彭岳林,蔡曉布
西藏大學(xué)農(nóng)牧學(xué)院, 林芝 860000
叢枝菌根真菌群落沿高寒草原海拔梯度的變化特征
彭岳林,蔡曉布*
西藏大學(xué)農(nóng)牧學(xué)院, 林芝 860000
基于叢枝菌根(Arbuscular mycorrhizal,AM)真菌孢子形態(tài)學(xué)的鑒定,對(duì)沿不同海拔(4584、4628、4744、4880、4956 m)梯度采集的高寒草原建群植物根際土壤樣品進(jìn)行了分析。結(jié)果表明,高寒草原AM真菌屬、種構(gòu)成均較簡(jiǎn)單,Acaulospora、Claroideoglomus、Funneliformis、Glomus屬見于各海拔梯度,海拔4744 m地帶未見Pacispora屬,海拔4744、4956 m地帶無Scutellospora屬分布,Rhizophagus屬僅見于海拔4584 m地帶。隨海拔上升,AM真菌種數(shù)、物種豐度均呈顯著下降;海拔4584—4880 m范圍Shannon-Weiner 指數(shù)(H)無顯著差異,但在最高海拔時(shí)顯著下降;優(yōu)勢(shì)種種數(shù)及所占比例與海拔梯度則呈顯著正相關(guān)(Funneliformisgeosporum、Claroideoglomusclaroideum為不同海拔梯度優(yōu)勢(shì)種);沿海拔梯度,孢子密度基本呈單峰分布格局,峰值出現(xiàn)在海拔4744 m地帶;海拔梯度對(duì)菌根侵染效應(yīng)影響顯著,菌根侵染率、侵染強(qiáng)度和叢枝豐度隨海拔上升均呈顯著下降趨勢(shì);不同海拔梯度高寒草原AM真菌群落相似度(Sorensen相似性系數(shù)0.821— 0.969)較高,并在總體上表現(xiàn)出隨海拔梯度增大而降低的趨勢(shì)。土壤pH值、有效磷、有機(jī)碳、海拔對(duì)AM真菌的群落分布均產(chǎn)生顯著影響,尤以海拔的影響最為顯著。研究結(jié)果對(duì)預(yù)測(cè)高寒草原微生物的作用與影響,以及高寒草原環(huán)境對(duì)全球變化的響應(yīng)等提供了理論依據(jù)。
海拔梯度;AM真菌群落組成;高寒草原;藏北高原
微生物群落趨于生境選擇[1- 2],研究微生物的種群多樣性及其地理分布對(duì)預(yù)測(cè)不同區(qū)域微生物的作用與影響具有重要意義[3]。海拔梯度包含了多種環(huán)境因子的梯度效應(yīng)[4- 5]和不同的植物群落[6],因此,高山環(huán)境(通常指高差懸殊的高大山體)有助于在相對(duì)較短的距離內(nèi)研究微生物群落的空間分布格局[7]。近年來,研究者對(duì)微生物群落沿海拔梯度的變化等問題給予了較多關(guān)注[8- 10]。研究發(fā)現(xiàn),微生物群落組成、種群豐度和物種多樣性隨海拔梯度而變化,如美國(guó)科羅拉多州落基山脈細(xì)菌類群豐富度、系統(tǒng)發(fā)育多樣性均隨海拔高度上升而降低[10],奧地利中部阿爾卑斯山真菌多樣性隨海拔升高顯著增加[11]。對(duì)法國(guó)南部阿爾卑斯山海拔1900—2800 m地帶的研究則發(fā)現(xiàn)地理距離對(duì)細(xì)菌、真菌的β多樣性(Beta-diversity)均無顯著影響[2]??梢姡0翁荻葘?duì)微生物群落的影響較為復(fù)雜,可能受控于海拔主導(dǎo)的多種因素的綜合作用。AM真菌在植物礦質(zhì)營(yíng)養(yǎng)、碳循環(huán)和生物間相互作用等方面發(fā)揮著重要作用[12- 13],其多樣性決定著植物的多樣性、生產(chǎn)力和生態(tài)系統(tǒng)的變化[12- 14]。迄今,人們對(duì)區(qū)域和全球范圍內(nèi)AM真菌的多樣性格局仍不十分清楚[15],描述不同生境中AM真菌群落結(jié)構(gòu)的數(shù)據(jù)相當(dāng)缺乏[16]。沿海拔梯度的AM真菌相關(guān)研究主要集中在菌根侵染方面[7- 9,17],對(duì)其物種多樣性垂直分布格局的研究相對(duì)較少[7,18]。同時(shí),這些工作主要集中于高山環(huán)境[7,19- 20],對(duì)面積較大且海拔梯度相對(duì)較小的草原環(huán)境的研究相對(duì)較少[21]。因此,進(jìn)一步了解AM真菌對(duì)植被群落和生態(tài)系統(tǒng)的影響與作用,需要在更多的環(huán)境,特別是極端環(huán)境背景下對(duì)AM真菌群落組成和物種多樣性沿海拔高度的變化及其規(guī)律開展研究。廣泛分布于藏北高原的高寒草原是青藏高原隆升過程中所特化形成的高寒草地類型,對(duì)高寒生態(tài)系統(tǒng)的穩(wěn)定具有重大影響。與高差較大的高山環(huán)境不同,藏北高寒草原主要分布區(qū)雖地勢(shì)高峻,但地形相對(duì)平坦,平均海拔僅在4500—5000 m之間。因此,在這一高差相對(duì)較小的極端環(huán)境中,AM真菌群落組成、菌根侵染水平沿海拔梯度會(huì)發(fā)生怎樣的變化,其變化的特點(diǎn)和原因分別是什么?均為本研究擬回答的重要問題。
1.1 研究地點(diǎn)和樣品采集
藏北高原(建群植物主要由耐寒、耐旱的多年生禾本科針茅屬植物組成)是青藏高原平均海拔(4500—5000 m)最高、高原形態(tài)保存完整的自然區(qū)域之一,亦是西藏高寒草原的集中分布區(qū)。因地處高原亞寒帶干旱、半干旱氣候區(qū),多數(shù)區(qū)域年均溫度-6—-2 ℃、年均降水量150—350 mm、年均蒸發(fā)量2000 mm左右[22]。隨地勢(shì)由南向北逐步抬升,氣候愈加寒冷、干旱。研究表明,西藏高原海拔、緯度每升高100 m和1°,年均溫度分別下降0.57、0.63 ℃[23],由南向北高寒草原分布區(qū)年均溫最大溫差最少可達(dá)2.85—3.78 ℃。高寒草原(土壤為高山草原土,土壤質(zhì)地均為砂土)植物構(gòu)成極為簡(jiǎn)單,植被低矮、稀疏(植被蓋度最高僅為50%—60%)。高寒草原草地分類上,以占絕對(duì)比重的某類建群植物為依據(jù)而劃分為不同的草地型,如紫花針茅(Stipapurpurea)草地型、沙生針茅(Stipaglareosa)草地型、昆侖針茅(Stiparoborowskyi)草地型、羽柱針茅(Stipasubsessilifloravar.Basiplumosa)草地型等,而不同草地型中的建群植物普遍具有叢生或片生的特征,伴生植物種類少,僅呈零星分布[22]。因此,高寒草原不同草地型中的植物分布特點(diǎn)有利于建群植物根系及根際土壤的采集,從而可有效避免其它植物對(duì)建群植物根際的干擾。
2008、2009年9月分別在西藏北部班戈、申扎、尼瑪縣境內(nèi)采集樣品。由于各海拔地帶高寒草原面積差異很大,且多數(shù)海拔地帶不同草地型較為分散,因此在不同海拔地帶所確定的高寒草原采樣區(qū)數(shù)量、各采樣區(qū)采樣點(diǎn)數(shù)量均不同。如某一區(qū)域草地型較多,則確定為采樣區(qū),之后按該區(qū)域草地型確定采樣點(diǎn);如某一海拔高度僅見某類草地型,則以50—70 km間隔確定采樣點(diǎn)。其中,海拔4500—4600 m(E1)、4601—4700 m(E2)、4701—4800 m(E3)、4801—4900 m(E4)、4901—5000 m(E5)地帶采樣區(qū)數(shù)量(平均海拔依次為4584、4628、4744、4880、4956 m)分別為6、7、4、4、5個(gè),各采樣區(qū)采樣點(diǎn)(面積均>1 hm2)數(shù)量分別為14、17、4、8、16個(gè)。采樣時(shí),分別在各采樣點(diǎn)按水平方向隨機(jī)確定面積為1 m × 1 m的樣方3個(gè)(間隔100—150 m);采集2—30 cm土層帶根土樣后,將3個(gè)樣方的樣品組成1個(gè)混合樣品。在實(shí)驗(yàn)室將部分根系存放在4 ℃冰箱,土壤樣品經(jīng)室內(nèi)自然風(fēng)干后備用。土壤pH值、土壤有效磷(P2O5)、土壤有機(jī)碳測(cè)定分別采用電位法、0.5 mol/L NaHCO3法、重鉻酸鉀容量法—外加熱法(表1)。
表1 不同海拔梯度高寒草原樣點(diǎn)分布、建群植物組成及土壤特征Table 1 Sample distribution, dominant species composition and soil characteristics in alpine grasslands at different altitudinal gradients
1.2 AM真菌侵染率測(cè)定
將根系用自來水沖洗干凈,剪成約1 cm長(zhǎng)根段;經(jīng)KOH-曲利苯藍(lán)染色,隨機(jī)取30條根段制片并在200 倍顯微鏡下觀測(cè)侵染點(diǎn)、叢枝、泡囊、菌絲圈和無隔菌絲;根據(jù)根段中菌根侵染(0,<1%,<10%,<50%,>50%和>90%)和叢枝豐度分級(jí)(0,<50%,>50%)的標(biāo)準(zhǔn),定義每一條根;據(jù)Trouvelot等[24]的方法,采用MYCOCALC軟件計(jì)算菌根侵染率(F,%)、侵染強(qiáng)度(M,%)和叢枝豐度(A,%),并同時(shí)觀測(cè)泡囊 、內(nèi)生菌絲等結(jié)構(gòu)。
1.3 AM真菌形態(tài)學(xué)鑒定
取100 g自然風(fēng)干土樣,采用濕篩傾析-蔗糖離心法篩取孢子;之后,用微吸管挑取孢子于載玻片上(加30%甘油浮載劑封片),顯微觀測(cè)并記錄孢子顏色、連孢特征,測(cè)定孢子大??;壓碎孢子后觀測(cè)內(nèi)含物、孢壁層次及各層顏色,測(cè)定各層孢壁的厚度(萊卡顯微鏡自帶圖像分析軟件測(cè)定)等。鑒定中輔助使用Melzer′s試劑以觀測(cè)孢子的特異性反應(yīng)。綜合以上觀測(cè)結(jié)果,根據(jù)http://schuessler.userweb.mwn.de/amphylo/上的分類描述進(jìn)行屬種檢索、鑒定。
1.4 統(tǒng)計(jì)分析
①孢子密度(SD) 每100 g風(fēng)干根層土樣中不同AM真菌種的孢子數(shù)。
②物種豐度(SR) 每100 g根層土樣所含AM真菌種的平均數(shù),即SR=AM真菌種出現(xiàn)總次數(shù)/土壤樣本數(shù)。
③物種多樣性(H) 采用Shannon-Weiner指數(shù)公式計(jì)算:
(1)
式中,k為某樣點(diǎn)中AM真菌的種數(shù),Pi為該樣點(diǎn)AM真菌種i的孢子密度占該樣點(diǎn)總孢子密度的百分比。
④物種均勻度指數(shù)(J)
J=H/ lnS
(2)
式中,H為Shannon-Weiner指數(shù),S為某采樣區(qū)AM真菌的種類數(shù)目。
⑤分離頻度(IF) 某AM真菌屬或種在樣本總體中的出現(xiàn)頻率,即IF=AM真菌某屬或種的出現(xiàn)土樣數(shù)/總土樣數(shù))× 100%。據(jù)此將AM真菌劃分為3個(gè)優(yōu)勢(shì)度等級(jí),即分離頻度≥50%為優(yōu)勢(shì)屬(種),≥10%—<50%為常見屬(種),<10%為偶見屬(種)。
⑥相對(duì)多度(RA)
RA=SD/∑SD× 100%
式中,SD為某樣點(diǎn)AM真菌某屬(種)的孢子數(shù),∑SD為某樣點(diǎn)AM真菌總孢子數(shù)。
⑦重要值(IV) 某采樣點(diǎn)或某環(huán)境中AM真菌屬(種)的分離頻度、相對(duì)多度的平均值,即:
IV=(IF+RA/2
⑧Sorensen群落相似性系數(shù)(C)
C=Ij/ (a+b)
(3)
式中,Ij為2個(gè)不同海拔梯度中AM真菌共有種重要值的總和,a和b分別為2個(gè)海拔梯度中全部AM真菌種的重要值總和。據(jù)此,將群落物種相似度劃分為極低(<0.20)、低(0.21—0.40)、中(0.41—0.60)、高(0.61—0.80)、極高(0.80—1.00)等級(jí)。
差異顯著性分析采用LSR法,相關(guān)分析、CCA分析分別采用Excel 2003、CANOCO 4.5計(jì)算。
2.1 AM真菌多樣性
于高寒草原分離出Acaulospora、Glomus、Scutellospora等7屬共20種AM真菌。隨海拔上升,AM真菌種數(shù)顯著下降(r=-0.569,P<0.05),優(yōu)勢(shì)種種數(shù)(r=0.694,P<0.05)及所占比例(r=0.574,P<0.05)顯著提高,F(xiàn)unneliformisgeosporum、Claroideoglomusclaroideum為不同海拔梯度優(yōu)勢(shì)種。同時(shí),不同海拔梯度AM真菌共有種較多,且所占比例亦隨海拔上升趨于提高(表2)。
表2 高寒草原AM真菌Table 2 Species composition of AMF in alpine grasslands
高寒草原環(huán)境中,隨海拔上升,AM真菌物種豐度(r=-0.681,P<0.05)、Shannon-Weiner 指數(shù)(H,r=-0.537,P>0.05)均趨下降,但海拔4584—4880 m范圍H均無顯著差異,但在最高海拔時(shí)顯著降低;AM真菌孢子密度、物種均勻度隨海拔上升在總體上均趨于單峰分布,海拔4744—4880 m不僅對(duì)AM真菌的繁殖與產(chǎn)孢較為有利,AM真菌群落受干擾的程度亦較低(圖1)。
同種植物根際AM真菌群落在不同海拔梯度中的變化在整體上亦與上述趨勢(shì)基本一致(表3)。
圖1 不同海拔梯度AM真菌孢子密度、物種豐度、Shannon-Weiner指數(shù)和物種均勻度指數(shù)Fig.1 AM fungal spore number,species richness,Shannon-Weiner index and species evenness index at different altitudes gradient圖內(nèi)不同字母表示差異顯著(P<0.05)
表3 不同海拔梯度紫花針茅根際AM真菌孢子密度、物種豐度與Shannon-Weiner指數(shù)Table 3 Stipa purpurea rhizosphere AMF spore density, species richness and H valuein different altitudinal gradient
2.2 AM真菌群落相似度
不同海拔梯度高寒草原AM真菌群落的Sorensen相似性系數(shù)均>0.800,同種植物(如紫花針茅)根際AM真菌群落的Sorensen相似性系數(shù)(0.427—0.944)則變化很大。無論是全部建群植物,還是同種建群植物,AM真菌群落相似度在總體上均表現(xiàn)出隨海拔梯度擴(kuò)大而降低的趨勢(shì),但同種建群植物根際AM真菌群落Sorensen相似性系數(shù)的降幅相對(duì)較大(表4)。
2.3 叢枝菌根侵染
隨海拔上升,高寒草原建群植物菌根侵染率(F,r=-0.779,P<0.01)、侵染強(qiáng)度(M,r=-0.775,P<0.01)和叢枝豐度(A,r= -0.556,P<0.05)均呈顯著下降,不同海拔梯度紫花針茅也表現(xiàn)出相同的趨勢(shì)(圖2)??梢?,AM真菌對(duì)植物根系的侵染效率受海拔梯度的制約,這與隨海拔上升AM真菌物種豐度、物種多樣性顯著下降的趨勢(shì)一致。孢子數(shù)量對(duì)F、M、A均無顯著影響,物種豐度,特別是H對(duì)菌根侵染率則具有顯著影響,H與F(r= 0.940,P<0.01)、M(r= 0.714,P<0.05)、A(r= 0.694,P<0.05)均呈顯著正相關(guān),物種豐度則僅對(duì)M(r=0.783,P<0.01)、A(r=0.673,P<0.05)具有顯著影響。
表4 不同海拔梯度高寒草原AM真菌群落、紫花針茅AM真菌群落Sorensen相似性系數(shù)Table 4 Sorensen similarity coefficient of AMF community, Stipa purpurea AMF community at different altitude in alpine grassland
圖2 不同海拔梯度菌根侵染率(F)、侵染強(qiáng)度(M)和叢枝豐度(A)Fig.2 AM colonization rate (F), infect intensity (M) and arbuscule richness (A) at different elevation圖內(nèi)不同字母表示差異顯著(P<0.05)
表5 土壤因子與孢子密度、物種豐度和H值的相關(guān)系數(shù)Table 5 Correlation coefficient of spore density, species richness and H value with soil factors
2.4 海拔與土壤因子對(duì)AM真菌群落的影響
CCA分析結(jié)果表明,第一軸和第二軸的解釋量分別為23.0%和2.7%,第一軸的蒙特卡羅檢驗(yàn)P<0.01,所有排序軸P<0.01。pH值、有效磷、海拔和有機(jī)碳均顯著影響AM真菌的群落組成,但相對(duì)于其它變量,海拔對(duì)AM真菌群落的影響最為顯著(圖3)。
土壤因子中,土壤pH值對(duì)物種豐度、土壤有機(jī)碳對(duì)H均無顯著影響,土壤有效磷對(duì)物種豐度、孢子密度和H均無顯著影響(表5)。
了解微生物群落的空間分布格局是預(yù)測(cè)生態(tài)系統(tǒng)對(duì)全球變化響應(yīng)的因素之一[25]。不同環(huán)境中的微生物群落分布特征不同[1],即使環(huán)境條件類似,不同區(qū)域微生物群落的組成和功能亦可能不同[3]。近年來,研究者對(duì)AM真菌等不可培養(yǎng)微生物的地理分布給予了較多關(guān)注[3,26- 27],認(rèn)為資源的限制是菌根共生體產(chǎn)生區(qū)域適應(yīng)性的驅(qū)動(dòng)力之一[28],生境(地理距離、土壤溫度和濕度)或擴(kuò)散限制的影響對(duì)AM真菌的群落形成可能更具重要作用[29]。研究發(fā)現(xiàn),無論是海拔梯度較大的高山,還是海拔梯度較小的草原環(huán)境,AM真菌物種豐度、菌根侵染率一般隨海拔上升而降低[7,19- 21],對(duì)西藏高原不同海拔條件下發(fā)育的多類草地的比較研究也有類似的結(jié)果[30]。受高原寒旱環(huán)境的強(qiáng)烈影響,盡管高寒草原AM真菌類群(7屬)遠(yuǎn)低于藏東南高山環(huán)境[7]及全球多類生態(tài)系統(tǒng)[31],但AM真菌群落及菌根侵染率亦表現(xiàn)出隨海拔上升而下降的趨勢(shì),說明高寒草原相對(duì)較小的海拔梯度對(duì)AM真菌群落和菌根侵染亦存在著顯著影響。而AM真菌優(yōu)勢(shì)種種數(shù)及所占比例隨海拔上升均呈顯著提高的現(xiàn)象,可能暗示AM真菌對(duì)高原寒旱環(huán)境的特殊適應(yīng)策略。孢子數(shù)量不能直接反映AM真菌群落對(duì)植物根系的侵染[32],但能較好地說明AM真菌的繁殖環(huán)境與產(chǎn)孢能力。高寒草原環(huán)境中,AM真菌孢子密度隨海拔上升呈現(xiàn)較為典型的單峰分布,海拔低于或高于4744—4880 m孢子密度均呈顯著降低,表明AM真菌對(duì)高原寒旱環(huán)境的超強(qiáng)適應(yīng)及其限度。這與前人有關(guān)西藏高原的其它研究結(jié)果明顯不同,如對(duì)西藏山地灌叢草原(海拔3500—4100 m)、高寒草原(海拔4500—4900 m)和高寒草甸(海拔4500—5200 m)的研究發(fā)現(xiàn),不同類型草地間孢子密度隨海拔高度上升顯著提高,并認(rèn)為這主要與氣候條件(特別是溫度)等有關(guān)[30],對(duì)藏東南色季拉山(海拔1990—2648 m)的研究發(fā)現(xiàn)孢子密度隨海拔上升顯著下降[7]??梢?,AM真菌的繁殖與產(chǎn)孢能力可能受不同環(huán)境中以海拔為主導(dǎo)因子的多種因素的綜合影響和作用。此外,本研究表明,不同海拔梯度高寒草原Glomus屬真菌的優(yōu)勢(shì)地位均非常明顯,這與內(nèi)蒙古東部典型草原[33]、阿根廷埃爾帕爾瑪國(guó)家公園草原等植被[34]的研究結(jié)果一致,說明Glomus屬真菌對(duì)高寒環(huán)境亦具有極強(qiáng)的適應(yīng)能力。
圖3 高寒草原樣方與環(huán)境變量的CCA排序 Fig.3 CCA ranking of alpine grassland plots and environmental variables in alpine grassland
關(guān)于海拔對(duì)H的影響,對(duì)西藏高原不同區(qū)域的研究亦有不同的結(jié)果。Gai 等[30]發(fā)現(xiàn),海拔最低的山地灌叢草原H較高寒草原、高寒草甸均呈大幅度降低,降幅分別達(dá)30.0%、26.9%,高海拔環(huán)境H大幅度提高;海拔差異很大的藏東南高山環(huán)境中,海拔梯度對(duì)H則沒有顯著影響[7]。高寒草原環(huán)境中,海拔4584—4880 m范圍H均無顯著差異,但至最高海拔顯著降低。這些不同的結(jié)果表明,環(huán)境條件不同,海拔梯度對(duì)H的影響亦不相同,這為不同區(qū)域生態(tài)系統(tǒng)變化的預(yù)測(cè)提供了理論依據(jù)。本研究中,AM真菌孢子密度對(duì)菌根侵染效率沒有顯著影響,而AM真菌種群組成與孢子相對(duì)多度的綜合影響對(duì)提高菌根侵染效率則具有顯著作用。
Kivlan 等[29]認(rèn)為僅在全球背景下,AM真菌群落相似度隨地理距離增加而下降,但在洲際尺度并無顯著差異。對(duì)內(nèi)蒙古非牧區(qū)、自然恢復(fù)牧區(qū)和過度放牧區(qū)的研究發(fā)現(xiàn),人為干擾是導(dǎo)致AM真菌群落相似度非常接近(Sorensen相似性系數(shù)在0.504—0.64之間)的根本原因[35]。從總體看,西藏高原不同海拔梯度高寒草原AM真菌群落的Sorensen相似性系數(shù)較高。AM真菌擴(kuò)散主要依靠菌絲的生長(zhǎng),但菌絲擴(kuò)散距離一般<10 m[36],自然擴(kuò)散(如風(fēng)和動(dòng)物取食)則可能使孢子的傳播距離加大至2 km之內(nèi),人為因素尤其是農(nóng)業(yè)是導(dǎo)致AM真菌擴(kuò)散的一個(gè)重要原因[36]。主要分布于青藏高原“無人區(qū)”的高寒草原尚處于原生狀態(tài),因此,受生境和擴(kuò)散限制的影響,高寒草原AM真菌群落的較高相似度應(yīng)主要在于不同海拔梯度中AM真菌的自然進(jìn)化。從單一植物(紫花針茅)看,不同海拔梯度中AM真菌群落相似度的較大差異亦反映了環(huán)境的影響。
影響AM真菌群落的多種因素沿海拔梯度所產(chǎn)生的相應(yīng)變化均可能影響AM真菌的功能和組成[7],其中溫度的影響至關(guān)重要[37]。高寒草原環(huán)境中,對(duì)AM真菌群落具有顯著影響的土壤pH值、有效磷和有機(jī)碳含量受海拔梯度影響??梢?,海拔主導(dǎo)下的水熱環(huán)境所導(dǎo)致的土壤環(huán)境變化的綜合作用影響著AM真菌的群落組成。因此,如果能進(jìn)一步了解西藏高寒草原環(huán)境,特別是水、熱梯度變化對(duì)AM真菌群落的影響,將有助于深入理解AM真菌沿海拔梯度變化的實(shí)質(zhì)。同時(shí),土壤pH值、有機(jī)碳對(duì)高寒草原AM真菌的繁殖與產(chǎn)孢能力也具有顯著影響,但影響趨勢(shì)與藏東南色季拉山完全不同[7],說明生境對(duì)AM真菌群落的重要影響。一些研究發(fā)現(xiàn),隨土壤pH降低AM真菌物種多樣性下降[38- 39],但孢子數(shù)量趨于增加[38],高寒草原環(huán)境中孢子密度、H值則均隨pH下降顯著降低。可見,不同環(huán)境中影響AM真菌群落、產(chǎn)孢與侵染能力的主導(dǎo)因素、多種因子的綜合作用存在差異,更為深入地了解AM真菌群落的地理分布對(duì)預(yù)測(cè)其對(duì)高寒草原的影響與作用十分重要。需要指出的是,要全面、深入地理解土壤環(huán)境對(duì)AM真菌群落的影響,尚需從氮等其它土壤養(yǎng)分,以及土壤質(zhì)地、土壤結(jié)構(gòu)等方面開展進(jìn)一步的探索。
高原寒旱環(huán)境下,相對(duì)較小的海拔變化對(duì)AM真菌群落組成和菌根侵染具有較為顯著的影響。其中,AM真菌種數(shù)、物種豐度、菌根侵染效應(yīng)(菌根侵染率、侵染強(qiáng)度和叢枝豐度)隨海拔上升在總體上均趨顯著下降,優(yōu)勢(shì)種、共有種種數(shù)及所占比例則呈相反趨勢(shì);AM真菌繁殖與產(chǎn)孢能力對(duì)海拔變化亦很敏感,并表現(xiàn)出較為典型的單峰分布格局;Shannon-Weiner 指數(shù)(H)隨海拔梯度的變化不甚明顯,僅至最高海拔4956 m時(shí)顯著下降;不同海拔梯度中極高的AM真菌Sorensen相似性系數(shù)則體現(xiàn)了共有種對(duì)群落構(gòu)成的重要影響,這為進(jìn)一步探尋具高效抗逆能力的AM真菌的影響與作用提供了重要信息。結(jié)果還表明,海拔主導(dǎo)下的土壤環(huán)境變化對(duì)AM真菌群落組成具有重要影響。
[1] Fierer N, Jackson R B. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(3): 626- 631.
[2] Zinger L, Lejon D P H, Baptist F, Bouasria A, Aubert S, Geremia R A, Choler P. Contrasting diversity patterns of crenarchaeal, bacterial and fungal soil communities in an alpine landscape. PLoS ONE, 2011, 6(5): e19950.
[3] Martiny J B H, Bohannan B J M, Brown J H, Colwell R K, Fuhrman J A, Green J L, Claire Horner-Devine M, Kane M, Krumins J A, Kuske C R, Morin P J, Naeem S, ?vre?s L, Anna-Louise Reysenbach, Smith V H, Staley J T. Microbial biogeography: putting microorganisms on the map. Nature Reviews Microbiology, 2006, 4: 102- 112.
[4] Tang Z Y, Fang JY. A review on the elevational patterns of plant species diversity. Biodiversity Science, 2004, 12(1): 20- 28.
[5] Djukic I, Zehetner F, Mentler A, Gerzabek M H. Microbial community composition and activity in different Alpine vegetation zones. Soil Biology and Biochemistry, 2010, 42(2): 155- 161.
[6] Vandenkoornhuyse P, Ridgway K P, Watson I J, Fitter A H, Young J P W. Co- existing grass species have distinctive arbuscular mycorrhizal communities. Molecular Ecology, 2003, 12(11): 3085- 3095.
[7] Gai J P, Tian H, Yang F Y, Christie P, Li X L, Klironomosa J N. Arbuscular mycorrhizal fungal diversity along a Tibetan elevation gradient. Pedobiologia-international Journal of Soil Biology, 2012, 55(3): 145- 151.
[8] Korb J E, Johnson N C, Covington W W. Arbuscular mycorrhizal propagule densities respond rapidly to ponderosa pine restoration treatments. Journal of Applied Ecology, 2003, 40(1): 101- 110.
[9] Tsuyuzaki S, Hase A, Niinuma H. Distribution of different mycorrhizal classes on Mount Koma, Northern Japan. Mycorrhiza, 2005, 15(2): 93- 100.
[10] Bryant J A, Lamanna C, Morlon H, Kerkhoff A J, Enquist B J, Green J L. Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(1): 11505- 11511.
[11] Margesin R, Jud M, Tscherko D, Schinner F. Microbial communities and activities in alpine and subalpine soils. FEMS Microbiology Ecology, 2009, 67(2): 208- 218.
[12] Rillig M C. Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecology Letters, 2004, 7(8): 740- 754.
[13] van der Heijden M G A, Wiemken A, Sanders I R. Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-ocurring plant. New Phytologist, 2003, 157(3): 569- 578.
[14] van der Heijden M G A, Bardgett R D, van Straalen N M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 2008, 11(3): 296- 310.
[15] Chaudhary V B, Lau M K, Johnson N C. Macroecology of Microbes-Biogeography of the Glomeromycota. // Vama A. Mycorrhiza. Berlin: Springer-Verlag, 2008: 529- 563.
[16] Sanders I R. Plant and arbuscular mycorrhizal fungal diversity-are we looking at the relevant levels of diversity and are we using the right techniques?. New Phytologist, 2004, 164(3): 415- 418.
[17] Fisher M A, Fule P Z. Changes in forest vegetation and arbuscular mycorrhizae along a steep elevation gradient in Arizona. Forest Ecology and Management, 2004, 200(1- 3): 293- 311.
[18] Chaurasia B, Pandey A, Palni L M S. Distribution, colonization and diversity of arbuscular mycorrhizal fungi associated with central Himalayan rhododendrons. Forest Ecology and Management, 2005, 207(3): 315- 324.
[19] Shi Z Y, Chen Z C, Zhang L Y, Feng G, Christie P, Tian C Y, Li X L. Diversity and zonal distribution of arbuscular mycorrhizal fungi on the northern slopes of the Tianshan Mountains. Science in China Series D: Earth Sciences, 2007, 50(1): 135- 141.
[20] Schmidt S K, Sobieniak-Wiseman L C, Kageyama S A, Halloy S R P, Schadt C W. Mycorrhizal and dark-septate fungi in plant roots above 4270 meters elevation in the Andes and Rocky Mountains. Arctic, Antarctic, and Alpine Research, 2008, 40(3): 576- 583.
[21] Lugo M A, Ferrero M, Menoyo E, Estévez M C, Sieriz F, Anton A. Arbuscular mycorrhizal fungi and rhizospheric bacteria diversity along an altitudinal gradient in South American Puna Grassland. Microbial Ecology, 2008, 55(4): 705- 713.
[22] 西藏自治區(qū)土地管理局. 西藏自治區(qū)土壤資源. 北京: 科學(xué)出版社, 1994: 51- 153.
[23] 向陽. 西藏國(guó)土資源. 拉薩: 西藏人民出版社, 1998: 11- 12.
[24] Trouvelot A, Kough J L, Gianinazzi-Pcarson V. Mesure Dutaux de Mycorrhization VA dun Systeme Radiculaire. Recherche de Methodes destimation ayant une signification functionnelle // Gianinazzi-Pearson V, Gianinazzi S. Physiological and Genetic Aspects of Mycorrhizae. Paris: INRA, 1986: 217- 221.
[25] Singh B K, Bardgett R D, Smith P, Reay D S. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nature Reviews Microbiology, 2010, 8(11): 779- 790.
[26] Venter J C, Remington K, Heidelberg J F, Halpern A L, Rusch D, Eisen J A, Wu D Y, Paulsen I, Nelson K E, Nelson W, Fouts D E, Levy S, Knap A H, Lomas M W, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers Y H, Smith H O. Environmental genome shotgun sequencing of the Sargasso Sea. Science, 2004, 304(5667): 66- 74.
[27] Fierer N. Microbial biogeography: patterns in microbial diversity across space and time // Zengler K. Accessing Uncultivated Microorganisms: From the Environment to Organisms and Genomes and Back. Washington DC: ASM Press, 2008: 95- 115.
[28] Johnson N C, Wilson G W T, Bowker M A, ilson J A, Miller R M. Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(5): 2093- 2098.
[29] Kivlin S N, Hawkes C V, Treseder K K. Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 2011, 43(11): 2294- 2303.
[30] Gai J P, Christie P, Cai X B, Fan J Q, Zhang J L, Feng G, Li X L. Occurrence and distribution of arbuscular mycorrhizal fungal species in three types of grassland community of the Tibetan Plateau. Ecological Research, 2009, 24(6): 1345- 1350.
[31] 劉潤(rùn)進(jìn), 焦惠, 李巖, 李敏, 朱新產(chǎn). 叢枝菌根真菌物種多樣性研究進(jìn)展. 應(yīng)用生態(tài)學(xué)報(bào), 2009, 20(9): 2301- 2307.
[32] Clapp J P, Young J P W, Merryweather J W, Fitter A H. Diversity of fungal symbionts in arbuscular mycorrhizae from a natural community. New Phytologist, 1995, 130(2): 259- 265.
[33] Tian H, Gai J P, Zhang J L, Christie P, Li X L. Arbuscular mycorrhizal fungi associated with wild forage plants in typical steppe of eastern Inner Mongolia. European Journal of Soil Biology, 2009, 45(4): 321- 327.
[34] Velázquez S, Cabello M. Occurrence and diversity of arbuscular mycorrhizal fungi in trap cultures from El Palmar National Park soils. European Journal of Soil Biology, 2011, 47(4): 230- 235.
[35] Su Y Y, Guo L D. Arbuscular mycorrhizal fungi in non-grazed, restored and over-grazed grassland in the Inner Mongolia steppe. Mycorrhiza, 2007, 17(8): 689- 693.
[36] Mangan S A, Adler G H. Consumption of arbuscular mycorrhizal fungi by terrestrial and arboreal small mammals in a Panamanian cloud forest. Journal of Mammalogy, 2000, 81(2): 563- 570.
[37] Koske R E, Gemma J N. Mycorrhizae and succession in plantings of beachgrass in sand dunes. American Journal of Botany, 1997, 84(1): 118- 130.
[38] Coughlan A P, Dalpé Y, Lapointe L, Piché Y. Soil pH induced changes in root colonization, diversity, and reproduction of symbiotic arbuscular mycorrhizal fungi from healthy and declining maple forests. Canadian Journal of Forest Research, 2000, 30(10): 1543- 1554.
[39] Toljander J F, Santos-González J C, Tehler A, Finlay R D. Community analysis of arbuscular mycorrhizal fungi and bacteria in the maize mycorrhizosphere in a long-term fertilization trial. FEMS Microbiology Ecology, 2008, 65(2): 323- 338.
Changes of arbuscular mycorrhizal fungal community in an alpine grassland altitudinal gradient
PENG Yuelin, CAI Xiaobu*
AgriculturalandAnimalHusbandryCollegeofTibetUniversity,Linzhi860000,China
Current studies on the changes in arbuscular mycorrhizal (AM) fungi and root colonization across an altitudinal gradient have mainly focused on alpine environments; however, studies on prairie environments that have a larger area and smaller elevational gradient are markedly insufficient, which limits our understanding of the community composition of AM fungi and their roles across altitudinal gradients. Alpine grassland (mainly composed of cold-resistant and drought-tolerant perennial herbaceous plants), is the largest grassland with the most important ecological functions in the hinterland of the Qinghai-Tibet Plateau. The grassland is characterized by a high altitude (average altitude of 4500—5000 m), with a flat terrain and relatively low elevational change. Therefore, the study of changes in the AM community composition and root colonization across an altitudinal gradient in this extreme environment with low elevational change provides important scientific data for predicting the roles and influences of microorganisms on alpine grasslands as well as understanding the impact of the alpine grassland environment on global environmental change. The present study targeted the alpine grassland in northern Tibet. We analyzed rhizosphere soil samples of colonized alpine grassland plants collected across varying altitudes (4584, 4628, 4744, 4880, and 4956 m) and identified AM fungal spores based on their morphology. The results showed the following: (1) Relatively few genera and species of AM fungi were found in alpine grassland. Four genera, includingAcaulospora,Claroideoglomus,Funneliformis, andGlomus, were observed in every altitudinal gradient. The genusPacisporawas not identified in samples collected at 4744 m altitude. The genusScutellosporawas not found at 4744 m or 4956 m altitude, whereas the genusRhizophaguswas only found at 4584 m altitude. (2) The abundance and diversity of AM fungal species significantly decreased as the altitude increased. No significant differences were observed in the Shannon-Weiner index (H) at 4584—4880 m altitude, while a significant decrease in the index was noted at the highest altitude. The numbers and proportions of dominant species showed significant positive correlations with the altitudinal gradient (FunneliformisgeosporumandClaroideoglomusclaroideumwere the dominant species at different altitudes). In alpine grassland, the proliferation and sporulation of AM fungi were sensitive to changes in altitude. Spore density of AM fungi was observed to be distributed in a typical unimodal manner with increasing altitude. Spore density significantly decreased at altitudes below or above 4744—4880 m. (3) The root colonization rate (F,r=-0.779,P< 0.01), intensity of root colonization (M,r=-0.775,P< 0.01), and arbuscular abundance (A,r=-0.556,P< 0.05) of targeted alpine grassland plants significantly decreased with increasing altitude, indicating that the efficiency of root colonization by AM fungi was restricted by the altitudinal gradient. Spore density had no significant effect onF,M, orA.F(r=0.940,P<0.01),M(r=0.714,P< 0.05), andA(r=0.694,P< 0.05) showed significant increases with increasing altitude. (4) The similarity of the alpine grassland AM fungal community (Sorensen similarity coefficient, 0.821—0.969) was higher at various altitudes, presenting an overall decreasing trend with increasing altitude, which reflects the influence of common species on the AM fungi community. (5) CCA analysis showed that pH, phosphorus, organic carbon, and altitude significantly influenced AM fungal community composition, but compared to the other variables, altitude exerted a higher and more significant impact on the AM fungal community. Thus, changes in soil conditions across an altitudinal gradient play an important role in AM fungal community composition.
altitudinal gradient; composition of AM fungal community; alpine grassland; Northern Tibetan plateau
國(guó)家自然科學(xué)基金(41161043)
2014- 04- 05;
日期:2015- 04- 20
10.5846/stxb201404050651
*通訊作者Corresponding author.E-mail: xbcai21@sina.com
彭岳林,蔡曉布.叢枝菌根真菌群落沿高寒草原海拔梯度的變化特征.生態(tài)學(xué)報(bào),2015,35(22):7475- 7484.
Peng Y L, Cai X B.Changes of arbuscular mycorrhizal fungal community in an alpine grassland altitudinal gradient.Acta Ecologica Sinica,2015,35(22):7475- 7484.