亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        昆蟲翅型分化的表型可塑性機制

        2015-02-06 03:53:54王小藝楊忠岐唐艷龍
        生態(tài)學(xué)報 2015年12期
        關(guān)鍵詞:表型昆蟲種群

        王小藝, 楊忠岐, 魏 可, 唐艷龍

        中國林業(yè)科學(xué)研究院森林生態(tài)環(huán)境與保護研究所, 國家林業(yè)局森林保護學(xué)重點實驗室, 北京 100091

        昆蟲翅型分化的表型可塑性機制

        王小藝, 楊忠岐*, 魏 可, 唐艷龍

        中國林業(yè)科學(xué)研究院森林生態(tài)環(huán)境與保護研究所, 國家林業(yè)局森林保護學(xué)重點實驗室, 北京 100091

        翅多型現(xiàn)象在昆蟲中廣泛存在,是昆蟲在飛行擴散和繁殖能力之間權(quán)衡的一種策略,對種群的環(huán)境適應(yīng)性進化具有重要的意義。目前在植食性昆蟲中研究較多,有關(guān)寄生蜂的翅型分化鮮見報道。綜述了昆蟲翅型分化的表型可塑性機制。遺傳因素和環(huán)境因素均對昆蟲翅的發(fā)育產(chǎn)生影響,基因型對翅型的決定具有顯著作用,外界環(huán)境條件,包括溫度、光周期、食物質(zhì)量、自身密度、外源激素等因素對昆蟲翅的發(fā)育也產(chǎn)生重要的調(diào)節(jié)作用,從而產(chǎn)生翅的非遺傳多型性現(xiàn)象。此外,天敵的寄生或捕食作用可能會誘導(dǎo)某些昆蟲的翅型產(chǎn)生隔代表型變化。對昆蟲產(chǎn)生翅多型現(xiàn)象的生態(tài)學(xué)意義及其在生物進化過程中的作用進行了討論,并探討了寄生性昆蟲翅型分化機制在生物防治上的可能應(yīng)用途徑。功能基因組學(xué)和表觀遺傳學(xué)的進一步發(fā)展可望為徹底揭示昆蟲翅型分化機制提供新的機遇和技術(shù)手段。

        翅多型性; 非遺傳多型性; 表型可塑性; 適應(yīng)性進化

        表型可塑性是指同一基因型因受不同的環(huán)境影響而產(chǎn)生不同表現(xiàn)型的現(xiàn)象[1],是生物對環(huán)境變化的一種適應(yīng)。昆蟲的翅多型現(xiàn)象在同翅目、半翅目、鞘翅目、膜翅目、直翅目、雙翅目、鱗翅目、等翅目、嚙蟲目以及革翅目中廣泛存在(表1),這對種群的適應(yīng)性具有十分重要的意義。因為具翅型可以遠距離擴散、找到更合適的棲境供后代生存和繁衍。翅二型性昆蟲是研究擴散進化的優(yōu)良材料,翅的二型性是昆蟲在飛行能力和繁殖能力之間權(quán)衡的一種策略,但種群保持翅型分化的機制目前仍不清楚。通常認為遺傳基因和環(huán)境因素均對昆蟲翅型的決定產(chǎn)生影響[2- 4]。本文總結(jié)了昆蟲翅型分化的表型可塑性機制,以期指導(dǎo)寄生性天敵昆蟲在生物防治上的有效利用。

        表1 具有翅型分化特性的昆蟲類別及影響翅生長發(fā)育的主要因素Table 1 Insects with wing dimorphism and major impact factors of wing development

        本表不包括因性二型性所產(chǎn)生的翅型差異

        1 昆蟲翅多型現(xiàn)象的進化適應(yīng)

        昆蟲種內(nèi)的翅型分化常見的有長翅型和短翅型、或有翅型和無翅型,其中長翅型或有翅型能飛行,而短翅型或無翅型不能飛行。目前的相關(guān)研究報道主要集中在植食性昆蟲中,其中對蚜蟲、飛虱、蟋蟀、長蝽等種類的研究最多。一般認為翅多型的產(chǎn)生是昆蟲應(yīng)對環(huán)境變化中在種群飛行擴散和繁殖能力之間權(quán)衡的一種生態(tài)對策。當本地環(huán)境相對穩(wěn)定,有利于繁殖時,昆蟲個體可通過分配更多資源用于繁殖而不是擴散,實現(xiàn)最高適合度。而當本地生存環(huán)境質(zhì)量下降時,昆蟲投入到擴散型表型中的資源將增加[5]。

        Roff對22種翅多型性昆蟲生活史特征的分析結(jié)果表明,短翅型比長翅型的繁殖力更高,產(chǎn)卵時間更早[2]。翅二型的進化具有遺傳基礎(chǔ),翅形態(tài)的高遺傳力可能部分是因為拮抗基因多效性而得以保持。在二型性物種中,通常認為有翅型是遷移型,但有翅型個體的比例與具有飛行肌的有翅型個體的比例,以及這些個體的飛行習(xí)性之間,在種內(nèi)和種間均存在顯著的相互關(guān)系。這表明有翅型個體的比例和有翅型的遷移習(xí)性在生理和種群水平上均存在密切的相互關(guān)聯(lián)[6]。翅二型昆蟲的進化要求翅發(fā)育抑制激素引起的繁殖力升高,以及翅和飛行肌的產(chǎn)生受抑制的閾值水平發(fā)生改變。蚜蟲中有翅個體與無翅個體相比發(fā)育更慢、繁殖力更低。麥長管蚜(Sitobionavenae)無翅型具有更高的體重生物量,生物量與寄主植物所含有的化學(xué)防御物質(zhì)異羥肟酸(hydroxamic acids)的水平成正比。有翅蚜以降低個體大小為代價,在發(fā)育早期獲得了飛行結(jié)構(gòu)[7]。沙蟋(Gryllusfirmus)長翅型雌性因維持飛行器官組織需要相應(yīng)地提高呼吸代謝作用而消耗能量,因而產(chǎn)卵量受到抑制[8]。四紋豆象(Callosobruchusmaculatus)短翅型雌蟲產(chǎn)卵更早,產(chǎn)卵量更多,后代幼蟲發(fā)育更快,死亡更早[9]。東方螻蛄(Gryllotalpaorientalis)在5月孵化的種群9—10月份變?yōu)槎坛嵝统上x并以成蟲越冬,而6—7月份孵化的種群則以幼蟲越冬,并在次年6月發(fā)育成長翅型成蟲[10]。長顎斗蟋(Velarifictorusasperses)飛行肌與生殖系統(tǒng)的發(fā)育之間存在資源分配的權(quán)衡關(guān)系,這種資源分配的差異可能導(dǎo)致長翅型與短翅型個體在生活史策略上出現(xiàn)分化,長翅型個體具有飛行能力,而短翅型個體則在生殖方面獲得更高的收益[11]。

        關(guān)于寄生蜂翅多型性的研究報道極少,目前僅見于姬小蜂科(Hymenoptera:Eulophidae)的蜾蠃巨柄姬小蜂(Melittobiadigitata)和澳洲巨柄姬小蜂(M.australica)[12-13],以及腫腿蜂科(Hymenoptera:Bethylidae)內(nèi)的少數(shù)幾種寄生蜂,如倉甲腫腿蜂(Cephalonomiagallicola)[14]、西高止兇腫腿蜂(Apenesiasahyadrica)[15]、管氏腫腿蜂(Sclerodermusguani)[16-17]、川硬皮腫腿蜂(S.sichuanensis)[18-19]、白蠟吉丁腫腿蜂(S.pupariae)[20]。Yashiro 等報道泥蛉赤眼蜂(Trichogrammatajimaense)和毒蛾赤眼蜂(T.kurosuae)雄性均具有翅多型性(長翅型、短翅型和無翅型),顯棒赤眼蜂(T.semblidis)具有翅二型性(有翅型和無翅型),其中96%的泥蛉赤眼蜂(T.tajimaense) 雄性無飛行能力,50%的毒蛾赤眼蜂(T.kurosuae)雄性不能飛行[21]。寄生泥蛉(Sialismelania)卵所發(fā)育的幾乎所有顯棒赤眼蜂(T.semblidis)雄性均為無翅型[21]。文獻只是簡單記載了這些寄生蜂種內(nèi)存在翅二型現(xiàn)象,至于寄生蜂翅型分化的機制則未見深入研究。僅Cnsoli 和 Vinson提到寄生蜂幼蟲期的密度和營養(yǎng)狀況可能是誘導(dǎo)不同翅型后代發(fā)育的原因,這種形態(tài)上的變異可能是對寄主資源開發(fā)最大化和棲境移殖之間權(quán)衡的適應(yīng)[12, 22]。

        2 昆蟲翅型分化的影響因素

        遺傳因素和很多環(huán)境因素均對表型變異起到作用。進化和發(fā)育生物學(xué)的研究使基因?qū)π螒B(tài)的貢獻容易理解,但環(huán)境因素對表型的發(fā)育影響機制卻知之甚少。事實上有關(guān)性狀變異在環(huán)境和遺傳控制之間的進化轉(zhuǎn)變是如何實現(xiàn)的尚不清楚。朱道弘對昆蟲翅多型現(xiàn)象及其產(chǎn)生機理進行了綜述[23]。Roff認為在異質(zhì)環(huán)境中適合度的時空變異使昆蟲翅二型的遺傳多態(tài)性得以維持[24]。Braendle 等指出有翅蚜的產(chǎn)生是為了適應(yīng)種群擴散,無翅蚜是為了種群繁殖最大化[25]。苜蓿葉象甲(Hyperapostica)翅型分化受多個因子調(diào)控,親本組合、溫度、幼蟲密度以及寄主質(zhì)量等因素均有一定影響[26]。蚜蟲的雄性翅型分化是由基因控制的,而孤雌生殖的雌蚜翅型分化是環(huán)境決定的。很多因素影響雌蚜在孤雌生殖過程中翅的非遺傳多型性的表達,如種群密度、寄主植物質(zhì)量、溫度、光周期、報警信息素、及其與捕食者、寄生物、共生生物、病原菌和內(nèi)共生菌之間的相互作用等[25, 27]。

        2.1 遺傳因素

        基因型對昆蟲形態(tài)決定具有顯著影響,有翅類昆蟲反映了擴散所帶來的利益與代價之間的權(quán)衡。關(guān)于沙蟋(G.firmus)的研究結(jié)果表明,提高繁殖力的選擇將導(dǎo)致長翅型比例降低,降低繁殖力的選擇則相應(yīng)地提高后代有翅型雌性的比例。這證明昆蟲種群對繁殖力和翅型分化的權(quán)衡具有遺傳學(xué)基礎(chǔ)[28]。鉆形蚱(Tetrixsubulata)種群或家系間的變化主要受遺傳控制,母代發(fā)育條件、飼養(yǎng)密度、個體生長率等可塑性的影響并不重要。其長翅型在種群間和種群內(nèi)的變異頻率可能反映了由表型和棲境決定的遷入和遷出導(dǎo)致的空間分選所驅(qū)動的進化修飾[29]。南方地蟋(Allonemobiussocius)的翅型分化與繁殖力之間存在顯著的表型負相關(guān),且兩種翅型和特定年齡的繁殖力具有明顯的可遺傳性。但繁殖力沒有根據(jù)翅型分化為兩個明顯不同的類型,因而最好描述為一種基于連續(xù)分布特征的閥值作用[30]。基因型對東南田蟋(G.rubens)雌性的影響比雄性更強烈,長翅型的飛行可能進一步弱化了其繁殖能力[31]。白背飛虱(Sogatellafurcifera)翅多型現(xiàn)象是多基因控制下的一種閾值特征,雌性有翅率受若蟲期密度的影響最大,由對若蟲期密度的閾值反應(yīng)所決定[32]。Aukema 等認為黑通緣步甲(Pterostichusmelanarius)的翅二型性也是遺傳控制的[33]。翅的有無可由單一位點、兩對等位基因或多基因遺傳控制。這些遺傳類型均可由一個通用的閾值模型進行描述,種群中短翅型頻率上升可能是由于這種翅型的相對適合度的上升或長翅型的遷出所造成的[2]。Sack 和 Stern認為產(chǎn)生有翅雄蚜的好處可能是增加遠系繁殖,雄性有翅蚜能獲得更多交配機會[34]。雄性甘蔗長蝽(Caveleriussaccharivorus)翅多型性的進化可能受雌雄翅退化帶來的適合度利益以及兩性間的遺傳相關(guān)性共同影響[35]。

        Brisson 等鑒定了豌豆蚜(Acyrthosiphonpisum)翅發(fā)育基因(與果蠅(Drosophila)相同),這些基因能根據(jù)不同的環(huán)境條件發(fā)育出有翅或無翅的成蟲[36]。他們發(fā)現(xiàn)在果蠅中研究的與翅發(fā)育相關(guān)的主要基因在豆蚜基因組中均存在,而且無翅基因(apterous)和表皮生物基因(decapentaplegic)出現(xiàn)復(fù)制。對11種發(fā)育基因在胚胎發(fā)育和若蟲跨齡時期的表達水平的研究表明,其中6個基因表現(xiàn)出明顯的階段特異性表達效應(yīng),而無翅基因(apterous1)在有翅型和無翅型中的表達水平表現(xiàn)出顯著差異??赡茉摶虻淖饔媒频貙崿F(xiàn)了多向性發(fā)育結(jié)果[36]。

        蜾蠃巨柄姬小蜂(M.digitata)雌蜂在翅的發(fā)育過程中也存在翅二型現(xiàn)象,并且這種表型差異的產(chǎn)生是由于基因差異表達的結(jié)果[37]。另外,對該寄生蜂不同翅型雌蜂的生物學(xué)研究表明,長翅型和短翅型的雌蜂在生物學(xué)習(xí)性上也有所不同。其中長翅型雌蜂為卵育型,有強烈的趨光性和擴散能力,而短翅型雌蜂為卵熟型,趨光性很弱,擴散能力很低。不同翅型雌蜂在生殖特征和擴散能力方面的差異反映了個體間由于翅型分化所產(chǎn)生的生活史特征的權(quán)衡[22]。

        2.2 非遺傳因素

        外界環(huán)境條件包括環(huán)境溫度、光周期、食物質(zhì)量、自身密度等也對昆蟲翅型的發(fā)育結(jié)果產(chǎn)生重要的影響,稱為翅的非遺傳多型性。非遺傳多型性是指同一基因型產(chǎn)生兩種或多種明顯不同的表現(xiàn)型的現(xiàn)象[5]。此外,平衡飛行和繁殖能力的發(fā)育調(diào)控也起著重要的作用[38]。許多蚜蟲種類表現(xiàn)出翅多型性,翅和飛行肌的發(fā)育通常認為是以降低生殖能力為代價的。豌豆修尾蚜(Megouracrassicauda)非遺傳翅多型性胚胎形成的發(fā)育調(diào)節(jié)機制可能就是補償其翅發(fā)育所造成的生殖延遲的一種適應(yīng)[39]。麥二叉蚜(Schizaphisgraminum)有翅型的產(chǎn)生受自身密度的影響最大,其次是光周期、寄主植物和溫度等因素[40]。本文對影響昆蟲翅發(fā)育的各類外界因素進行了總結(jié)(表1),但未包括因性二型性所產(chǎn)生的翅型差異。

        麥小長蝽(Nysiushuttoni)成蟲種群由94.1%的長翅型、5.5%的亞短翅和0.4%的短翅型組成,低溫(15 ℃)、高溫(35 ℃)和短光周期低溫下會加速亞短翅型和短翅型產(chǎn)生,而在長光周期下的高溫條件則產(chǎn)生長翅型比例多[41]。道氏廣肩水黽(Microveliadouglasi)長翅型比例受到密度、溫度、光周期和食物的顯著影響[42]。季節(jié)性的氣候變化、種群密度及其相互作用是決定南方地蟋(A.socius)后代翅型分化的主要因素[43]。若蟲階段所經(jīng)歷的環(huán)境因子如高溫、長日照和擁擠刺激了高粱長蝽(Dimorphopterusjaponicus)長翅型的產(chǎn)生,而且長翅型的發(fā)生隨著溫度、光周期和密度的提高而升高。季節(jié)因子如氣溫和光周期對昆蟲翅型的影響可能說明翅二型性正是昆蟲對季節(jié)變化的適應(yīng)策略[44]。美國山魁姬螽(Metriopteraroeselii) 長翅率與其密度強烈正相關(guān),與植被結(jié)構(gòu)和棲境濕度無關(guān),長翅種群密度顯著高于短翅種群。密度與孵化期干熱天氣條件正相關(guān),在高緯度地區(qū)長翅型及其分布范圍間接與天氣驅(qū)動的種群變化有關(guān)[58]。

        褐飛虱(Nilaparvatalugens)翅型分化受光周期的影響顯著,短日照下長翅型多,長日照下短翅型多[54],但也有研究認為短日照誘導(dǎo)更多的短翅型雄性后代產(chǎn)生[55]。帶紋地蟋(A.fasciatus)不同地理種群間長翅型的發(fā)生比例存在顯著差異[86]。先地紅蝽(Pyrrhocorissibiricus)長翅型成蟲的產(chǎn)生具有季節(jié)性變化,在入秋初期最高[74]。Socha研究發(fā)現(xiàn)決定始紅蝽(P.apterus)翅長度的臨界光周期具有緯度梯度[87]。南部長蝽(Blissusinsularis)種群密度在夏—秋季顯著高于冬—春季,長翅型的比例也是在夏—秋季顯著高于冬—春季,長翅型數(shù)量與種群密度成正比[73]。雖然甘蔗長蝽(Caveleriussaccharivorus)長翅型的產(chǎn)生是密度制約的,同時也受到季節(jié)因子的強烈影響,長日照和高溫條件下長翅型后代的比例顯著增加。長翅型在夏末至初秋比例最高,這些長翅型更活躍,擴散到更合適的生境如夏季種植的甘蔗地中,并從秋季到仲冬在其中產(chǎn)下滯育卵。成蟲翅多型性和卵滯育強度屬于兩頭下注對策,以適應(yīng)亞熱帶冬季氣候[71]。Nakao和Chikamori研究發(fā)現(xiàn)煙草褐花薊馬(Frankliniellafusca) 的翅型分化與光周期的關(guān)系不大,主要受到溫度的控制,溫度越高有翅型的比例越高[82]。

        豌豆蚜(A.pisum)在低密度時產(chǎn)生無翅蚜,高密度時產(chǎn)生有翅蚜。翅型分化是蚜蟲種群繁殖與擴散的權(quán)衡結(jié)果[45]。飼養(yǎng)條件下若蟲期高溫、長日照和擁擠將導(dǎo)致高粱長蝽(D.japonicus)長翅型后代的產(chǎn)生。田間條件下,若蟲期的密度是決定其后代翅型比例的一個關(guān)鍵因素,這是逃離擁擠種群的對策之一[72]。Clark等研究揭示了營養(yǎng)條件對沙蟋(G.firmus)種群在擴散和繁殖之間權(quán)衡的影響機制,擴散型個體的產(chǎn)生與增強的飲食選擇密切相關(guān),營養(yǎng)促進了飛行能量(脂類)的貯備,營養(yǎng)調(diào)控途徑補充了形成這種權(quán)衡的代謝機制[63]。Hardie和Leckstein指出蚜蟲翅的發(fā)育最有可能與營養(yǎng)削弱導(dǎo)致的共生體喪失有關(guān)[88]。Higashi和Bressan發(fā)現(xiàn)在感染了玉米花葉病毒的老玉米葉上產(chǎn)生長翅型玉米花翅飛虱(Peregrinusmaidis)的比例顯著高于年齡相近的健康葉片,表明植物病毒增加了媒介昆蟲有翅型個體的產(chǎn)生,影響了其種群的擴散[89]。殺蟲劑的使用所導(dǎo)致的生存環(huán)境下降對有翅蚜的產(chǎn)生有明顯的促進影響[51]。當棲境中有天敵存在時同樣也會誘導(dǎo)豌豆蚜(A.pisum)產(chǎn)生更多的有翅后代,而當共生棲境中有螞蟻存在時這種現(xiàn)象便會受到一定的抑制[25]。

        沙蟋(G.firmus)發(fā)育過程中保幼激素酯酶活性的變化對調(diào)節(jié)血淋巴中的保幼激素水平從而影響翅型的分化具有重要的生理作用[64]。東南田蟋(G.rubens)最后2個齡期的若蟲體內(nèi)保幼激素III生物合成速率在同一性別不同翅型之間沒有顯著差異,這是因為生物合成的停止而不是保幼激素酯酶活性的升高導(dǎo)致了末齡初期保幼激素水平的急劇下降,可能正是這種下降啟動了變態(tài)發(fā)育[90]。Zera 和 Tanaka認為保幼激素在決定曲脈姬蟋(Modicogryllusconfirmatus)翅型發(fā)育的過程中可能起到一定的作用[68]。但也有相反的報道,Schwartzberg 等發(fā)現(xiàn)保幼激素滴度與豌豆蚜(A.pisum)有翅型后代的產(chǎn)生無關(guān)[91]。早熟素對昆蟲的發(fā)育具有顯著的影響,特別是能夠誘導(dǎo)咽側(cè)體細胞產(chǎn)生特殊的破壞因而阻止保幼激素的合成。也有研究認為早熟素對昆蟲個體形態(tài)發(fā)育的影響應(yīng)該是由于其所介導(dǎo)的拒食行為引起的[92]。由于保幼激素對昆蟲具有廣泛的生理調(diào)控作用,從變態(tài)到生殖,早熟素的影響也是多樣的。據(jù)報道保幼激素滴度較高時可誘導(dǎo)蚜蟲產(chǎn)生無翅型成蟲,而在滴度較低時則促進翅的發(fā)育。研究表明,促進翅發(fā)育的化合物對翅的抑制并不是很有效[93]。早熟素處理褐飛虱(N.lugens)若蟲可誘導(dǎo)產(chǎn)生長翅型成蟲[94]。棉蚜(Aphisgossypii)有翅型和無翅型之間存在顯著的生理差異。在成蟲羽化12h內(nèi)棉蚜有翅型體內(nèi)總脂類、甘油三酯、游離脂肪酸的含量均顯著高于無翅型。在4齡若蟲至成蟲期無翅型比有翅型含有更多的糖原,無翅型3—4齡若蟲期海藻糖的含量明顯高于有翅型,但在成蟲羽化后12h情況相反??扇苄缘鞍踪|(zhì)的含量從若蟲期至成蟲期升高,成蟲期無翅蚜高于有翅蚜,成蟲期12h體內(nèi)總水分含量無翅蚜顯著高于有翅蚜[95]。

        2.3 基因型與環(huán)境影響的相互作用

        遺傳和環(huán)境因素均對表型變異起作用,有些蚜蟲種類的生活循環(huán)中翅型決定在環(huán)境敏感(非遺傳多型)和遺傳控制(多態(tài)性)之間交替轉(zhuǎn)變。因此,分子遺傳學(xué)在理解翅多型現(xiàn)象的遺傳控制上可能是唯一的途徑,不僅可解釋非遺傳多型性的分子基礎(chǔ),也可以比較類似二型性的環(huán)境與遺傳控制的機制[96]。

        很多非遺傳多型性現(xiàn)象是適應(yīng)表型可塑性的例子,即單一的基因型因應(yīng)對環(huán)境因素而產(chǎn)生截然不同的表現(xiàn)型后代。研究發(fā)現(xiàn)遺傳關(guān)聯(lián)因子控制豌豆蚜(A.pisum)雌性翅的非遺傳多型性和雄性翅多型性,這表明與環(huán)境相互作用的單一等位基因位點的基因型可以解釋環(huán)境相關(guān)的翅非遺傳多型性的遺傳變異[97]。即使處在相同的環(huán)境條件下,不同無性系的豌豆蚜和一些其它蚜蟲種類在產(chǎn)生有翅雌性后代的習(xí)性上也會發(fā)生變異。目前還不清楚這種遺傳變異是否是昆蟲為了適應(yīng)環(huán)境條件的可塑性反應(yīng),有些變異可能與蚜蟲對寄主植物的偏好有關(guān),不過在同一寄主植物上仍然可觀察到變異的發(fā)生[25]。Brisson等發(fā)現(xiàn)豌豆蚜非遺傳多型性和遺傳多型性之間不僅存在相似的生理差異,而且雄性和雌性一樣也具有繁殖與擴散的權(quán)衡,這種權(quán)衡反映在轉(zhuǎn)錄表達水平上和可能的全基因組基因調(diào)控模式上[45]。

        Ogawa和Miura提出豌豆蚜飛行器官的發(fā)育受到胚胎期和若蟲初齡期的2個發(fā)育開關(guān)點調(diào)控,由于不同的表現(xiàn)型存在多個發(fā)育軌跡,他們認為發(fā)育通道導(dǎo)致的不同翅型是在選擇壓力下獨立進化獲得的[98]。對螞蟻翅非遺傳多型性的研究表明,基因網(wǎng)絡(luò)中有數(shù)種基因在有翅型中是保守的,而在無翅型中這些中斷的位點易發(fā)生進化。同步進化的能力和保守性在螞蟻翅發(fā)育中起著重要作用,這可能也是植物和動物中非遺傳發(fā)育和進化的一種普遍特性[84]。豌豆蚜翅多型性是飛行能力與其它能力權(quán)衡的結(jié)果,豌豆蚜具有2種類型的翅多型性,雄性的翅多型性由遺傳控制,胎生雌蚜的翅多型性則由環(huán)境誘導(dǎo)。雄性和雌性的翅多型性由不同的調(diào)節(jié)系統(tǒng)控制飛行器官的發(fā)育,這可能是對不同選擇壓力不同的適應(yīng)結(jié)果[99]。白背飛虱長、短翅型的分化既由基因控制,又受外界環(huán)境因子的影響,短日照有利于白背飛虱短翅型雄蟲的發(fā)生,寄主營養(yǎng)決定了翅型分化的方向[100]。

        除了日照長短和溫度影響水黽(Aquariusnajas)翅的發(fā)育之外,關(guān)于翅發(fā)育的表型可塑性似乎還存在遺傳控制的因素,實驗室條件下,無翅型個體的越冬存活率更高,生存代價解釋了為什么有翅個體在北部種群更低,是為了有效適應(yīng)越冬極端氣候[75]。

        生物經(jīng)常對寄生或捕食作用的危險上升表現(xiàn)出隔代表型變化。紅秋麒麟蚜(Uroleuconnigrotuberculatum)在天敵七星瓢蟲(Coccinellaseptempunctata)和蚜繭蜂(Aphidiuspolygonaphis)搜索過的寄主植物葉片上產(chǎn)生更高比例的有翅型后代[50]。豌豆蚜為應(yīng)對寄生蜂或捕食者釋放的報警信息素可能改變其隔代表現(xiàn)型的表達,因而影響蚜蟲-天敵的種群動態(tài)[101]。

        3 結(jié)語

        非遺傳多型性是昆蟲在地球上獲得成功的一個主要原因,這種特性使昆蟲能有效利用相同基因組,采取不同的表現(xiàn)型以最好地適應(yīng)可預(yù)測的環(huán)境變化,或者所謂的“可預(yù)見的不可預(yù)知的”環(huán)境變化,如過度擁擠之后生存環(huán)境的惡化等[5]。雖然人們早就知道環(huán)境對昆蟲翅型分化具有影響,但是如何檢測這些影響,以及如何誘發(fā)不同表現(xiàn)型反應(yīng)途徑的啟動至今仍未解決。功能基因組學(xué)和表觀遺傳學(xué)的研究發(fā)展將有助于揭示昆蟲非遺傳多型性的環(huán)境因素與發(fā)育過程的關(guān)系。但是基因組學(xué)技術(shù)仍需要與恰當?shù)膶嶒炘O(shè)計以及富有經(jīng)驗的表型分析水平相結(jié)合才可能發(fā)揮應(yīng)有的作用。毫無疑問,基因組學(xué)方法可用于建立關(guān)于何種基因在不同的表現(xiàn)型發(fā)育過程中起作用的假說上,但是建立基因表達可塑性的因果關(guān)系仍然是一個重大挑戰(zhàn)[5]。

        影響擴散進化的生態(tài)因子與翅型決定的生理基礎(chǔ)的關(guān)系也是研究的難點。Zera和Denno指出對翅二型昆蟲的研究在我們理解昆蟲擴散、生活史和性狀多態(tài)性的生態(tài)學(xué)、進化和生理學(xué)發(fā)展方面將起著關(guān)鍵作用[38]。環(huán)境因子可在多大程度上影響飛行能力與繁殖能力之間的權(quán)衡,雄性個體通過交配系統(tǒng)對這種權(quán)衡的作用也有必要進行研究。此外,激素和內(nèi)分泌作用機制也還需要深入探討。翅型分化可以看作是環(huán)境敏感開關(guān)決定昆蟲發(fā)育成有翅/長翅型或無翅/短翅型,這種開關(guān)對環(huán)境因素的敏感性可由多基因或單基因控制。保證個體發(fā)育成特定翅型的開關(guān)可能在某個特殊的發(fā)育敏感時期起作用,包括胚胎期(出生前控制)、幼蟲早期(出生后控制)以及幼蟲末齡控制。在更寬泛的生物水平上,非遺傳多型性對諸如物種形成速率和表型多樣性現(xiàn)象的影響是一個研究熱點[102]。

        另外,表觀遺傳調(diào)控機制如DNA甲基化作用越來越多地用于昆蟲非遺傳多型性研究中,但這些DNA甲基化作用與其他DNA修飾機制之間的相互作用,以及對轉(zhuǎn)錄、轉(zhuǎn)錄后和翻譯活動的調(diào)節(jié)等仍不清楚。非遺傳多型性如何在不同層次的生物組織中演化及其結(jié)果如何等仍需要進一步研究。促進非遺傳多型性特性從單一表型狀態(tài)進化的基因變化類型至今仍未很好的建立起來,可能包括控制發(fā)育活動的細微變化,如閾值、敏感水平和時間節(jié)奏的調(diào)節(jié)等。有針對性的比較研究具有和不具有非遺傳多型性的相近物種可能揭示這些問題[5]。雌性翅的非遺傳多型性與雄性翅的遺傳多態(tài)性的翅的表現(xiàn)型極為相似,與非遺傳多型性相關(guān)的表現(xiàn)型和環(huán)境之間的相互作用可能涉及到與控制遺傳多型性相同的基因位點。翅的非遺傳多型性是一個明顯的適應(yīng)性表型可塑性的例子,雌性翅的非遺傳多型性與雄性翅的遺傳多型性的共表達為研究環(huán)境與遺傳誘導(dǎo)的可變表型提供了良好的材料,這有助于弄清遺傳因子和環(huán)境因子是如何交替控制同一發(fā)育結(jié)果,以及這種非遺傳多型性與遺傳多型性之間的進化轉(zhuǎn)換是如何發(fā)生的[25]。 控制表型多態(tài)性相關(guān)基因的鑒定,可能會促進非遺傳多型性所產(chǎn)生的相似的表型變化機制的研究。迄今已有多個與昆蟲翅發(fā)育相關(guān)的基因獲得鑒定[103, 104]。目前對遺傳和發(fā)育引起的不同表現(xiàn)型的表達機制仍知之不多,基因組學(xué)的研究必將為揭示昆蟲翅多型現(xiàn)象的內(nèi)在機制提供全新的機遇[25]。

        迄今所涉及的翅多型現(xiàn)象研究對象絕大多數(shù)為植食性昆蟲,而對控制害蟲的天敵寄生蜂的翅型分化研究鮮見報道。目前我國在林業(yè)害蟲生物防治中廣泛應(yīng)用的幾種腫腿蜂均具有翅二型現(xiàn)象,雄性基本有翅而雌性大多數(shù)無翅,其中管氏腫腿蜂(Sclerodermusguani)和川硬皮腫腿蜂(S.sichuanensis)均有無翅型和有翅型2種個體,雌性主要為無翅型,有翅雌性較少見,而雄性則基本為有翅型,無翅雄性極難見到[16- 19]。白蠟吉丁腫腿蜂(S.pupariae)是近年來發(fā)現(xiàn)的一個腫腿蜂新種[105],自然條件下寄生白蠟窄吉丁(Agrilusplanipennis)蛹,后來發(fā)現(xiàn)也能寄生該害蟲的幼蟲和危害白蠟樹的咖啡虎天牛(Xylotrechusgrayii)幼蟲[106]。進一步的生物學(xué)研究表明,該蜂可成功寄生柑桔窄吉丁(A.auriventris)、蘋小吉丁(A.mali)、花椒窄吉丁A.zanthoxylumi、核桃脊胸紋吉丁Nalandasp.、復(fù)紋狹天牛(Stenhomaluscomplicatus)、光肩星天牛(Anoplophoraglabripennis)、栗山天牛(Massicusraddei)、松褐天牛(Monochamusalternatus)、麻天牛(Thyestillagebleri)等多種吉丁甲和天牛的幼蟲,且后代均能正常完成生長發(fā)育,是一種非常優(yōu)良的蛀干害蟲天敵[20, 107]。白蠟吉丁腫腿蜂以成蟲越冬,自然種群越冬后成蟲所產(chǎn)的第1代后代中雌性有翅率較高,平均可達56.6%,第2代則降低到14.7%,此后世代中雌性大多為無翅型。雄性個體比例較低,約占2%—5%,且雄性基本均為有翅型[20]。這幾種腫腿蜂在我國林業(yè)上廣泛用于防治天牛和吉丁蟲等重要蛀干類害蟲,已實現(xiàn)工廠化人工大量繁育,但由于繁殖出的雌性基本為無翅型個體,因此釋放后其擴散能力受到限制,只能依靠爬行擴散,從而影響了生物防治效果,也給生產(chǎn)應(yīng)用上帶來了不便,在人工放蜂時需將寄生蜂人為釋放到有寄主害蟲的樹干上,以幫助寄生蜂尋找寄主。因此,如果能明確腫腿蜂發(fā)育過程中翅型分化的機制,通過人為干預(yù),培養(yǎng)出較高比例的有翅型雌蜂,釋放后有利于種群的自然擴散,提高生物防治效果,將在指導(dǎo)人工大量繁殖高品質(zhì)的寄生蜂個體用于生產(chǎn)防治上具有重要的指導(dǎo)意義和應(yīng)用價值。

        [1] Martel V, Darrouzet é, Boivin G. Phenotypic plasticity in the reproductive traits of a parasitoid. Journal of Insect Physiology, 2011, 57(6): 682- 687.

        [2] Roff D A. The evolution of wing dimorphism in insects. Evolution, 1986, 40(5): 1009- 1020.

        [3] 戴華國, 吳小毅, 楊亦樺. 昆蟲翅多型現(xiàn)象的控制機理. 華東昆蟲學(xué)報, 1997, 6(1): 99- 103.

        [4] 王榮富, 程遐年. 稻飛虱翅型分化的調(diào)節(jié)控制 (綜述). 安徽農(nóng)業(yè)大學(xué)學(xué)報, 1996, 23(4): 496- 499.

        [5] Simpson S J, Sword G A, Lo N. Polyphenism in Insects. Current Biology, 2011, 21(18): 738- 749.

        [6] Roff D A, Fairbairn D J. Wing dimorphisms and the evolution of migratory polymorphisms among the Insecta. American Zoologist, 1991, 31(1): 243- 251.

        [8] Crnokrak P, Roff D A. Trade-offs to flight capability inGryllusfirmus: the influence of whole-organism respiration rate on fitness. Journal of Evolutionary Biology, 2002, 15(3): 388- 398.

        [9] Chaudhuri B. Phenotypic variations in a seed-eating beetle: evolutionary significance of wing polymorphism inCallosobruchusmaculatus(F.) (Coleoptera: Bruchidae). Oriental Insects, 2005, 39(1): 359- 369.

        [10] Endo C. Seasonal wing dimorphism and life cycle of the mole cricketGryllotalpaorientalis(Orthoptera: Gryllotalpidae). European Journal of Entomology, 2006, 103(4): 743- 750.

        [11] 曾楊, 朱道弘, 趙呂權(quán). 長顎斗蟋長翅和短翅型雌成蟲飛行肌發(fā)育、生殖力及壽命的比較. 昆蟲學(xué)報, 2012, 55(2): 241- 246.

        [13] González J M, Matthews R W. Female and male polymorphism in two species ofMelittobiaparasitoid wasps (Hymenoptera: Eulophidae). Florida Entomologist, 2008, 91(2): 162- 169.

        [14] Kearns C W. Method of wing inheritance inCephalonomiagallicolaAshmead (Bethylidae: Hymenoptera). Annals of the Entomological Society of America, 1934, 27(4): 533- 541.

        [15] Seetharama H G, Kumar P K V, Sreedharan K, Vasudev V. Biology ofApenesiasahyadrica, a parasitoid of the coffee white stem borer. Journal of Coffee Research, 2007, 35(1/2): 10- 24.

        [16] 張仲信, 田淑貞. 天牛腫腿蜂生物學(xué)特性及其利用的研究初報. 昆蟲知識, 1980, 17(2): 71- 73.

        [17] 肖剛?cè)? 吳堅. 防治天牛的有效天敵——管氏腫腿蜂. 林業(yè)科學(xué), 1983, 19(昆蟲專輯): 81- 84.

        [18] 肖剛?cè)? 天牛的兩種新寄生天敵——川硬皮腫腿蜂及海南硬皮腫腿蜂(膜翅目: 腫腿蜂科). 林業(yè)科學(xué)研究, 1995, 8(???: 1- 5.

        [19] 周祖基. 川硬皮腫腿蜂研究概述. 四川林業(yè)科技, 1999, 20(3): 59- 61.

        [20] 武輝, 王小藝, 李孟樓, 楊忠岐, 曾繁喜, 王紅艷, 白玲, 劉松君, 孫進. 白蠟吉丁腫腿蜂的生物學(xué)特性及人工繁殖. 昆蟲學(xué)報, 2008, 51(1): 46- 54.

        [21] Yashiro N, Hirose Y, Honda J Y, Takeuchi Y, Yashiro T. A new species ofTrichogramma(Hymenoptera: Trichogrammatidae) parasitic on eggs of the alderflySialismelania(Neuroptera: Sialidae) from Japan, with comments on its phylogeny and male wing polymorphism. Entomological Science, 2012, 15(2): 189- 196.

        [23] 朱道弘. 昆蟲翅型分化的調(diào)控及翅多型性的進化. 昆蟲知識, 2009, 46(1): 11- 16.

        [24] Roff D A. Why is there so much genetic variation for wing dimorphism? Researches on Population Ecology, 1994, 36(2): 145- 150.

        [25] Braendle C, Davis G K, Brisson J A, Stern D L. Wing dimorphism in aphids. Heredity, 2006, 97(3): 192- 199.

        [26] 張娜, 趙莉, 張婷. 苜蓿葉象甲翅型分化研究初探. 新疆農(nóng)業(yè)科學(xué), 2010, 47(5): 910- 914.

        [27] Müller C B, Williams I S, Hardie J. The role of nutrition, crowding and interspecific interactions in the development of winged aphids. Ecological Entomology, 2001, 26(3): 330- 340.

        [28] Roff D A, Tucker J, Stirling G, Fairbairn D J. The evolution of threshold traits: effects of selection on fecundity and correlated response in wing dimorphism in the sand cricket. Journal of Evolutionary Biology, 1999, 12(3): 535- 546.

        [29] Berggren H, Tinnert J, Forsman A. Spatial sorting may explain evolutionary dynamics of wing polymorphism in pygmy grasshoppers. Journal of Evolutionary Biology, 2012, 25(10): 2126- 2138.

        [30] Roff D A, Bradford M J. Quantitative genetics of the trade-off between fecundity and wing dimorphism in the cricketAllonemobiussocius. Heredity, 1996, 76(2): 178- 185.

        [31] Zera A J, Rankin M A. Wing dimorphism inGryllusrubens: genetic basis of morph determination and fertility differences between morphs. Oecologia, 1989, 80(2): 249- 255.

        [32] Matsumura M. Genetic analysis of a threshold trait: density-dependent wing dimorphism inSogatellafurcifera(Horváth) (Hemiptera: Delphacidae), the whitebacked planthopper. Heredity, 1996, 76(3): 229- 237.

        [33] Aukema B, Spee A J, van Dijk T S. Wing dimorphism and development inPterostichusmelanarius(Coleoptera: Carabidae). Entomologische Berichten, 1996, 56(6): 93- 100.

        [34] Sack C, Stern D L. Sex and death in the male pea aphid,Acyrthosiphonpisum: The life-history effects of a wing dimorphism 9pp. Journal of Insect Science, 2007, 7(45): 1- 7.

        [35] Fujisaki K. Genetic correlation of wing polymorphism between females and males in the oriental chinch bug,CaveleriussaccharivorusOkajima (Heteroptera: Lygaeidae). Researches on Population Ecology, 1993, 35(2): 317- 324.

        [36] Brisson J A, Ishikawa A, Miura T. Wing development genes of the pea aphid and differential gene expression between winged and unwinged morphs. Insect Molecular Biology, 2010, 19(Suppl 2): 63- 73.

        [38] Zera A J, Denno R F. Physiology and ecology of dispersal polymorphism in insects. Annual Review of Entomology, 1997, 42(1): 207- 230.

        [39] Ishikawa A, Miura T. Differential regulations of wing and ovarian development and heterochronic changes of embryogenesis between morphs in wing polyphenism of the vetch aphid. Evolution & Development, 2009, 11(6): 680- 688.

        [40] An C J, Fei X D, Chen W F, Zhao Z W. The integrative effects of population density, photoperiod, temperature, and host plant on the induction of alate aphids inSchizaphisgraminum. Archives of Insect Biochemistry and Physiology, 2012, 79(4/5): 198- 206.

        [41] Wei Y J. Wing polymorphism inNysiushuttoniWhite (Hemiptera: Orsillidae). New Zealand Journal of Zoology, 2011, 38(1): 1- 14.

        [42] Muraji M, Miura T, Nakasuji F. Phenological studies on the wing dimorphism of a semi-aquatic bug,Microveliadouglasi(Heteroptera: Veliidae). Researches on Population Ecology, 1989, 31(1): 129- 138.

        [43] Olvido A E, Elvington E S, Mousseau T A. Relative effects of climate and crowding on wing polymorphism in the southern ground cricket,Allonemobiussocius(Orthoptera: Gryllidae). Florida Entomologist, 2003, 86(2): 158- 164.

        [44] Sasaki R, Nakasuji F, Fujisaki K. Environmental factors determining wing form in the lygaeid bug,Dimorphopterusjaponicus(Heteroptera: Lygaeidae). Applied Entomology and Zoology, 2002, 37(2): 329- 333.

        [45] Brisson J A, Davis G K, Stern D L. Common genome-wide patterns of transcript accumulation underlying the wing polyphenism and polymorphism in the pea aphid (Acyrthosiphonpisum). Evolution & Development, 2007, 9(4): 338- 346.

        [46] Dixon A F G, Agarwala B K. Ladybird-induced life-history changes in aphids. Proceedings of the Royal Society of London. Series B: Biological Sciences, 1999, 266(1428): 1549- 1553.

        [47] Weisser W W, Braendle C, Minoretti N. Predator-induced morphological shift in the pea aphid. Proceedings of the Royal Society of London. Series B: Biological Sciences, 1999, 266(1424): 1175- 1181.

        [48] Kunert G, Weisser W W. The interplay between density-and trait-mediated effects in predator-prey interactions: a case study in aphid wing polymorphism. Oecologia, 2003, 135(2): 304- 312.

        [49] Blua M J, Perring T M. Effects of zucchini yellow mosaic virus on colonization and feeding behavior ofAphisgossypii(Homoptera: Aphididae) alatae. Environmental Entomology, 1992, 21(3): 578- 585.

        [50] Mondor E B, Tremblay M N, Lindroth R L. Transgenerational phenotypic plasticity under future atmospheric conditions. Ecology Letters, 2004, 7(10): 941- 946.

        [51] Wang X Y, Yang Z Q, Shen Z R, Lu J, Xu W B. Sublethal effects of selected insecticides on fecundity and wing dimorphism of green peach aphid (Hom, Aphididae). Journal of Applied Entomology, 2008, 132(2): 135- 142.

        [52] 劉樹生. 溫度對桃蚜和蘿卜蚜種群增長的影響. 昆蟲學(xué)報, 1991, 34(2): 189- 197.

        [53] 劉樹生, 吳曉晶. 溫度對桃蚜和蘿卜蚜翅型分化的影響. 昆蟲學(xué)報, 1994, 37(3): 292- 297.

        [54] Uddin K R, Baqui M A. Effects of photoperiod on the wing dimorphism of brown planthopper,Nilaparvatalugens(St?l) (Homoptera: Delphacidae). Bangladesh Journal of Entomology, 1993, 3(2): 95- 98.

        [55] 黃鳳寬, 韋素美, 黃所生. 稻褐飛虱翅型分化研究進展. 西南農(nóng)業(yè)學(xué)報, 2003, 16(1): 82- 85.

        [56] 王希仁, 張燦東. 褐稻虱翅型分化因子的探討. 昆蟲知識, 1981, 18(4): 145- 148.

        [57] Iwanaga K, Tojo S. Effects of juvenile hormone and rearing density on wing dimorphism and o?cyte development in the brown planthopper,Nilaparvatalugens. Journal of Insect Physiology, 1986, 32(6): 585- 590.

        [58] Poniatowski D, Fartmann T. Weather-driven changes in population density determine wing dimorphism in a bush-cricket species. Agriculture, Ecosystems & Environment, 2011, 145(1): 5- 9.

        [59] Chapman R F, Cook A G, Mitchell G A, Page W W. Wing dimorphism and flight inZonocerusvariegatus(L.) (Orthoptera: Pyrgomorphidae). Bulletin of Entomological Research, 1978, 68(2): 229- 242.

        [60] Walker T J. Wing dimorphism inGryllusrubens(Orthoptera: Gryllidae). Annals of the Entomological Society of America, 1987, 80(5): 547- 560.

        [61] Zera A J, Tiebel K C. Brachypterizing effect of group rearing, juvenile hormone III and methoprene in the wing-dimorphic cricket,Gryllusrubens. Journal of Insect Physiology, 1988, 34(6): 489- 498.

        [62] Zera A J, Tiebel K C. Differences in juvenile hormone esterase activity between presumptive macropterous and brachypterousGryllusrubens: implications for the hormonal control of wing polymorphism. Journal of Insect Physiology, 1989, 35(1): 7- 17.

        [63] Clark R M, McConnell1 A, Zera A J, Behmer S T. Nutrient regulation strategies differ between cricket morphs that trade-off dispersal and reproduction. Functional Ecology, 2013, 27(5): 1126- 1133.

        [64] Zera A J, Huang Y. Evolutionary endocrinology of juvenile hormone esterase: functional relationship with wing polymorphism in the cricket,Cryllusfirmus. Evolution, 1999, 53(3): 837- 847.

        [65] Masaki S, Walker T J. Cricket life cycles. Evolutionary Biology, 1987, 21: 349- 423.

        [66] Saeki H. The effect of the population density on the occurrence of the macropterous form in a cricket,ScapsipedusaspersusWalker (Orthoptera, Gryllidae). Japanese Journal of Ecology, 1966, 16(1): 1- 4.

        [67] 曾楊, 朱道弘, 趙呂權(quán). 環(huán)境因素對長顎斗蟋翅型分化的影響. 生態(tài)學(xué)報, 2010, 30(21): 6001- 6008.

        [68] Zera A J, Tanaka S. The role of juvenile hormone and juvenile hormone esterase in wing morph determination inModicogryllusconfirmatus. Journal of Insect Physiology, 1996, 42(9): 909- 915.

        [69] Utida S. Density dependent polymorphism in the adult ofCallosobruchusmaculatus(Coleoptera: Bruchidae). Journal of Stored Products Research, 1972, 8(2): 111- 125.

        [70] Lovei G L, Sunderland K D. Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annual Review of Entomology, 1996, 41(1): 231- 256.

        [71] Fujisaki K. Seasonal adaptations in subtropical insects: wing polymorphism and egg diapause in the oriental chinch bug,CaveleriussaccharivorusOkajima (Heteroptera: Lygaeidae). Entomological Science, 2000, 3(1): 177- 186.

        [72] Sasaki R, Nakasuji F, Fujisaki K. Seasonal changes in wing dimorphism of the lygaeid bugDimorphopterusjaponicus(Heteroptera: Lygaeidae) in relation to environmental factors. Entomological Science, 2003, 6(2): 63- 70.

        [73] Cherry R. Seasonal wing polymorphism in southern chinch bugs (Hemiptera: Lygaeidae). Florida Entomologist, 2001, 84(4): 737- 739.

        [74] Sakashita T, Nakasuji F, Fujisaki K. Seasonal variation in wing polymorphism of the pyrrhocorid bug,Pyrrhocorissibiricus(Heteroptera: Pyrrhocoridae). Applied Entomology and Zoology, 1998, 33(2): 243- 246.

        [75] Ahlroth P, Alatalo R V, Hyv?rinen E, Suhonen J. Geographical variation in wing polymorphism of the waterstriderAquariusnajas(Heteroptera, Gerridae). Journal of Evolutionary Biology, 1999, 12(1): 156- 160.

        [76] Briceńo R D, Eberhard W G. Genetic and environmental effects on wing polymorphisms in two tropical earwigs (Dermaptera: Labiidae). Oecologia, 1987, 74(2): 253- 255.

        [77] Kimura J, Masaki S. Brachypterism and seasonal adaptation inOrgyiathyellinaButler (Lepidoptera, Lymantriidae). Kontyu, 1977, 45(1): 97- 106.

        [79] Lee S S. Environmental factors inducing macroptery in the psocidPsoquillamarginepunctata. Entomologia Experimentalis et Applicata, 1987, 44(1): 89- 95.

        [80] Watanabe D, Shirasaki I, Maekawa K. Effects of juvenile hormone III on morphogenetic changes during a molt from each nymphal instar in the termiteReticulitermessperatus(Isoptera: Rhinotermitidae). Applied Entomology and Zoology, 2010, 45(3): 377- 386.

        [81] Crespi B J. Adaptation, compromise, and constraint: the development, morphometrics, and behavioral basis of a fighter-flier polymorphism in maleHoplothripskarnyi(Insecta: Thysanoptera). Behavioral Ecology and Sociobiology, 1988, 23(2): 93- 104.

        [82] Nakao S, Chikamori C. Temperature-dependent wing dimorphism in a Japanese strain of tobacco thrips,Frankliniellafusca(Thysanoptera: Thripidae). Applied Entomology and Zoology, 2013, 48(3): 337- 343.

        [83] Salt G. Trimorphism in the ichneumonid parasiteGeliscorruptor. Quarterly Journal of Microscopical Science, 1952, 93(4): 453- 474.

        [84] Abouheif E, Wray G A. Evolution of the gene network underlying wing polyphenism in ants. Science, 2002, 297(5579): 249- 252.

        [85] Heinze J, Schrempf A, Seifert B, Tinaut A. Queen morphology and dispersal tactics in the ant,Cardiocondylabatesii. Insectes Sociaux, 2002, 49(2): 129- 132.

        [86] Mousseau T A, Roff D A. Geographic variability in the incidence and heritability of wing dimorphism in the striped ground cricket,Allonemobiusfasciatus. Heredity, 1989, 62(3): 315- 318.

        [87] Socha R. Latitudinal gradient in response of wing polymorphism to photoperiod in a flightless bug,Pyrrhocorisapterus(Heteroptera: Pyrrhocoridae). European Journal of Entomology, 2001, 98(2): 167- 169.

        [88] Hardie J, Leckstein P. Antibiotics, primary symbionts and wing polyphenism in three aphid species. Insect Biochemistry and Molecular Biology, 2007, 37(8): 886- 890.

        [89] Higashi C H V, Bressan A. Influence of a propagative plant virus on the fitness and wing dimorphism of infected and exposed insect vectors. Oecologia, 2013, 172(3): 847- 856.

        [90] Zera A J, Tobe S S. Juvenile hormone-III biosynthesis in presumptive long-winged and short-wingedGryllusrubens: implications for the endocrine regulation of wing dimorphism. Journal of Insect Physiology, 1990, 36(4): 271- 280.

        [91] Schwartzberg E G, Kunert G, Westerlund S A, Hoffmann K H, Weisser W W. Juvenile hormone titres and winged offspring production do not correlate in the pea aphid,Acyrthosiphonpisum. Journal of Insect Physiology, 2008, 54(9): 1332- 1336.

        [92] Dietz A, Hermann H R, Blum M S. The role of exogenous JH I, JH III and anti-JH (precocene II) on queen induction of 4- 5-day-old worker honey bee larvae. Journal of Insect Physiology, 1979, 25(6): 503- 512.

        [93] Hardie J, Gao N, Timar T, Sebok P, Honda K I. Precocene derivatives and aphid morphogenesis. Archives of Insect Biochemistry and Physiology, 1996, 32(3/4): 493- 501.

        [94] Ayoade O, Morooka S, Tojo S. Induction of macroptery, precocious metamorphosis, and retarded ovarian growth by topical application of precocene II, with evidence for its non-systemic allaticidal effects in the brown planthopper,Nilaparvatalugens. Journal of Insect Physiology, 1996, 42(6): 529- 540.

        [95] Shi S L, Liu X X, Zhang Q W, Zhao Z W. Morph-specific differences in metabolism related to flight in the wing-dimorphicAphisgossypii. Insect Science, 2010, 17(6): 527- 534.

        [96] Brisson J A. Aphid wing dimorphisms: linking environmental and genetic control of trait variation. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 2010, 365(1540): 605- 616.

        [97] Braendle C, Friebe I, Caillaud M C, Stern D L. Genetic variation for an aphid wing polyphenism is genetically linked to a naturally occurring wing polymorphism. Proceedings of the Royal Society of London (B), Biological Sciences, 2005, 272(1563): 657- 664.

        [98] Ogawa K, Miura T. Two developmental switch points for the wing polymorphisms in the pea aphidAcyrthosiphonpisum. Evodevo, 2013, 4: 30.

        [99] Ogawa K, Ishikawa A, Kanbe T, Akimoto S, Miura T. Male-specific flight apparatus development inAcyrthosiphonpisum(Aphididae, Hemiptera, Insecta): comparison with female wing polyphenism. Zoomorphology, 2012, 131(3): 197- 207.

        [100] 劉佳妮, 桂富榮, 李正躍. 影響白背飛虱翅型分化的相關(guān)因子. 植物保護學(xué)報, 2010, 37(6): 511- 516.

        [101] Podjasek J O, Bosnjak L M, Brooker D J, Mondor E B. Alarm pheromone induces a transgenerational wing polyphenism in the pea aphid,Acyrthosiphonpisum. Canadian Journal of Zoology, 2005, 83(8): 1138- 1141.

        [102] Moczek A P. Phenotypic plasticity and diversity in insects. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365(1540): 593- 603.

        [103] Mckechnie S W, Blacket M J, Song S V, Rako L, Carroll X, Johnson T K, Jensen L T, Lee S F, Wee C W, Hoffmann A A. A clinally varying promoter polymorphism associated with adaptive variation in wing size inDrosophila. Molecular Ecology, 2010, 19(4): 775- 784.

        [104] Lee S F, Eyre-Walker Y C, Rane R V, Reuter C, Vinti G, Rako L, Partridge L, Hoffmann A A. Polymorphism in theneurofibromingene, Nf1, is associated with antagonistic selection on wing size and development time inDrosophilamelanogaster. Molecular Ecology, 2013, 22(10): 2716- 2725.

        [105] Yang Z Q, Wang X Y, Yao Y X, Gould J R, Cao L M. A new species ofSclerodermus(Hymenoptera: Bethylidae) parasitizingAgrilusplanipennis(Coleoptera: Buprestidae) from China, with a key to Chinese species in the genus. Annals of the Entomological Society of America, 2012, 105(5): 619- 627.

        [106] 王小藝, 楊忠岐, 唐艷龍, 姜靜, 高純, 劉云程, 張顯文. 白蠟吉丁腫腿蜂對栗山天牛低齡幼蟲的寄生作用. 昆蟲學(xué)報, 2010, 53(6): 675- 682.

        [107] Wei K, Tang Y L, Wang X Y, Yang Z Q, Cao L M, Lu J F, Liu E S, Liu G J. Effects of learning experience on behaviour of the generalist parasitoidSclerodermuspupariaeto novel hosts. Journal of Applied Entomology, 2013, 137(6): 469- 475.

        Mechanisms of phenotypic plasticity for wing morph differentiation in insects

        WANG Xiaoyi, YANG Zhongqi*, WEI Ke, TANG Yanlong

        KeyLaboratoryofForestProtection,StateForestryAdministration,ResearchInstituteofForestEcology,EnvironmentandProtection,ChineseAcademyofForestry,Beijing100091,China

        Phenotypic plasticity is a phenomenon in which the same genotype produces entirely different phenotypes in response to changes in the environment, and grants an organism the ability to adapt to environmental variations. Wing polymorphism is commonly observed in insects, including Homoptera, Hemiptera, Coleoptera, Hymenoptera, Orthoptera, Diptera, Lepidoptera, Isoptera, Psocoptera, and Dermaptera, as a strategy to tolerate trade-offs between flight capability and fecundity. As a result, it may confer an important adaptive value to the evolution of populations because these winged individuals can migrate long distances and find suitable habitats for development and reproduction of their offspring more easily. At the present time, there is limited knowledge of the mechanisms of wing polymorphism in varying populations. Both genes and the environment are usually considered to affect the developmental outcomes of insect wing morphs. It is easy to understand the contributions of genes to morphology as a consequence of the research of evolution and developmental biology. However, very little is known about the influential mechanism of environmental factors on the development of phenotypes. In fact, it is not yet clear that how the evolutionary shifts of character variation is realized between environmental and genetic control. So far, studies on wing polymorphism are mostly reported on phytophagous insects, very few are known in parasitoids, natural enemies of insect pests. Here we summarized the mechanisms of phenotypic plasticity for wing morph differentiation in insects. Both genetic and environmental factors can act on the wing development of insects. The genotypes have significant effects on the determination of insect wing morphs. External environmental conditions such as temperature, photoperiod, food quality, population density, exogenous hormones, etc., also play important roles in regulating the insect wing development, which produce wing polyphenism. In addition, the parasitism or predation of natural enemies may induce alternative variations across transgenerational wing morphs in some insects. The ecological significance of insect wing polymorphism and its functions during their evolutionary process are discussed. Polyphenism is one of the main reasons why insects have become so successful on the earth, and grants them the capability to effectively utilize the same genome in order to best adapt to predictable changes in the environment, such as degradation of survival conditions after overcrowding, by developing into different phenotypes. Wing polyphenism in insects is a clear example of adaptive phenotypic plasticity, which provides a very good model to study alternative phenotypes from both genetic and environmental perspectives. This may also be advantageous to evaluate how environmental and genetic factors jointly control the same developmental events. Further study recommendations were also discussed in this review, as well as the potential utilization of wing morph differentiation mechanisms of parasitic wasps in biological control, e.g., through artificially culturing the winged individuals of parasitoids for field release to improve the dispersal ability of natural enemies. Some critical aspects still need to be investigated further on the mechanisms of phenotypic plasticity for wing morph differentiation in insects. Further development in functional genomics and epigenetics may provide novel opportunities and technological support for revealing the mechanisms of polyphenism in insects completely.

        wing polymorphism; polyphenism; phenotypic plasticity; adaptive evolution

        國家自然科學(xué)基金資助項目(31370654)

        2013- 10- 30;

        2014- 08- 28

        10.5846/stxb201310302610

        *通訊作者Corresponding author.E-mail: yangzhqi@126.com

        王小藝, 楊忠岐, 魏可, 唐艷龍.昆蟲翅型分化的表型可塑性機制.生態(tài)學(xué)報,2015,35(12):3988- 3999.

        Wang X Y, Yang Z Q, Wei K, Tang Y L.Mechanisms of phenotypic plasticity for wing morph differentiation in insects.Acta Ecologica Sinica,2015,35(12):3988- 3999.

        猜你喜歡
        表型昆蟲種群
        邢氏水蕨成功繁衍并建立種群 等
        山西省發(fā)現(xiàn)刺五加種群分布
        RFID昆蟲閱讀放大鏡
        玩具世界(2022年3期)2022-09-20 01:48:20
        借昆蟲上課
        甘肅教育(2020年2期)2020-09-11 08:01:48
        我最喜歡的昆蟲——知了
        昆蟲的冬天
        建蘭、寒蘭花表型分析
        GABABR2基因遺傳變異與肥胖及代謝相關(guān)表型的關(guān)系
        慢性乙型肝炎患者HBV基因表型與血清學(xué)測定的臨床意義
        72例老年急性白血病免疫表型分析
        成年无码aⅴ片在线观看| 国产亚洲精品av一区| 麻豆亚洲av熟女国产一区二| 99香蕉国产精品偷在线观看| 亚洲av无码片在线播放| 亚洲第一页综合av免费在线观看| 亚洲av乱码二区三区涩涩屋| 女女女女女裸体处开bbb| 丰满少妇被猛烈进入无码| 日韩AV无码乱伦丝袜一区| 日本不卡一区二区三区久久精品 | 亚洲一区二区三区国产精华液| 亚洲AV日韩Av无码久久| 激情视频在线观看好大| 久久婷婷色香五月综合激激情| 国产成人精品一区二三区孕妇| 久久久久久亚洲av无码蜜芽| 欧美精品黄页在线观看视频| 国产av乳头久久一区| 性av一区二区三区免费| 爽爽精品dvd蜜桃成熟时电影院| 亚洲毛片在线播放| 丰满人妻一区二区三区精品高清| 久久精品免费中文字幕| 欧美大屁股xxxxhd黑色| 日本视频一区二区三区免费观看 | 色婷婷七月| 激情一区二区三区视频| 日本一区二区三区高清在线视频 | 少妇激情av一区二区| 一本色道久久综合中文字幕| 亚洲熟女一区二区三区250p| 97久久超碰国产精品旧版| 亚洲精品第一国产麻豆| 久久久人妻丰满熟妇av蜜臀| 日韩人妻中文无码一区二区| 亚洲精品久久久久久动漫| 国产 无码 日韩| 日本久久精品中文字幕| 少妇无码太爽了不卡视频在线看 | 人妻少妇无乱码中文字幕|