劉 梅, 鄭青松, 劉兆普, 郭世偉
(南京農(nóng)業(yè)大學(xué)資源與環(huán)境科學(xué)學(xué)院, 江蘇省海洋生物學(xué)重點(diǎn)實(shí)驗(yàn)室, 江蘇南京 210095)
鹽脅迫下氮素形態(tài)對(duì)油菜和水稻幼苗離子運(yùn)輸和分布的影響
劉 梅, 鄭青松, 劉兆普, 郭世偉*
(南京農(nóng)業(yè)大學(xué)資源與環(huán)境科學(xué)學(xué)院, 江蘇省海洋生物學(xué)重點(diǎn)實(shí)驗(yàn)室, 江蘇南京 210095)
油菜; 水稻; 氮素形態(tài); 鹽脅迫; 離子運(yùn)輸; 離子積累
土壤中鹽分過(guò)多會(huì)影響作物生長(zhǎng),并導(dǎo)致產(chǎn)量下降。鹽脅迫對(duì)植物的傷害作用主要是通過(guò)滲透脅迫、離子毒害、營(yíng)養(yǎng)失衡三個(gè)方面來(lái)實(shí)現(xiàn)的[1]。鹽脅迫引起的滲透脅迫對(duì)干物質(zhì)分配、細(xì)胞伸展、葉片光合作用等造成不利影響,抑制植物生長(zhǎng)[2]。植物在鹽漬條件下生長(zhǎng)會(huì)吸收大量的Na+,形成離子毒害,對(duì)植物代謝造成傷害[3-4]。植物具有避免鹽離子積累的機(jī)制,如將Na+儲(chǔ)存在液泡或排入質(zhì)外體[5],Na+從細(xì)胞質(zhì)排到細(xì)胞外和液泡能降低鹽離子對(duì)細(xì)胞的毒害作用[6],控制Na+的積累是植物耐鹽的重要生理過(guò)程[7]。
研究表明,只有水稻、蘆葦?shù)壬贁?shù)植物能夠在銨態(tài)氮作為單一氮源條件下生長(zhǎng)良好,大多數(shù)旱地植物的氮營(yíng)養(yǎng)以硝態(tài)氮為主[20]。因此,了解不同形態(tài)氮素營(yíng)養(yǎng)對(duì)作物在鹽脅迫下的響應(yīng)顯得尤為重要[21]。油菜是典型的喜硝植物,水稻是典型的喜銨植物。本文通過(guò)對(duì)油菜和水稻幼苗供應(yīng)不同形態(tài)氮素培養(yǎng)后進(jìn)行鹽脅迫處理,比較鹽脅迫對(duì)不同形態(tài)氮素營(yíng)養(yǎng)下油菜和水稻幼苗生長(zhǎng)、Na+和K+在不同組織中的積累和運(yùn)輸?shù)挠绊懀U述不同形態(tài)氮素營(yíng)養(yǎng)對(duì)兩種作物耐鹽機(jī)制的影響。
1.1 供試材料
油菜品種: 南鹽油1號(hào)(甘藍(lán)型油菜);水稻品種: 汕優(yōu)63(雜交秈稻)。
1.2 試驗(yàn)設(shè)計(jì)與處理
試驗(yàn)在南京農(nóng)業(yè)大學(xué)牌樓溫室實(shí)驗(yàn)基地進(jìn)行,白天室內(nèi)溫度為28_35℃,光合有效輻射為1000_1500 [μmol/(m2·s)]左右,光照時(shí)間每天10小時(shí)左右。
1.3 植株生物量的測(cè)定
樣品分地上部(油菜包括莖、葉片和葉柄;水稻包括莖和葉)和根系兩部分采集,先用自來(lái)水沖洗,再用去離子水清洗干凈,用吸水紙吸干表面水分后,于105℃烘箱中殺青30 min后,降溫至70_80℃烘至恒重,測(cè)定干重。
1.4 植株Na+和K+含量的測(cè)定
取0.05 g植株組織干樣,經(jīng)H2SO4-H2O2消煮,取過(guò)濾后的待測(cè)液5 mL置于50 mL容量瓶,用去離子水定容。待測(cè)樣品用火焰光度計(jì)(FP6410,上海)測(cè)定[24]。
1.5 植株Na+積累量的測(cè)定
植物根系(地上部)Na+積累量=根系(地上部)Na+濃度×根系(地上部)干重。
Na+傷害度(單位Na+積累量對(duì)植株根系(地上部)生物量的影響)=[對(duì)照植株根系(地上部)生物量-鹽處理植株根系(地上部)生物量)]/[(鹽處理植株根系(地上部)Na+積累量-對(duì)照植株根系(地上部)Na+積累量]
1.6 木質(zhì)部傷流液的收集及Na+和K+濃度的測(cè)定
收獲前一天進(jìn)行植株木質(zhì)部傷流液的收集。稱取0.1_0.2 g脫脂棉,在距根基2 cm處用手術(shù)刀片切斷莖稈,10 min后用潔凈的濾紙吸走斷莖處的組織液,以防韌皮部汁液的交叉污染,然后迅速將脫脂棉包在莖稈并使莖端面與其接觸,用保鮮膜包好,收集1 2小時(shí)(晚18: 00至次日早6: 00)[25]。用注射器將脫脂棉中汁液擠出后過(guò)濾置于試管中,待測(cè)樣品用火焰光度計(jì)(FP6410,上海)測(cè)定。
1.7 韌皮部汁液的收集及Na+和K+濃度的測(cè)定
收獲前一天進(jìn)行植株韌皮部汁液的收集。在距根基2 cm處用手術(shù)刀片切斷莖稈,將地上部浸泡在裝有30 mL的20 mmol/L LiOH-EDTA溶液的玻璃瓶(玻璃瓶空瓶稱重)中(用LiOH避免測(cè)定時(shí)陽(yáng)離子相互干擾)。每個(gè)容器和植物材料放置在密封容器中,黑暗中放置12 h(晚18: 00至次日早6: 00)獲得滲出物[26]。滲出液過(guò)濾后用火焰光度計(jì)(FP6410,上海)測(cè)定。
1.8 數(shù)據(jù)處理
采用SPSS軟件進(jìn)行相關(guān)分析和單因素方差(ANOVA)分析,用LSD多重檢驗(yàn)法對(duì)不同處理結(jié)果進(jìn)行顯著性檢驗(yàn)。
2.1 不同氮素形態(tài)及鹽脅迫對(duì)油菜和水稻生物量的影響
注(Note): 同列中不同字母表示差異顯著(P<0.05) Different letters in the same column indicate significant difference (P<0.05).
2.2 不同形態(tài)氮素營(yíng)養(yǎng)及鹽脅迫對(duì)油菜和水稻組織Na+和K+含量的影響
鹽脅迫條件下,硝營(yíng)養(yǎng)水稻莖和葉Na+含量顯著高于銨營(yíng)養(yǎng)水稻,根系Na+含量顯著低于銨營(yíng)養(yǎng)(水稻營(yíng)養(yǎng)液添加0.1 mmol/L Na2SiO3保證Si營(yíng)養(yǎng)供應(yīng)[27])。對(duì)照及鹽脅迫條件下,硝態(tài)氮營(yíng)養(yǎng)水稻根系K+含量高于銨營(yíng)養(yǎng);鹽脅迫下,硝態(tài)氮營(yíng)養(yǎng)水稻莖K+含量明顯下降,銨態(tài)氮營(yíng)養(yǎng)水稻幼苗不受影響;氮素形態(tài)及鹽脅迫對(duì)水稻葉片K+含量無(wú)顯著影響。
注(Note): 同列中不同字母表示差異顯著(P<0.05) Different letters in the same column indicate significant difference (P<0.05); “nd”—小于檢測(cè)限No detected.
2.3 不同形態(tài)氮素營(yíng)養(yǎng)及鹽脅迫對(duì)油菜和水稻Na+傷害度的影響
注(Note): 同列中不同字母表示差異顯著(P<0.05) Different letters in the same column indicate significant difference (P<0.05).
2.4 不同形態(tài)氮素營(yíng)養(yǎng)及鹽脅迫對(duì)油菜和水稻木質(zhì)部及韌皮部汁液Na+和K+濃度的影響
注(Note): 同列中不同字母表示差異顯著(P<0.05) Different letters in the same column indicate significant difference (P<0.05).
3.1 硝態(tài)氮處理植株比銨態(tài)氮處理植株更耐鹽
3.2 不同形態(tài)氮素營(yíng)養(yǎng)在鹽脅迫條件下對(duì)油菜和水稻Na+和K+運(yùn)輸及積累的影響
我們采用單位Na+傷害度表示植株對(duì)Na+的敏感程度,盡管硝營(yíng)養(yǎng)油菜和水稻根系及地上部Na+積累量高于銨營(yíng)養(yǎng)(表4),但是生物量減少幅度小于銨營(yíng)養(yǎng)植株(圖1)。因此,銨營(yíng)養(yǎng)油菜和水稻對(duì)Na+更敏感;油菜根系生長(zhǎng)受Na+影響大于地上部,水稻則是地上部生長(zhǎng)受抑制更顯著(圖1)。本研究中,油菜NaCl處理含量高達(dá)150 mM NaCl,屬于重度脅迫,根系直接與營(yíng)養(yǎng)液接觸,因此受到的Na+毒害也更直接。對(duì)于水稻而言,研究表明,50_100 mM NaCl處理不同耐鹽性水稻均顯示水稻幼苗地上部對(duì)鹽害的反應(yīng)比根系更敏感[23]。鹽脅迫條件下,兩種供氮形態(tài)油菜和水稻表現(xiàn)出不同的傷害部位,可能與其自身生長(zhǎng)模式、調(diào)節(jié)機(jī)制等有關(guān),具體原因有待進(jìn)一步研究。
綜上所述,硝營(yíng)養(yǎng)油菜和水稻木質(zhì)部-韌皮部對(duì)離子的調(diào)控能力更強(qiáng), Na+傷害度更小,因此供應(yīng)硝態(tài)氮植株比銨態(tài)氮更耐鹽。
[1] Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651-681.
[2] Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes[J]. Annual review of plant physiology, 1980, 31(1): 149-190.
[3] Marschner H. Mineral nutrition of higher plants [M]. London: Academic Press, 1995.
[4] Sibole J V, Montero E, Cabot Cetal. Role of sodium in the ABA-mediated long-term growth response of bean to salt stress[J]. Physiologia Plantarum, 1998, 104(3): 299-305.
[5] Glenn E P, Brown J J, Blumwald E. Salt tolerance and crop potential of halophytes[J]. Critical Reviews in Plant Sciences, 1999, 18(2): 227-255.
[6] Amthor J S. The role of maintenance respiration in plant growth[J]. Plant, Cell & Environment, 1984, 7(8): 561-569.
[7] Ashraf M, Wu L. Breeding for salinity tolerance in plants[J]. Critical Reviews in Plant Sciences, 1994, 13(1): 17-42.
[8] Grattan S R, Grieve C M. Mineral element acquisition and growth response of plants grown in saline environments[J]. Agriculture, Ecosystems & Environment, 1992, 38(4): 275-300.
[9] Kafkafi U, Valoras N, Letey J. Chloride interaction with nitrate and phosphate nutrition in tomato (LycopersiconesculentumL.)[J]. Journal of Plant Nutrition, 1982, 5(12): 1369-1385.
[10] Leidi E O, Silberbush M, Lips S H. Wheat growth as affected by nitrogen type, pH and salinity. I. Biomass production and mineral composition[J]. Journal of Plant Nutrition, 1991, 14(3): 235-246.
[11] Pessarakli M, Tucker T C. Ammonium (15N) metabolism in cotton under salt stress[J]. Journal of plant nutrition, 1985, 8(11): 1025-1045.
[12] Taylor A R, Bloom A J. Ammonium, nitrate, and proton fluxes along the maize root[J]. Plant, Cell & Environment, 1998, 21(12): 1255-1263.
[13] 陸景陵. 植物營(yíng)養(yǎng)學(xué)[M]. 北京: 中國(guó)農(nóng)業(yè)大學(xué)出版社, 2003. Lu J L. Plant nutrition [M]. Beijing: China Agricultural University Press, 2003.
[14] Haynes R J, Goh K M. Ammonium and nitrate nutrition of plants[J]. Biological Reviews, 1978, 53(4): 465-510.
[15] Alyemeni M N. Growth response ofVignaambacensisL. seedling to the interaction between nitrogen source and salt stress[J]. Pakistan Journal of Botany, 1997, 29(2): 323-330.
[16] Wilcox G E, Hoff J E, Jones C M. Ammonium reduction of calcium and magnesium content of tomato and sweet corn leaf tissue and influence on incidence of blossom end rot of tomato fruit[J]. Plant Disease, 1973,65(10): 821-822.
[17] Polizotto K R, Wilcox G E, Jones C M. Response of growth and mineral composition of potato to nitrate and ammonium nitrogen[J]. Journal of America Society for Horticultural Science, 1975, 100(2): 165-168.
[18] Speer M, Brune A, Kaiser W M. Replacement of nitrate by ammonium as the nitrogen source increases the salt sensitivity of pea plants. I. Ion concentrations in roots and leaves[J]. Plant, Cell & Environment, 1994, 17(11): 1215-1221.
[19] Botella M A, Martínez V, Nieves Metal. Effect of salinity on the growth and nitrogen uptake by wheat seedlings[J]. Journal of Plant Nutrition, 1997, 20(6): 793-804.
[20] 戴廷波, 曹衛(wèi)星, 李存東. 作物增銨營(yíng)養(yǎng)的生理效應(yīng)[J]. 植物生理學(xué)通訊, 1998, 34(6): 488-493. Dai T B, Cao W X, Li C D. Physiological influence of enhanced ammonium nutrition on crop growth[J]. Plant Physiology Communications, 1998, 34(6): 488-493.
[21] Barker A V, Mills H A. Ammonium and nitrate nutrition of horticultural crops[J]. Horticultural Reviews, 1980, 2: 395-423.
[22] 楊瑛, 馬梅, 鄭青松, 等. 不同供氮形態(tài)下油菜幼苗對(duì)鹽脅迫的響應(yīng)[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2012, 18(5): 1229-1236. Yang Y, Ma M, Zheng Q Setal. Effect of different nitrogen forms on the response of canola plants to salt stress[J]. Plant Nutrition and Fertilizer Science, 2012, 18(5): 1229-1236.
[23] 嚴(yán)小龍, 鄭少玲, 連兆煌. 水稻耐鹽機(jī)理的研究Ⅰ. 不同基因型植株水平耐鹽性初步比較[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 1992,13(4): 6-11. Yan X L, Zheng S L, Lian Z H. Studies on the mechanisms of salt tolerance in riceⅠ.Comparisons of whole-plant salt tolerance among different genotypes[J]. Journal of South China Agricultural University (Natural Science Edition), 1992, 13(4): 6-11.
[24] Ghoulam C, Foursy A, Fares K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars[J]. Environmental and Experimental Botany, 2002, 47(1): 39-50.
[25] 宋娜, 郭世偉, 沈其榮. 不同氮素形態(tài)及水分脅迫對(duì)水稻苗期水分吸收, 光合作用及生長(zhǎng)的影響[J]. 植物學(xué)通報(bào), 2007, 24(4): 477-483. Song N, Guo S W, Shen Q R. Effects of different nitrogen forms and water stress on water absorption, photosynthesis and growth ofOryzasativaseedlings[J]. Chinese Bulletin of Botany. 2007,24(4): 477-48.
[26] Alfocea F P, Balibrea M E, Alarcón J Jetal. Composition of xylem and phloem exudates in relation to the salt-tolerance of domestic and wild tomato species[J]. Journal of Plant Physiology, 2000, 156(3): 367-374.
[27] 陳平平. 硅在水稻生活中的作用[J]. 生物學(xué)通報(bào), 1998, 33(8): 5-7. Chen P P. The role of silicon in rice life[J]. Biological Bulletin, 1998, 33(8): 5-7.
[28] Lewis O A M, Leidi E O, Lips S H. Effect of nitrogen source on growth response to salinity stress in maize and wheat[J]. New Phytologist, 1989, 111(2): 155-160.
[29] Ali A, Tucker T C, Thompson T L et al. Effects of salinity and mixed ammonium and nitrate nutrition on the growth and nitrogen utilization of barley[J]. Journal of Agronomy & Crop Science, 2001, (186), 223-228.
[30] Frechilla S, Lasa B, Ibarretxe Letal. Pea responses to saline stress is affected by the source of nitrogen nutrition (ammonium or nitrate)[J]. Plant Growth Regulation, 2001, 35(2): 171-179.
[31] Misra N, Gupta A K. Effect of salinity and different nitrogen sources on the activity of antioxidant enzymes and indole alkaloid content inCatharanthusroseusseedlings[J]. Journal of Plant Physiology, 2006, 163(1): 11-18.
[32] Rios-Gonzalez K, Erdei L, Lips S H. The activity of antioxidant enzymes in maize and sunflower seedlings as affected by salinity and different nitrogen sources[J]. Plant Science, 2002, 162(6): 923-930.
[33] Speer M, Kaiser W M. Ion relations of symplastic and apoplastic space in leaves fromSpinaciaoleraceaL. andPisumsativumL. under salinity[J]. Plant Physiology, 1991, 97(3): 990-997.
[34] Zheng Q, Liu L, Liu Zetal. Comparison of the response of ion distribution in the tissues and cells of the succulent plantsAloeveraandSalicorniaeuropaeato saline stress[J]. Journal of Plant Nutrition and Soil Science, 2009, 172(6): 875-883.
[35] Ashraf M, Sultana R. Combination effect of NaCl salinity and nitrogen form on mineral composition of sunflower plants[J]. Biologia Plantarum, 2000, 43(4): 615-619.
[36] Davenport R, James R A, Zakrisson-Plogander Aetal. Control of sodium transport in durum wheat[J]. Plant Physiology, 2005, 137(3): 807-818.
[37] Shabala S, Cuin T A. Potassium transport and plant salt tolerance[J]. Physiologia Plantarum, 2008, 133(4): 651-669.
[38] Munns R. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses[J]. Plant, Cell & Environment, 1993, 16(1): 15-24.
[39] Apse M P, Aharon G S, Snedden W Aetal. Salt tolerance conferred by overexpression of a vacuolar Na+/H+antiport in Arabidopsis[J]. Science, 1999, 285(5431): 1256-1258.
[40] Zhang H X, Blumwald E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit[J]. Nature Biotechnology, 2001, 19(8): 765-768.
[41] Berthomieu P, Conéjéro G, Nublat Aetal. Functional analysis of AtHKT1 in Arabidopsis shows that Na+recirculation by the phloem is crucial for salt tolerance[J]. The EMBO Journal, 2003, 22(9): 2004-2014.
[42] Munns R. Comparative physiology of salt and water stress[J]. Plant, Cell & Environment, 2002, 25(2): 239-250.
Effects of nitrogen forms on transport and accumulation of ions in canola (B.napusL.) and rice (OryzasativaL.) under saline stress
LIU Mei, ZHENG Qing-song, LIU Zhao-pu, GUO Shi-wei*
(CollegeofResourcesandEnvironmentalSciences,NanjingAgriculturalUniversity/JiangsuProvincialKeyLaboratoryofMarineBiologyNanjing210095,China)
canola; rice; nitrogen form; salt stress; ions transport; ions accumulation
2014-03-07 接受日期: 2014-04-15
國(guó)家支撐項(xiàng)目(2011BAD13B09)資助。
劉梅(1989—),女,重慶人,碩士研究生,主要從事植物逆境營(yíng)養(yǎng)生理生態(tài)研究。E-mail: 2011103003@njau.edu.cn * 通信作者 E-mail: sguo@njau.edu.cn
S143.1+9; S565.4
A
1008-505X(2015)01-0181-09