí)驗(yàn)室內(nèi)以曝氣72 h后的自來水(pH 值 7.0)[18]為培養(yǎng)液,以HB- 4培養(yǎng)基[19]培養(yǎng)的、處于指數(shù)增長期的斜生柵藻為餌料對其進(jìn)行克隆培養(yǎng)。實(shí)驗(yàn)前,將輪蟲置于(25±1) ℃、自然光照的恒溫培養(yǎng)箱內(nèi)進(jìn)行1 周時間的預(yù)培養(yǎng)。期間,每天投喂密度分別為1.0×106、2.0×106和4.0×106個/mL的斜生柵藻并更換輪蟲培養(yǎng)液一次,同時通過去除一部分個體使輪蟲種群始終處于指數(shù)增長期。
1.2 測試液的配置
實(shí)驗(yàn)所用的ZnCl2由上?;瘜W(xué)試劑總廠生產(chǎn),分析純(純度為98.0%)。實(shí)驗(yàn)中使用的重金屬量為化合物中Zn2+含量。測試液按母液稀釋法配置,實(shí)驗(yàn)前用蒸餾水配置20.0 g/L的原液,再用蒸餾水稀釋成100.0 mg/L的母液,于4 ℃冰箱中備用;母液3 d配制1 次。實(shí)驗(yàn)時用曝氣自來水將其配制成所需濃度的測試液。
1.3 急性毒性試驗(yàn)
為選擇合適的慢性實(shí)驗(yàn)毒物濃度,生命表實(shí)驗(yàn)之前,先進(jìn)行24 h急性毒性實(shí)驗(yàn)。根據(jù)正式毒性實(shí)驗(yàn)前1.0×106、2.0×106和4.0×106個/mL藻密度下的勘探實(shí)驗(yàn)結(jié)果,將Zn2+濃度按等對數(shù)間距設(shè)置為1.4、2.5、4.5、7.8和14.0 mg/L,1.8、3.2、5.7、10.0和18.0 mg/L,2.1、3.8、6.7、12.0和21.0 mg/L共3 組各5 個濃度梯度,每組另設(shè)一個空白對照組;實(shí)驗(yàn)在8 mL玻璃杯(使用前在相應(yīng)濃度污染物中浸泡48 h)中進(jìn)行,每杯中放入10 只齡長在4 h內(nèi)的輪蟲幼體和5 mL測試液,每組設(shè)置3 個重復(fù)。試驗(yàn)在(25±1) ℃、無光照的恒溫培養(yǎng)箱中進(jìn)行,24 h后觀察記錄每個玻璃杯中輪蟲的死亡數(shù)目,采用概率單位法求得24 hLC50值。
1.4 生命表實(shí)驗(yàn)
依據(jù)急性毒性實(shí)驗(yàn)得出的各藻密度下的LC50值的1/8—1/100[6],將Zn2+濃度設(shè)置為0、0.1、0.3、0.5、0.7和0.9 mg/L,藻密度設(shè)置為1.0×106、2.0×106和4.0×106個/mL。將孵化出的齡長在4 h內(nèi)的輪蟲幼體挑出作為受試母體,并加入5 mL測試液 (其中分別含有相應(yīng)濃度的Zn2+和相應(yīng)密度的斜生柵藻);每個組合設(shè)置4 個重復(fù),每個重復(fù)使用10 只輪蟲幼體。實(shí)驗(yàn)在(25±1) ℃、自然光照的恒溫培養(yǎng)箱中進(jìn)行。實(shí)驗(yàn)過程中,每12 h觀察1 次并記錄母體的存活數(shù)和孵化出的幼體數(shù),移去死亡個體,并將新生幼體移至另一玻璃杯中繼續(xù)培養(yǎng),待其產(chǎn)卵后確定雌體類型,用于計算輪蟲一生所產(chǎn)全部后代中的混交雌體比例。每間隔24 h更換1次含有相應(yīng)密度的藻類食物的測試液。實(shí)驗(yàn)進(jìn)行至輪蟲母體全部死亡為止。
1.5 研究參數(shù)的定義與計算方法
1.6 數(shù)據(jù)處理
采用SPSS 16.0分析軟件和Excel對數(shù)據(jù)進(jìn)行分析,對所得數(shù)據(jù)作正態(tài)性檢驗(yàn)后,對符合正態(tài)分布的各組數(shù)據(jù)通過單因素方差分析(one-way ANOVA)和多重比較(LSD檢驗(yàn))分析各濃度組與空白對照組間的差異顯著性,通過雙因素方差分析檢測Zn2+濃度、斜生柵藻密度及其交互作用對輪蟲各種群增長參數(shù)的影響,對Zn2+濃度與各種群增長參數(shù)之間的關(guān)系進(jìn)行回歸分析。
2.1 不同食物密度下Zn2+對萼花臂尾輪蟲的急性毒性
急性毒性實(shí)驗(yàn)結(jié)果顯示,(25±1)℃、無光照,食物密度分別為1.0×106、2.0×106和4.0×106個/mL時,Zn2+對萼花臂尾輪蟲幼體的24 hLC50值分別是6.647、8.102和5.873 mg/L,95%的置信區(qū)間分別為4.414—12.668、6.158—11.480和4.599—7.431 mg/L。
2.2 不同食物密度下Zn2+對萼花臂尾輪蟲種群增長參數(shù)的影響
根據(jù)各食物密度和Zn2+濃度下萼花臂尾輪蟲的存活率和繁殖率(圖1)計算出的輪蟲種群增長參數(shù)列于表1。統(tǒng)計分析結(jié)果表明,1.0×106個/mL食物密度下,Zn2+濃度對萼花臂尾輪蟲的各種群增長參數(shù)均無顯著性影響(P>0.05)。2.0×106個/mL食物密度下,Zn2+濃度對萼花臂尾輪蟲的生命期望、世代時間、凈生殖率、種群內(nèi)稟增長率和平均壽命均有顯著性影響(P<0.01)。4.0×106個/mL食物密度下,Zn2+濃度對萼花臂尾輪蟲的種群內(nèi)稟增長率和后代混交率均有顯著性影響(P<0.05)。與各食物密度下的對照組相比,當(dāng)食物密度為2.0×106個/mL時,各濃度的Zn2+均顯著延長了輪蟲的生命期望、世代時間和平均壽命,提高了輪蟲的凈生殖率;除了0.3 mg/L外,其他濃度的Zn2+顯著提高了輪蟲的種群內(nèi)稟增長率。當(dāng)食物密度為4.0×106個/mL時,0.1、0.3和0.7 mg/L的Zn2+顯著提高了輪蟲的種群內(nèi)稟增長率,0.7和0.9 mg/L的Zn2+顯著降低了輪蟲的后代混交率(表1)。
圖1 不同食物密度和Zn2+ 濃度下萼花臂尾輪蟲的存活率和繁殖率Fig.1 Survivorship and fecundity of Brachionus calyciflorous exposed to different concentrations of Zn2+ at three food densities
表1 不同食物密度和Zn2+濃度下萼花臂尾輪蟲的種群增長參數(shù)(均數(shù)±標(biāo)準(zhǔn)誤)
Table 1 Population growth parameters of Brachionus calyciflorous exposed to different concentrations of Zn2+at three food densities
* 表示與同一食物密度下的對照組相比有顯著性差異
2.3 食物密度和Zn2+濃度對萼花臂尾輪蟲種群增長參數(shù)的影響
雙因素方差分析顯示,食物密度對輪蟲的所有生命表統(tǒng)計學(xué)參數(shù)均有顯著性影響(P<0.01),Zn2+濃度對輪蟲的生命期望、凈生殖率、內(nèi)稟增長率和后代混交率均有極顯著性影響(P<0.01),食物濃度和Zn2+濃度之間的交互作用對輪蟲的生命期望、種群內(nèi)稟增長率和后代混交率均有顯著性影響(P<0.05)。
2.4 不同食物密度下萼花臂尾輪蟲種群增長參數(shù)與Zn2+濃度間的關(guān)系
回歸分析顯示,當(dāng)食物密度為2.0×106個/mL時,Zn2+濃度與輪蟲的生命期望、世代時間、平均壽命和凈生殖率間均具有顯著的劑量-效應(yīng)關(guān)系;當(dāng)食物密度為4.0×106個/mL時,Zn2+濃度與輪蟲的后代混交率間也具有顯著的劑量-效應(yīng)關(guān)系(表2)。
3.1 食物密度和污染物濃度對浮游動物存活和生殖的影響
已有研究結(jié)果表明,除草甘膦等除草劑、狄氏劑等有機(jī)氯農(nóng)藥外,大多數(shù)已測試過的、一定濃度的水體污染物均顯著縮短了輪蟲的世代時間和壽命(以生命期望或平均壽命為指標(biāo)),降低了輪蟲的生殖率(以凈生殖率為指標(biāo))[10,14,20- 26]。草甘膦和狄氏劑等已被證實(shí)具有環(huán)境雌激素特性,和天然雌激素如17β-雌二醇(E2)相似,0.001—1000.0 μg/L 的狄氏劑顯著延長了萼花臂尾輪蟲的生命期望, 50 μg/L的十氯丹顯著延長了萼花臂尾輪蟲的平均壽命,0.001 μg/L的狄氏劑和以及0.5—50 μg/L的十氯丹顯著提高了萼花臂尾輪蟲的凈生殖率[27- 29]。Zn2+也具有環(huán)境雌激素特性[5];一定濃度(25.0 μg/L)的Zn2+顯著地提高了發(fā)頭裸腹溞第一和第二窩的窩卵數(shù)[6]。與其相似,本研究中,當(dāng)食物密度為2.0×106個/mL時,各濃度的Zn2+均顯著延長了萼花臂尾輪蟲的生命期望和平均壽命,提高了萼花臂尾輪蟲的凈生殖率;但當(dāng)食物密度為4.0×106個/mL時,Zn2+對萼花臂尾輪蟲存活和生殖的影響消失。
表2 各食物密度下萼花臂尾輪蟲的生命期望、世代時間、凈生殖率、平均壽命和后代混交率與Zn2+濃度間的關(guān)系
Table 2 The relationships between life expectancy at hatching, generation time, net reproduction rate, average lifespan as well as proportion of sexual offspring ofBrachionuscalyciflorouscultured at different food densities and Zn2+concentration
食物密度/(個/mL)Fooddensity參數(shù)Parameters回歸方程Regressiveequation顯著性檢驗(yàn)Significanttest2.0×106生命期望y=-73.949x2+110.190x+109.573R2=0.560,P<0.01世代時間y=-37.568x2+47.452x+78.233R2=0.462,P<0.01凈生殖率y=-18.799x2+23.226x+14.908R2=0.447,P<0.01平均壽命y=-45.602x2+54.730x+66.303R2=0.315,P<0.054.0×106后代混交率y=-9.648x2-1.978x+22.222R2=0.394,P<0.05
3.2 食物密度和污染物濃度對浮游動物種群增長的影響
小球藻(Chlorellavulgaris)密度的升高使甲基對硫磷對十指臂尾輪蟲(B.patulus)和角突臂尾輪蟲(B.angularis)、鹽度對萼花臂尾輪蟲和十指臂尾輪蟲、氯化銨對網(wǎng)紋溞(Ceriodaphniadubia)、多刺裸腹溞(Moinamacrocopa)和蚤狀溞(Daphniapulex)、Zn2+對裂痕龜紋輪蟲(Anuraeopsisfissa)、紅臂尾輪蟲(B.rubens)、哈瓦那臂尾輪蟲(B.havanaensis)、網(wǎng)紋溞和蚤狀溞等種群增長的抑制作用強(qiáng)度逐漸降低,其原因主要在于食物密度的升高降低了污染物對浮游動物的毒性[10,13,14,30- 36]。本研究中,當(dāng)食物密度為1.0×106個/mL時,0.1—0.9 mg/L的Zn2+對萼花臂尾輪蟲的種群內(nèi)稟增長率無顯著的影響;當(dāng)食物密度升高至2.0×106個/mL時,除了0.3 mg/L外,其他濃度的Zn2+顯著提高了萼花臂尾輪蟲的種群內(nèi)稟增長率;當(dāng)食物密度為4.0×106個/mL時,0.1、0.3和0.7 mg/L的Zn2+顯著提高了萼花臂尾輪蟲的種群內(nèi)稟增長率??梢?,食物密度的升高可使污染物對輪蟲種群增長的抑制作用降低或增強(qiáng),取決于污染物的種類和性質(zhì)。
3.3 食物密度和污染物濃度對輪蟲有性生殖的影響
通常情況下,輪蟲以孤雌生殖的方式進(jìn)行繁殖;當(dāng)受到混交刺激時(如較低的食物質(zhì)量和較高種群密度等),輪蟲即進(jìn)入有性生殖世代,產(chǎn)生休眠卵,以適應(yīng)不利的環(huán)境。Gallardo等[37]發(fā)現(xiàn)0.05和0.5 mg/L的保幼激素、0.05和5 mg/L的5-羥色胺顯著提高了褶皺臂尾輪蟲的混交率,0.0025和0.025 IU/mL的生長激素、50 mg/L的E2、0.5、5和50 mg/L的γ-氨基丁酸和20-羥基蛻皮酮分別顯著提高了種群增長至第8、6、4和6 天時的混交率,而三碘甲腺原氨酸和人絨毛促性腺激素對混交雌體的產(chǎn)生無顯著影響;2.0—8.0 mg/L的草甘膦顯著提高了萼花臂尾輪蟲的混交率[38];除了5000 μg/L的E2顯著降低輪蟲的混交率外,5和500 μg/L的E2、500 μg/L的DBP、50和500 μg/L的DEHP以及500 μg/L的BBP均使萼花臂尾輪蟲的混交率顯著升高[39]。本研究中,只有當(dāng)食物密度為4.0×106個/mL時,0.7和0.9 mg/L的的Zn2+顯著降低了輪蟲的后代混交率。不同食物密度下Zn2+濃度對輪蟲后代混交率影響的不同與兩者之間的交互作用對輪蟲后代混交率有顯著的影響有關(guān)。
3.4 輪蟲種群增長參數(shù)對污染物的敏感性
輪蟲各種群增長參數(shù)對污染物的敏感性常因污染物的種類等不同而異。Gentile 等[40]、Rao和Sarma[20]、Day和Kaushik[41]、Boyum和Brooks[42]、Xi和Hu[25]、儲昭霞等[27]均發(fā)現(xiàn),輪蟲種群內(nèi)稟增長率是低濃度水體污染物毒性監(jiān)測的一個很敏感的指標(biāo);但Ferrando[24]等發(fā)現(xiàn)凈生殖率和種群增長率是比世代時間和生命期望更敏感的指標(biāo);Janssen等[30]和儲昭霞[27]等發(fā)現(xiàn)內(nèi)稟增長率并不總是最敏感的指標(biāo),凈生殖率有時具有更低的LOEC值。石娟等[17]研究發(fā)現(xiàn)輪蟲的世代時間和后代混交率是在1.0×106和3.0×106個/mL食物密度下對Cd2+污染比較敏感的參數(shù), 其中后代混交率最敏感;再次證實(shí)了輪蟲的有性生殖比無性生殖對環(huán)境污染物敏感性更強(qiáng)這一特點(diǎn)。本研究發(fā)現(xiàn),萼花臂尾輪蟲的生命期望、世代時間、凈生殖率和平均壽命是在2.0×106個/mL食物密度下對Zn2+污染比較敏感的參數(shù),且敏感性一致;后代混交率是在4.0×106個/mL食物密度下對Zn2+污染比較敏感的參數(shù)。
[1] Bryan G W. Heavy metals contamination in the sea // Johnston R, ed. Marine Pollution. London: Academic Press, 1976: 185- 302.
[2] Chapman P M, Wang F, Janssen C R, Goulet R R, Kamunde C N. Conducting ecological risk assessments of inorganic metals and metalloids: current status. Human Ecological Risk Assessment, 2003, 9(4): 641- 697.
[3] Vesela S, Vijverberg J. Effect of body size on toxicity of zinc in neonates of four differently sizedDaphniaspecies. Aquatic Ecology, 2007, 41(1): 67- 73.
[4] 貝榮塔, 馬葉, 孫麗菲. 銅、鋅污染河流與植物污染的研究. 環(huán)境科學(xué)導(dǎo)刊, 2009, 28(5): 37- 38, 62- 62.
[5] Parsad A S. Biochemistry of Zinc. New York: Plenum Press, 1993.
[6] Zou E. Effects of sublethal exposure to zinc chloride on the reproduction of the water flea,Moinairrasa(Cladocera). Bulletin of Environmental Contamination and Toxicology, 1997, 58(3): 437- 441.
[7] Snell T W, Janssen C R. Rotifers in ecotoxicology: a review. Hydrobiologia 1995, 313- 314(1): 231- 247.
[8] Sarma S S S, Martínez-Jerónimo F, Ramírez-Pérez T, Nandini S. Effect of cadmium and chromium toxicity on the demography and population growth ofBrachionuscalyciflorusandBrachionuspatulus(Rotifera). Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 2006, 41(4): 543- 558.
[9] Sarma S S S, Brena-Bustamante P, Nandini S. Body size and population growth ofBrachionuspatulus(Rotifera) in relation to heavy metal (copper and mercury) concentrations. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 2008, 43(5): 547- 553.
[10] Ramírez-Pérez T, Sarma S S S, Nandini S. Effects of mercury on the life table demography of the rotiferBrachionuscalyciflorusPallas (Rotifera). Ecotoxicology, 2004, 13(6): 535- 544.
[11] Gama-Flores J L, Sarma S S S, Nandini S. Effect of cadmium level and exposure time on the competition between zooplankton speciesMoinamacrocopa(Cladocera) andBrachionuscalyciflorus(Rotifera). Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 2006, 41(6): 1057- 1070.
[12] Gama-Flores J L, Castellanos-Paez M E, Sarma, S S S, Nandini S. Effect of pulsed exposure to heavy metals (copper and cadmium) on some population variables ofBrachionuscalyciflorusPallas (Rotifera: Brachionidae: Monogononta). Hydrobiologia, 2007, 593(1): 201- 208.
[13] Juárez-Franco M F, Sarma S S S, Nandini S. Effect of cadmium and zinc on the population growth ofBrachionushavanaensis(Rotifera: Brachionidae). Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 2007, 42(10): 1489- 1493.
[14] Azuara-García R, Sarma S S S, Nandini S. The combined effects of zinc and alga on the life table demography ofAnuraeopsisfissaandBrachionusrubens(Rotifera). Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 2006: 41(4): 559- 572.
[15] Sarma S S S, Azuara-García R, Nandini S. Combined effects of zinc and algal food on the competition between planktonic rotifers,AnuraeopsisfissaandBrachionusrubens(Rotifera). Aquatic Ecology, 2007, 41(4): 631- 638.
[16] Nandini S, Picazo-Paez E A, Sarma S S S. The combined effects of heavy metals (copper and zinc), temperature and food (Chlorellavulgaris) level on the demographic characters ofMoinamacrocopa(Crustacea: Cladocera). Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 2007, 42(10): 1433- 1442.
[17] 石娟, 席貽龍, 楊琳璐, 汪圣廣, 陳楓華, 蘇田娟. 不同藻密度下Cd2+濃度對萼花臂尾輪蟲生命表統(tǒng)計學(xué)參數(shù)的影響. 應(yīng)用生態(tài)學(xué)報, 2010, 21(6): 1614- 1620.
[18] 周永欣, 章宗涉. 水生生物毒性試驗(yàn)方法. 北京: 農(nóng)業(yè)出版社, 1987: 410- 411.
[19] 章宗涉, 黃祥飛. 淡水浮游生物研究方法. 北京: 科學(xué)出版社, 1991.
[20] Rao T R, Sarma S S S. Demographic parameters ofBrachionuspatulusMuller (Rotifera) exposed to sublethal DDT concentrations at low and high food levels. Hydrobiologia, 1986, 139(3): 193- 200.
[21] Fernandez-Casalderrey A, Ferrando M D, Andreu-Moliner E. Demographic parameters ofBrachionuscalyciflorusPallas (Rotifers) exposed to sublethal endosulfan concentrations. Hydrobiologia, 1991, 226(2): 103- 110.
[22] Fernandez-Casalderrey A, Ferrando M D, Andreu-Moliner E. Chronic toxicity of methyl parathion to the rotiferBrachionuscalyciflorusfed onNannochlorisoculataandChlorellapyrenoidosa. Hydrobiologia, 1993, 255- 256(1): 41- 49.
[23] Ferrando M D, Janssen C R, Andreu E, Persoone G. Ecotoxicological studies with the freshwater rotiferBrachionuscalyciflorusII. An assessment of the chronic toxicity of lindane and 3, 4-dichloroaniline using life tables. Hydrobiologia, 1993, 255- 256(1): 33- 40.
[24] Ferrando M D, Sancho E, Andreu-Moliner E. Chronic toxicity of fenitrothion to an algae (Nannochlorisoculata), a rotifer (Brachionuscalyciflorus), and the cladoceran (Daphniamagna). Ecotoxicology and Environmental Safety, 1996, 35(2): 112- 120.
[25] Xi Y L, Hu H Y. Effect of thiophanate-methyl on the reproduction and survival of the freshwater rotiferBrachionuscalyciflorusPallas. Bulletin of Environmental Contamination and Toxicology, 2003, 71(4): 722- 728.
[26] 徐曉平, 席貽龍, 儲昭霞, 陳芳. 溴氰菊酯對萼花臂尾輪蟲實(shí)驗(yàn)種群動態(tài)的影響. 動物學(xué)報, 2005, 51(2): 251- 256.
[27] 儲昭霞, 席貽龍, 徐曉平, 葛雅麗, 董麗麗, 陳芳. 除草劑草甘膦對萼花臂尾輪蟲生活史特征的影響. 應(yīng)用生態(tài)學(xué)報, 2005, 16(6): 1142- 1145.
[28] Huang L, Xi Y L, Zha C W, Zhao L L. Effect of aldrin on life history characteristics of rotiferBrachionuscalyciflorusPallas. Bulletin of Environmental Contamination and Toxicology, 2007, 79(5): 524- 528.
[29] Zha C W, Xi Y L, Huang L, Zhao L L. Effect of sublethal exposure to chlordecone on life history characteristics of freshwater rotiferBrachionuscalyciflorusPallas. Bulletin of Environmental Contamination and Toxicology, 2007, 78(1): 79- 83.
[30] Sarma S S, Nandini S, Flores J L. Effect of methyl parathion on the population growth of the RotiferBrachionuspatulus(O. F. Müller) under different algal food (Chlorellavulgaris) densities. Ecotoxicology and Environmental Safety, 2001, 48(2): 190- 195.
[31] Gama-Flores J L, Sarma S S S, Nandini S. Acute and chronic toxicity of the pesticide methyl parathion to the rotiferBrachionusangularis(Rotifera) at different algal (Chlorellavulgaris) food densities. Aquatic Ecology, 2004, 38(1): 27- 36.
[33] Mangas-Ramírez E, Sarma S S S, Nandini S. Acute and chronic toxicity of ammonium chloride to the cladoceranDaphniapulexLeydig in relation to algal food density. Bulletin of Environmental Contamination and Toxicology, 2001, 67(6): 834- 840.
[34] Mangas-Ramírez E, Sarma S S S, Nandini S. Combined effects of algal (Chlorellavulgaris) density and ammonia concentration on the population dynamics ofCeriodaphniadubiaandMoinamacrocopa(Cladocera). Ecotoxicology and Environmental Safety, 2002, 51(3): 216- 222.
[35] Sánchez-Ortíz J R., Sarma S S S, Nandini S. Comparative population growth ofCeriodaphniadubiaandDaphniapulex(Cladocera) exposed to zinc toxicity. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 2010, 45(1): 37- 41.
[36] Barry M J, Logan D C, Ahokas J T, Holdway D A. Effect of algal food concentration on toxicity of two agricultural pesticides toDaphniacarinata. Ecotoxicology and Environmental Safety, 1995, 32(3): 273- 279.
[37] Gallardo W G, Hagiwara A, TomitaY, Kiyoshi S, Snell T W. Effect of some vertebrate and invertebrate hormones on the population growth, mictic female production, and body size of the marine rotiferBrachionusplicatilisMuller. Hydrobiologia, 1997, 358(1/3): 113- 120.
[38] Xi Y L, Feng L K. Effects of the thiophanate-methyl and glyphosate on asexual and sexual reproduction in the rotiferBrachionuscalyciflorusPallas. Bulletin of Environmental Contamination and Toxicology, 2004, 73(4): 644- 651.
[39] 趙蘭蘭, 席貽龍, 黃林, 查春旺. 鄰苯二甲酸酯類物質(zhì)對萼花臂尾輪蟲種群增長和有性生殖的影響. 動物學(xué)報, 2007, 53(2): 250- 256.
[40] Gentile J H, Gentile S M, Hairston N G Jr, Sullivan B K. The use of life tables for evaluating the chronic toxicity of pollutants toMysidopsisbahia. Hydrobiologia, 1982, 93(1/2): 179- 187.
[41] Day K, Kaushik N K. An assessment of the chronic toxicity of the synthetic pyrethriod, fenvalerate, toDaphniagaleatamendoate, using life table. Environmental Pollution, 1987, 13: 13- 26.
[42] Boyum K W, Brooks A S. The effect of selenium in water and food onDaphniapopulations. Archives of Environmental Contamination and Toxicology, 1988, 17(5): 555- 560.
Effects of Zn2+concentration on population growth parameters ofBrachionuscalyciflorusunder differentScenedesmusobliquusdensities
ZHAO Qingqing, XI Yilong*, LI Zhichao, PAN Ling
CollegeofLifeSciences,AnhuiNormalUniversity,ProvincialKeyLaboratoryofBioticEnvironmentandEcologicalSafety,Wuhu241000,China
As a result of industrial activities, aquatic ecosystems have been contaminated increasingly by metals. Such occurrences pose a threat to aquatic organisms in particular and to the whole ecosystem in general. Because of their importance as a part of the food chains in the freshwater ecosystems, as well as their high vulnerability to metal contaminants, rotifers have attracted attention by toxicologists. Zinc is essential for life at trace level, but it involved in the endocrine processes and reproduction of mammals. As one of the major metal contaminants in freshwater ecosystems, zinc is of ecotoxicological interest. In order to investigate the chronic toxicity of Zn2+to organisms in an aquatic environment under different food densities, and to screen out sensitive endpoints for monitoring Zn2+pollution with rotifers as test animals, this paper studied the effects of Zn2+concentrations (0.1, 0.3, 0.5, 0.7 and 0.9 mg/L) on the population growth parameters ofBracionuscalyciflorusunder differentScenedesmusobliquusdensities (1.0×106, 2.0×106and 4.0×106cells/mL). The results showed that at 25℃, the 24 hLC50of Zn2+toB.calyciflorusunder 1.0×106, 2.0×106and 4.0×106cells/mL ofScenedesmusobliquuswas 6.647, 8.102 and 5.873 mg/L, respectively. Compared with the controls under the same food density, whenS.obliquusdensity was 1.0×106cells/mL, all the concentrations of Zn2+had no significant effects on all the population growth parameters ofB.calyciflorus(P>0.05). WhenS.obliquusdensity was 2.0×106cells/mL, Zn2+at all the test concentrations significantly prolonged the life expectancy at hatching, the generation time and the average lifespan, and increased the net reproductive rate, but Zn2+at all the test concentrations except 0.3 mg/L decreased the intrinsic rate of population increase ofB.calyciflorus. WhenS.obliquusdensity was 4.0×106cells/mL, Zn2+at 0.1, 0.3 and 0.7 mg/L increased the intrinsic rate of population increase, Zn2+at 0.7 and 0.9 mg/L increased the proportion of sexual offspring ofB.calyciflorus.S.obliquusdensity had significant effects on the life expectancy at hatching, the generation time, the net reproduction rate, the intrinsic rate of population increase, the average lifespan and the proportion of sexual offspring (P<0.01), Zn2+concentration had significant effects on the life expectancy at hatching, the generation time, the net reproduction rate, the intrinsic rate of increase and the proportion of sexual offspring (P<0.01), and the interaction betweenS.obliquusdensity and Zn2+concentration had significant effects on the life expectancy at hatching, the intrinsic rate of increase and the proportion of sexual offspring ofB.calyciflorus(P<0.05). WhenS.obliquusdensity was 2.0×106cells/mL, there were significant dose-effect relationships between Zn2+concentration and the life expectancy at hatching, the generation time, the net reproductive rate as well as the average lifespan, and the relationships could be described asy=-73.949x2+110.190x+109.573,y=-37.568x2+47.452x+78.233,y=-18.799x2+23.226x+14.908andy=-45.602x2+54.730x+66.303, respectively. WhenS.obliquusdensity was 4.0×106cells/mL, there was a significant dose-effect relationship between Zn2+concentration and the proportion of sexual offspring, and the relationship could be described asy= -9.648x2-1.978x+22.222.
Zn2+concentration;Scenedesmusobliquusdensity;Brachionuscalyciflorus; population growth parameter
國家自然科學(xué)基金(30870369, 31170395); 安徽省高校生物環(huán)境與生態(tài)安全省級重點(diǎn)實(shí)驗(yàn)室專項基金(2004sys003); 重要生物資源保護(hù)和利用研究安徽省重點(diǎn)實(shí)驗(yàn)室專項基金
2013- 09- 04;
2014- 07- 02
10.5846/stxb201309042209
*通訊作者Corresponding author.E-mail: ylxi1965@126.com
趙清清, 席貽龍, 李志超, 潘玲.不同藻密度下Zn2+濃度對萼花臂尾輪蟲實(shí)驗(yàn)種群增長參數(shù)的影響.生態(tài)學(xué)報,2015,35(12):4026- 4033.
Zhao Q Q, Xi Y L, Li Z C, Pan L.Effects of Zn2+concentration on population growth parameters ofBrachionuscalyciflorusunder differentScenedesmusobliquusdensities.Acta Ecologica Sinica,2015,35(12):4026- 4033.