亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        固有免疫細胞對結核分枝桿菌的免疫識別

        2015-01-22 09:15:55吳小娥陳晶宋淑霞
        中國防癆雜志 2015年2期
        關鍵詞:凝集素易感性結構域

        吳小娥 陳晶 宋淑霞

        ?

        ·綜述·

        固有免疫細胞對結核分枝桿菌的免疫識別

        吳小娥 陳晶 宋淑霞

        由結核分枝桿菌感染引起的肺結核已成為非常重要的健康問題,全球每年因結核病死亡的患者超過200萬例。機體的固有免疫在抵抗結核分枝桿菌感染過程中發(fā)揮了重要作用。多種模式識別受體參與了固有免疫細胞對結核分枝桿菌的識別,包括Toll樣受體(TLR)、C-型凝集素受體及核苷酸結合寡聚化結構域(NOD)樣受體。在Toll樣受體中,TLR2、TLR4及TLR9及其接頭分子髓樣分化因子(MyD88)在啟動針對結核分枝桿菌感染的免疫應答方面發(fā)揮了主要作用。另外,其他的模式識別受體,如NOD2、樹突狀細胞相關性C型植物血凝素-1(Dectin-1)、甘露糖受體及樹突狀細胞表面特異性C型凝集素-細胞間黏附分子3結合非整合素分子(DC-SIGN)也參與對結核分枝桿菌的識別。流行病學研究發(fā)現(xiàn),模式識別受體基因突變影響機體對結核分枝桿菌感染的易感性。因此,深入研究模式識別受體對結核分枝桿菌的識別特點及基因多態(tài)性分布特征,對加深了解結核分枝桿菌致病特點、設計新型抗結核的免疫制劑可提供理論支持。

        受體, 模式識別; 結核分枝桿菌; 免疫, 細胞

        肺結核是一個主要的公共衛(wèi)生難題,每年新增患者約1000萬例,導致約200萬例死亡。但是在估算的最初感染了Mtb的200萬例患者中,僅有5%~10%的患者發(fā)展為有癥狀的結核病[1]。

        為何有些人感染Mtb后可發(fā)展成活動性結核病,而其他人卻沒有,目前雖尚不完全了解,但參與固有免疫的相關基因變異在肺結核易感性中起著重要作用。機體對Mtb免疫應答的第一步是識別分枝桿菌,其后是啟動適應性免疫應答。筆者重點介紹機體固有免疫細胞對Mtb的識別,同時注重固有免疫細胞識別Mtb后細胞內(nèi)信號在識別Mtb中的作用及機制。最后,討論相關免疫分子基因變異在結核病的易感性中所起的作用。

        天然免疫應答的啟動由固有免疫細胞模式識別受體(PRRs)對Mtb的病原體相關模式分子(PAMPs)的識別開始[2]。Mtb細胞壁的成分是免疫細胞對其識別的基礎。

        對Mtb識別的實驗研究

        宿主免疫細胞對Mtb的識別作用是復雜的,盡管已經(jīng)做了廣泛的研究,但仍未完全闡明其機理。

        一、Toll樣受體(TLRs)

        TLRs是哺乳動物中由胞漿內(nèi)模式識別受體(pattern recognition receptors, PRRs)家族中13個組成成員之一。TLRs是在細胞膜的表面或者在主要免疫細胞包括巨噬細胞和樹突狀細胞(DCs)的胞吞小泡的膜上表達。盡管Mtb被TLRs識別可導致吞噬細胞的激活,但TLRs與Mtb結合后并不會馬上引起吞噬細胞對Mtb的攝取。在TLRs識別了特異性分枝桿菌結構后,信號通道被觸發(fā),其中接頭分子髓樣分化因子(myeloid differentiation factor 88,MyD88)起著重要的作用[3]。隨后,在信號級聯(lián)中招募白細胞介素-1受體相關激酶(IL-1 receptor associated kinase,IRAK)、腫瘤壞死因子受體相關因子6(TNF receptor-associated factor 6,TRAF6)、轉(zhuǎn)化生長因子β激活性激酶(TGF β-activated kinase 1,TAK1)和絲裂原活化蛋白激酶(mitogen-activated protein kinases,MAPKs),導致轉(zhuǎn)錄因子[如核因子-κB(nuclear factor kappa B,NF-κB)]的核轉(zhuǎn)運[4]。其將引起參與激活天然宿主防御的基因的轉(zhuǎn)錄、主要是前炎性細胞因子,如TNF-α、IL-1β、IL-12以及一氧化氮[5]。

        有關TLRs在宿主防御分枝桿菌感染中的作用,有人提出多個TLRs的缺失對于揭示這些抗分枝桿菌防御受體所起的作用是有必要的。實際上,TLR2和TLR9雙重敲除的小鼠與2個單獨TLR敲除的小鼠相比,前者不僅IL-12和干擾素-γ(interferon-γ,IFN-γ)的產(chǎn)生更少,并且這些小鼠即使是在感染了較低接種量的Mtb時也會較早被感染發(fā)病[6]。

        二、核苷酸結合寡聚化結構域(nucleotide-binding oligomerization domain,NOD)樣受體(NOD-like receptors,NLRs)

        NLRs蛋白與植物抗病因子R蛋白和凋亡蛋白酶激活因子1(apoptosis protease-activating factor-1,Apaf1)家族高度同源,由超過20個具有保守結構的成員組成。該分子的核心是由核苷酸結合結構域形成的,叫做NACHT [NAIP(neuronal apoptosis inhibitor protein)、CⅡTA[major histocompatibility complex(MHC, 主要組織相容性復合體) class Ⅱ transcription activator]、HET-E(incompatibility locus protein from Podospora anserina,來自于柄孢霉的不相容位點蛋白)、和TP-1(telomerase-associated protein,端粒酶相關蛋白)][7]或NOD。C端部分由一系列富含亮氨酸的重復區(qū)組成,可以識別病原體的病原相關分子模式(pathogen-associated molecular patterns,PAMPs)和啟動該分子的激活。分子的N段部分含有一個半胱天冬酶活化募集結構域(caspase-activiting and recruitment domain,CARD)(效應結構域),主要參與蛋白間的相互作用[8]。含CARD的NLRs如NOD1和NOD2被認為可以形成低聚物,然后經(jīng)CARD-CARD相互作用招募受體相互作用蛋白2(receptor interacting protein 2,RIP2),其可以通過CARD-CARD相互作用導致NF-κB的募集[9]。

        三、C型凝集素

        C型凝集素是一個參與病原體多聚糖結構識別的PRRs家族。甘露糖受體(mannose receptor,MR;CD206)由8個連接的碳水化合物識別結構域和一個富含半胱氨酸的結構域組成。MR在肺泡巨噬細胞中高度表達[10]。分枝桿菌通過MR刺激導致抗炎性細胞因子IL-4和IL-13的產(chǎn)生,抑制IL-12的產(chǎn)生,且損傷氧化反應[11-12]。Mtb的脂阿拉伯甘露糖(lipoarabinomannan,MAN-LAM)和其他Mtb細胞壁的主要成分,如磷脂酰肌醇(phosphatidylinositol mannosides,PIMs)是分枝桿菌上可被肺泡巨噬細胞MR識別的天然配體。此外,將Mtb結合到MR上可誘導吞噬作用,但是卻限制了吞噬小體-溶酶體的融合[13-15]。

        Mtb菌株間的甘露糖基化水平的差異同樣有助于識別C型凝集素。Torrelles等[16]的實驗顯示,Mtb菌株間毒力的差異可能跟細胞壁上Man-LAM的表達有關。毒性Mtb菌株表面甘露糖基化更少,不能通過MR進行吞噬作用,但可依賴補體受體3(complement receptor 3,CR3)調(diào)理作用進行對病原菌的識別和吞噬作用。這些菌株具有更多的顯示其毒力的其他細胞膜成分(如磷酸化糖脂和三?;视?[17-18]。這些細胞成分調(diào)節(jié)對細胞因子的反應,并使其在細胞內(nèi)快速生長并造成顯著的組織損傷[19-20]。相反,大量糖基化的Mtb菌株,如實驗室菌株H37Rv,利用MR受體侵入巨噬細胞,使其在巨噬細胞內(nèi)快速增殖,并產(chǎn)生抗炎性細胞因子,Mtb借此逃避宿主的免疫攻擊,并在巨噬細胞內(nèi)持續(xù)存活,隨后進入休眠狀態(tài)[21],因此,此類型的識別可能導致潛伏感染[16]。分枝桿菌并非都如此,如完全缺乏表面甘露糖的突變的牛分枝桿菌菌株,產(chǎn)生的細胞因子與非突變菌株沒有區(qū)別[22]。

        四、樹突狀細胞表面特異性C型凝集素-細胞間黏附分子3結合非整合素分子(DC-SIGN;CD209)

        DC-SIGN(CD209)在Mtb-CD相互作用中起著重要的作用。該受體主要在樹突狀細胞(dendritic cell,DCs)上表達并主要作為PRR和黏附受體,并參與DC的遷移和DC-T細胞相互作用[23-24]。DC-SIGN的碳水化合物識別結構域可識別Man-LAM和脂質(zhì)甘露聚糖,Man-LAM的量可以決定結合強度[12]。最近有學者認為α-葡聚糖(一種主導的莢膜多糖)也是DC-SIGN的配體[25]。分枝桿菌通過DC-SIGN感染DC后,一方面促進DC的成熟;另一方面,誘導IL-10的產(chǎn)生[12]。近期研究表明,DC-SIGN經(jīng)Raf-1誘導NF-κ B亞單位p65的乙酰化而發(fā)揮其免疫抑制效應,但該效應僅發(fā)生在TLR刺激時才會發(fā)生[26]。

        五、樹突狀細胞相關性C型植物血凝素-1(dendritic cell-associated C-type lectin-1, Dectin-1)

        Dectin-1是一種具有細胞外碳水化合物識別結構域和細胞內(nèi)免疫受體酪氨酸活化基序(immunoreceptor tyrosine-based activation motif,ITAM)結構域的受體。該受體主要在巨噬細胞、DCs、中性粒細胞和T細胞上表達。Dectin-1主要識別出現(xiàn)在真菌病原中的β-葡聚糖,但是有人認為其在Mtb識別中同樣起著重要的作用。盡管Mtb的一些菌株在細胞表面表達α葡聚糖[27]作為Dectin-1的配體,但Dectin-1識別的確切PAMP尚不清楚。當小鼠骨髓的巨噬細胞感染有毒力或者無毒力的分枝桿菌后,可以不依賴Dectin-1方式或者Dectin-1依賴方式產(chǎn)生TNF-α 和IL-6[28]。多個實驗證實在識別真菌病原體時TLR2和Dectin-1間有協(xié)同效應[29-30],但是對分枝桿菌的識別是否有同樣的結果,目前還沒有明確的證據(jù)。最近一項報道顯示,Dectin-1可以在不依賴于TLR2的情況下識別Mtb,并誘導Mtb特異性的Th1和Th17免疫應答[31]。

        對Mtb識別的免疫遺傳研究

        為了全面了解PRRs在Mtb防御中所起的作用,體外和動物實驗的結果需要進一步臨床實驗的驗證。對Mtb的易感性或者耐受性相關基因已經(jīng)進行了廣泛的研究,并發(fā)現(xiàn)了幾個重要的Mtb易感性候選基因[32-33]。

        TLR2基因位于染色體4q32,由2個非編碼外顯子和一個編碼外顯子組成[34]。人類TLR2基因的單核苷酸多態(tài)性(single nucleotide polymorphisms, SNPs)已報道的有175個之多。據(jù)報道土耳其人群中Arg753Gln和結核病的易感性間有關聯(lián)[35],但同樣的結果在2個亞洲人群中并未觀察到,因為亞洲人群中缺乏這種特定的多態(tài)性[36-37]。Arg753Gln似乎僅出現(xiàn)在白種人中,而東亞人群中僅為0.00%~0.49%[37]。在突尼斯人群中,Arg677Trp與結核病的易感性相關[38],但是該結果因一個假基因的發(fā)現(xiàn)(該SNP似乎位于其中)而受到了質(zhì)疑[39]。在越南人群體中,TLR2的基因型597CC與結核病的易感性有相互關系,尤其是在由特定Mtb基因型家族(“北京基因型”)引起的感染[40-41]。 但中國漢族人597CC基因型與結核病的易感性沒有關系[42]。在肺結核和非結核分枝桿菌肺部感染的韓國人群中[43-44],在TLR2基因的第2個內(nèi)含子內(nèi)發(fā)現(xiàn)了1個高度多態(tài)性的鳥嘌呤-胸腺嘧啶重復結構,該重復結構域啟動子活性和CD14+外周血單個核細胞(peripheral blood mononuclear cells,PBMCs)中TLR2的表達(重復越短,啟動子活性越弱,TLR2的表達量越低)相關。但是這些結果在臺灣人群中未發(fā)現(xiàn)[45]。最近的一項研究發(fā)現(xiàn),一個似乎可以影響TLR2表達的基因型變異是-196到-174插入和(或)缺失,該基因變異與結核病的易感性相關,但另外一個實驗顯示其可能只對全身性癥狀的發(fā)展有影響[46]。其他的與結核病易感性有關的TLR2基因多態(tài)性的研究很多,但均需要進一步證實。

        由于TLR1和TLR6可以與TLR2形成異二聚物,這些受體中的SNPs可能同樣會影響TLR2信號系統(tǒng)。其中一個例子就是TLR1中的Ile602SerSNP,其可能會導致異常的TLR1細胞運輸,細胞表面沒有功能性的TLR1,也可能會影響對分枝桿菌的識別[47]。602I變異在感染了Mtb的非洲裔美國人中過度表達[48]。除此之外,TLR6 SNPsSer249Pro和Thr361Thr 與Mtb-誘導的細胞因子產(chǎn)生有一定的相關性[49]。

        另對TLR4和TLR8的研究顯示,該基因與結核病易感性沒有相關性。TLR4Asp299GlySNP表現(xiàn)出在HIV陽性的白人和坦桑尼亞人中與結核病有相關性,但是在岡比亞人中沒有[50]。TLR8與各種PAMPs的識別相關,但是在一個印度尼西亞的免疫遺傳學試驗中,位于X染色體上的TLR8基因,是惟一顯示出與結核病相關的基因。這些結果需要進一步通過實驗來證實。

        除PRR之外,在TLR信號通道中的SNPs也可能會影響Mtb的易感性。Khor等[51]提出在編碼接頭蛋白TIRAP的基因中,西亞人Ser180LeuSNP對結核病易感,盡管該突變等位基因的頻率極低。但是這一相關性并未在一個包括了來自加納、俄羅斯和印度尼西亞的9000例個體的試驗中得到證實[52]。考慮到其他對于Mtb識別很重要的PRRs,位于樹突狀細胞表面特異性C型凝集素-細胞間黏附分子3結合非整合素分子(DC-SIGN)啟動子區(qū)域的871G和336A變異跟南非患者群體的抗肺結核保護力相關[53]。但是這一發(fā)現(xiàn)并未在突尼斯人群中證實[54],而且后來一個實驗甚至表現(xiàn)出相反方面的相關性(336G的保護效應)[55]。此外,DC-SIGN的頸部區(qū)域的基因變異(其可支持碳水化合物識別結構域)并未表現(xiàn)出與肺結核易感性間的關系[53]。

        展 望

        雖然有關機體對Mtb識別的研究已有了重要進展,但主要集中在體外實驗和動物實驗。體外實驗和動物實驗與臨床研究存在一定的差異,因為不同來源的細胞PRRs的優(yōu)先表達可能不同;另外,體外實驗中一般只考慮一個特定的受體,而體內(nèi)的情況是多個不同受體的協(xié)同或協(xié)調(diào)作用。在體內(nèi)動物試驗中,其不足之處是最常用的小鼠結核病模型不能代表人類的結核??;小鼠結核病模型中并不能形成肉芽腫,而肉芽腫的形成是該疾病潛伏期中至關重要的一步。與人體結核病更相近的大鼠和猴子模型用的很少。因此,有關宿主對Mtb識別的分子機制仍需進一步研究。

        [1] World Health Organization. Global tuberculosis control-epidemiology, strategy, financing. Geneva: World Health Organization,2013.

        [2] Akira S, Takeda K, Kaisho T. Toll-like receptors:critical proteins linking innate and acquired immunity. Nat Immunol, 2001, 2(8):675-680.

        [3] Underhill DM, Ozinsky A, Smith KD, et al.Toll-like receptor-2 ediates mycobacteria-induced proinflammatory signaling in macrophages. Proc Natl Acad Sci U S A, 1999,96(25):14459-14463.

        [4] Negishi H, Yanai H, Nakajima A, et al. Cross-interference of RLR and TLR signaling pathways modulates antibacterial T cell responses. Nat Immunol, 2012, 13(7):659-666.

        [5] Kleinnijenhuis J, Oosting M, Joosten LA,et al. Innate immune recognition ofMycobacteriumtuberculosis. Clin Dev Immunol, 2011,2011:405310.

        [6] Carvalho NB, Oliveira FS, Dur?es FV, et al. Toll-like receptor 9 is required for full host resistance toMycobacteriumaviuminfection but plays no role in induction of Th1 responses. Infect Immun, 2011,79(4):1638-1646.

        [7] Shi S, Nathan C, Schnappinger D, et al. MyD88 primes macrophages for full-scale activation by interferon-gamma yet mediates few responses toMycobacteriumtuberculosis. J Exp Med,2003, 198(7): 987-997.

        [8] Mortaz E, Adcock IM, Tabarsi P, et al. Interaction of pattern recognition receptors withMycobacteriumtuberculosis. J Clin Immunol, 2014. [Epub ahead of print]

        [9] Jiang C, Lin X. Regulation of NF-κB by the CARD proteins. Immunol Rev, 2012, 246(1):141-153.

        [10] Gordon S. Alternative activation of macrophages. Nat Rev Immunol, 2003, 3(1): 23-35.

        [11] Nigou J, Zelle-Rieser C, Gilleron M, et al. Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor. J Immunol, 2001, 166(12): 7477-7485.

        [12] Ehlers S. DC-SIGN and mannosylated surface structures ofMycobacteriumtuberculosis: a deceptive liaison. Eur J Cell Biol, 2010,89(1):95-101.

        [13] Vergne I, Chua J,Deretic V. Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/calmodulin-PI3K hVPS34 cascade. J Exp Med, 2003, 198(4): 653-659.

        [14] Hmama Z, Sendide K, Talal A,et al. Quantitative analysis of phagolysosome fusion in intact cells: inhibition by mycobacterial lipoarabinomannan and rescue by an 1 alpha,25-dihydroxyvitamin D3- phosphoinositide 3-kinase pathway. J Cell Sci, 2004,117(Pt 10): 2131-2140.

        [15] Sweet L, Singh PP, Azad AK, et al. Mannose receptor-dependent delay in phagosome maturation byMycobacteriumaviumglycopeptidolipids. Infect Immun, 2010,78(1):518-526.

        [16] Torrelles JB, Schlesinger LS. Diversity inMycobacteriumtuberculosismannosylated cell wall determinants impacts adaptation to the host. Tuberculosis(Edinb), 2010, 90(2): 84-93.

        [17] Reed MB, Domenech P, Manca C, et al. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature, 2004, 431(7004): 84-87.

        [18] Reed MB, Gagneux S, Deriemer K,et al. The W-Beijing lineage ofMycobacteriumtuberculosisoverproduces triglycerides and has the DosR dormancy regulon constitutively upregulated. J Bacteriol, 2007,189(7):2583-2589.

        [19] Ordway D, Henao-Tamayo M, Harton M, et al. The hypervirulentMycobacteriumtuberculosisstrain HN878 induces a potent TH1 response followed by rapid down-regulation. J Immunol, 2007,179(1):522-531.

        [20] Hernández-Pando R, Marquina-Castillo B, Barrios-Payán J, et al. Use of mouse models to study the variability in virulence associated with specific genotypic lineages ofMycobacteriumtuberculosis. Infect Genet Evol, 2012,12(4):725-731.

        [21] 姚楠, 張萬江. 結核分枝桿菌的休眠機制研究進展. 中國防癆雜志, 2011, 33(11): 766-768.

        [22] Appelmelk BJ, den Dunnen J, Driessen NN, et al. The mannose cap of mycobacterial lipoarabinomannan does not dominate the Mycobacterium-host interaction. Cell Microbiol, 2008, 10(4): 930-944.

        [23] Geijtenbeek TB, Torensma R, van Vliet SJ, et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell, 2000, 100(5): 575-585.

        [24] Geijtenbeek TB, Krooshoop DJ, Bleijs DA, et al. DC-SIGN- ICAM-2 interaction mediates dendritic cell trafficking. Nat Immunol, 2000,1(4): 353-357.

        [25] Geurtsen J, Chedammi S, Mesters J, et al. Identification of mycobacterial alpha-glucan as a novel ligand for DC-SIGN: involvement of mycobacterial capsular polysaccharides in host immune modulation. J Immunol,2009,183(8): 5221-5231.

        [26] Gringhuis SI, den Dunnen J, Litjens M, et al. C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB. Immunity,2007, 26(5):605-616.

        [27] Dinadayala P, Lemassu A, Granovski P, et al. Revisiting the structure of the anti-neoplastic glucans ofMycobacteriumbovisBacille Calmette-Guérin: Structural analysis of the extracellular and boiling water extract-derived glucans of the vaccine substrains. J Biol Chem, 2004, 279(13):12369-12378.

        [28] Yadav M, Schorey JS. The beta-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood, 2006, 108(9): 3168-3175.

        [29] Gantner BN, Simmons RM, Canavera SJ, et al. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med, 2003,197(9): 1107-1117.

        [30] Brown GD, Herre J, Williams DL, et al. Dectin-1 mediates the biological effects of beta-glucans. J Exp Med,2003,197(9):1119-1124.

        [31] van de Veerdonk FL, Teirlinck AC, Kleinnijenhuis J, et al.Mycobacteriumtuberculosisinduces IL-17A responses through TLR4 and dectin-1 and is critically dependent on endogenous IL-1. J Leukoc Biol, 2010, 88(2): 227-232.

        [32] Hill AV. Aspects of genetic susceptibility to human infectious diseases. Annu Rev Genet, 2006,40: 469-486.

        [33] Bellamy R. Genome-wide approaches to identifying genetic factors in host susceptibility to tuberculosis. Microbes Infect, 2006,8(4):1119-1123.

        [34] Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature, 2000, 406(6797): 782-787.

        [35] Dalgic N, Tekin D, Kayaalti Z, et al. Arg753Gln polymorphism of the human Toll-like receptor 2 gene from infection to disease in pediatric tuberculosis. Hum Immunol, 2011,72(5):440-445.

        [36] Xue Y, Zhao ZQ, Wang HJ, et al. Toll-like receptors 2 and 4 gene polymorphisms in a southeastern Chinese population with tuberculosis. Int J Immunogenet, 2010, 37(2): 135-138.

        [37] Biswas D, Gupta SK, Sindhwani G, et al. TLR2 polymorphisms, Arg753Gln and Arg677Trp, are not associated with increased burden of tuberculosis in Indian patients. BMC Res Notes, 2009, 2: 162.

        [38] Ben-Ali M, Barbouche MR, Bousnina S, et al. Toll-like receptor 2 Arg677Trp polymorphism is associated with susceptibility to tuberculosis in Tunisian patients. Clin Diagn Lab Immunol,2004,11(3): 625-626.

        [39] Malhotra D, Relhan V, Reddy BS,et al. TLR2 Arg677Trp polymorphism in leprosy: revisited. Hum Genet, 2005,116(5): 413-415.

        [40] Thuong NT, Hawn TR, Thwaites GE, et al. A polymorphism in human TLR2 is associated with increased susceptibility to tuberculous meningitis. Genes Immun, 2007,8(5): 422-428.

        [41] Caws M, Thwaites G, Dunstan S, et al. The influence of host and bacterial genotype on the development of disseminated di-sease withMycobacteriumtuberculosis. PLoS Pathog, 2008, 4(3): e1000034.

        [42] 車南穎, 姜世聞, 高鐵杰, 等. 中國漢族人群Toll樣受體2基因多態(tài)性與肺結核易感性之間關系. 中國防癆雜志, 2011, 33(4): 204-208.

        [43] Yim JJ, Lee HW, Lee HS, et al. The association between microsatellite polymorphisms in intron Ⅱ of the human Toll-like receptor 2 gene and tuberculosis among Koreans. Genes Immun, 2006, 7(2): 150-155.

        [44] Yim JJ, Kim HJ, Kwon OJ, et al. Association between microsatellite polymorphisms in intron Ⅱ of the human Toll-like receptor 2 gene and nontuberculous mycobacterial lung disease in a Korean population. Hum Immunol, 2008, 69(9): 572-576.

        [45] Chen YC, Hsiao CC, Chen CJ, et al. Toll-like receptor 2 gene polymorphisms, pulmonary tuberculosis, and natural killer cell counts. BMC Med Genet,2010,11: 17.

        [46] Velez DR, Wejse C, Stryjewski ME, et al. Variants in toll-like receptors 2 and 9 influence susceptibility to pulmonary tuberculosis in Caucasians, African-Americans, and West Africans. Hum Genet,2010, 127(1): 65-73.

        [47] Johnson CM, Lyle EA, Omueti KO, et al. Cutting edge: a common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against leprosy. J Immunol, 2007, 178(12): 7520-7524.

        [48] Ma X, Liu Y, Gowen BB, et al. Full-exon resequencing reveals toll-like receptor variants contribute to human susceptibility to tuberculosis disease. PLoS One, 2007, 2(12): e1318.

        [49] Shey MS, Randhawa AK, Bowmaker M, et al. Single nucleotide polymorphisms in toll-like receptor 6 are associated with altered lipopeptide- and mycobacteria-induced interleukin-6 secretion. Genes Immun, 2010, 11(7): 561-572.

        [50] Pulido I, Leal M, Genebat M, et al. The TLR4 ASP299GLY polymorphism is a risk factor for active tuberculosis in Caucasian HIV-infected patients. Curr HIV Res,2010, 8(3): 253-258.

        [51] Khor CC, Chapman SJ, Vannberg FO, et al. A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat Genet,2007,39(4): 523-528.

        [52] Nejentsev S, Thye T, Szeszko JS,et al. Analysis of association of the TIRAP (MAL) S180L variant and tuberculosis in three populations. Nat Genet,2008, 40(3): 261-262.

        [53] Barreiro LB, Neyrolles O, Babb CL,et al. Promoter variation in the DC-SIGN-encoding gene CD209 is associated with tuberculosis. PLoS Med,2006,3(2): e20.

        [54] Ben-Ali M, Barreiro LB, Chabbou A, et al. Promoter and neck region length variation of DC-SIGN is not associated with susceptibility to tuberculosis in Tunisian patients. Hum Immunol,2007, 68(11): 908-912.

        [55] Vannberg FO, Chapman SJ, Khor CC, et al. CD209 genetic polymorphism and tuberculosis disease. PLoS One, 2008, 3(1): e1388.

        (本文編輯:薛愛華)

        Innate immune recognition of Mycobacterium tuberculosis

        WU Xiao-e*,CHEN Jing,SONG Shu-xia.

        *The Second Ward of Cadre Ward,General Hospital of Chinese People Armed Police Forces,Beijing 100039,China

        SONG Shu-xia, Email:prosongsx@aliyun.com

        Tuberculosis (TB), caused byMycobacteriumtuberculosis(Mtb), is a major health problem, with over 2 million deaths each year in the world. Innate immunity plays an important role in the host defense against Mtb. Several classes of pattern recognition receptors (PPRs) expressed on innate immune cells are involved in the recognition of Mtb, including Toll-like receptors (TLRs), C-type lectin receptors (CLRs), and NOD-like receptors (NLRs). Among the TLR family, TLR2, TLR4, and TLR9 and their adaptor molecule MyD88 play a leading role in the initiation of the immune response against tuberculosis. In addition to TLRs, other PRRs such as NOD2, Dectin-1, Mannose receptor, and DC-SIGN are also involved in the recognition of Mtb. Human epidemiological studies reveal that genetic variation in genes encoding for PRRs in uences disease susceptibility. Therefore, to explore in depth on the recognition characteristics of PRRs and the distribution of gene polymorphism, does not only lead to a better understanding of the pathogenesis of tuberculosis but also may contribute to the design of novel immunotherapeutic strategies.

        Receptors, pattern recognition;Mycobacteriumtuberculosis; Immunity, cellular

        10.3969/j.issn.1000-6621.2015.02.014

        河北省科技支撐計劃項目(13277764D)

        100039 北京,武警總醫(yī)院干部病房二科(吳小娥);武警北京市總隊第二醫(yī)院骨科(陳晶);河北醫(yī)科大學免疫學教研室(宋淑霞)

        宋淑霞, Email:prosongsx@aliyun.com

        2014-07-09)

        猜你喜歡
        凝集素易感性結構域
        蛋白質(zhì)結構域劃分方法及在線服務綜述
        半乳糖凝集素-3與心力衰竭相關性
        重組綠豆BBI(6-33)結構域的抗腫瘤作用分析
        組蛋白甲基化酶Set2片段調(diào)控SET結構域催化活性的探討
        CD14啟動子-260C/T基因多態(tài)性與胃癌易感性的Meta分析
        α1抗胰蛋白酶基因多態(tài)性與肺癌易感性的研究
        TLR9和VDR基因多態(tài)性與結核病易感性的相關性分析
        半乳糖凝集素-3在心力衰竭中的研究進展
        泛素結合結構域與泛素化信號的識別
        Toll樣受體基因多態(tài)性與EBV感染相關胃癌的易感性
        免费人成黄页网站在线观看国产| 亚洲夫妻性生活免费视频| 粗大的内捧猛烈进出少妇| 国产精品无码一区二区三区免费| 在线综合亚洲欧洲综合网站| 午夜探花在线观看| 一区二区韩国福利网站| 日本熟妇视频在线中出| 日本一本免费一二区| 亚洲乱亚洲乱妇50p| 国产亚洲精品久久久久秋霞| 国产激情久久久久久熟女老人| av手机天堂在线观看| av网站免费在线浏览| 成人特黄a级毛片免费视频| 少妇高潮惨叫喷水在线观看| 国产精品偷伦免费观看的| 精品一区二区亚洲一二三区| 亚洲av色av成人噜噜噜| 伊人久久大香线蕉av不变影院| 乱子伦在线观看| yeyecao亚洲性夜夜综合久久| 午夜国产精品久久久久| 亚洲国产成人精品一区刚刚| 日韩熟女系列中文字幕| 超碰人人超碰人人| 日日躁夜夜躁狠狠躁超碰97| 手机AV片在线| 美女扒开内裤让我捅的视频| 99久久精品无码一区二区毛片| 午夜亚洲av永久无码精品| 欧美极品第一页| 欧美熟妇与小伙性欧美交| 东北老熟女被弄的嗷嗷叫高潮| 国产亚洲一本大道中文在线| 少妇人妻偷人精品一区二区| 最新精品国偷自产在线婷婷| 日本经典中文字幕人妻| 一区在线视频免费播放| 好看的欧美熟妇www在线| 国产精品一区二区暴白浆|