王治華,常春郊,叢潤(rùn)祥,王 梁,馬德錫,王曉軍
1.中國(guó)地質(zhì)大學(xué)(北京)地球科學(xué)與資源學(xué)院,北京 1000372.武警黃金地質(zhì)研究所,河北 廊坊 065000
?
內(nèi)蒙古阿欽楚魯二長(zhǎng)花崗巖鋯石SHRIMP U-Pb年齡及地球化學(xué)特征
王治華1, 2,常春郊2,叢潤(rùn)祥2,王 梁1, 2,馬德錫2,王曉軍2
1.中國(guó)地質(zhì)大學(xué)(北京)地球科學(xué)與資源學(xué)院,北京 100037
2.武警黃金地質(zhì)研究所,河北 廊坊 065000
阿欽楚魯二長(zhǎng)花崗巖體位于西伯利亞板塊東南緣查干敖包——奧尤特——朝不楞早古生代構(gòu)造-巖漿巖帶中段,主要巖石類型為中細(xì)粒二長(zhǎng)花崗巖和中粗粒二長(zhǎng)花崗巖。SHRIMP鋯石U-Pb同位素定年結(jié)果表明,阿欽楚魯二長(zhǎng)花崗巖的成巖年齡為(296.3±3.8) Ma,為華力西晚期。巖石地球化學(xué)分析結(jié)果表明:阿欽楚魯二長(zhǎng)花崗巖富硅,w(SiO2)為73.48%~74.22%,過鋁質(zhì),w(Al2O3)為13.63%~14.01%,A/CNK值為1.04~1.10,堿質(zhì)含量較高,w(K2O)+w(Na2O)為8.08%~8.54%,里特曼指數(shù)(σ)為2.13~2.46,相對(duì)富鉀,K2O/Na2O值為1.31~1.54,屬高鉀鈣堿性系列。該巖石富集大離子親石元素Rb、Sr、Ba和輕稀土元素(LREE),相對(duì)虧損Ta、Nb、Ti等高場(chǎng)強(qiáng)元素,稀土元素總量為(112.05~130.16)×10-6,中等Eu負(fù)異常(δEu=0.52~0.65),稀土元素配分曲線呈現(xiàn)出略微右傾型,輕稀土較陡,重稀土較緩,具有向A型花崗巖過渡的后碰撞高鉀花崗巖特征;巖石具有較低的87Sr/86Sr初始值(0.703 849~0.704 236)和正的εNd(t)值(4.2~4.3),反映其物質(zhì)來源可能主要為幔源巖漿底侵作用形成的新生大陸地殼。基于上述分析研究和構(gòu)造環(huán)境判別,結(jié)合區(qū)域?qū)Ρ?,推測(cè)阿欽楚魯二長(zhǎng)花崗巖為在巖石圈由擠壓增厚向伸展體制轉(zhuǎn)換的動(dòng)力學(xué)背景下,由于俯沖板片的斷離,造成軟流圈上涌和巖石圈地幔的部分熔融,而部分幔源巖漿底侵到地殼的下部或者呈基性侵入體的形式侵入地殼,引起上部地殼的熔融而形成后碰撞高鉀鈣堿性花崗巖。
二長(zhǎng)花崗巖;鋯石SHRIMP U-Pb年齡;地球化學(xué);后碰撞;內(nèi)蒙古;阿欽楚魯
興蒙造山帶是目前已知發(fā)展歷史最長(zhǎng)、構(gòu)造巖漿活動(dòng)最復(fù)雜的一條巨型造山帶[1]。興蒙造山帶中二連——東烏珠穆沁旗一帶發(fā)育晚古生代巨型花崗巖帶,其演化記錄了華北板塊與西伯利亞板塊匯聚、古亞洲洋閉合的歷史,為古蒙古洋閉合及碰撞造山的時(shí)限提供了直接證據(jù),是研究?jī)纱蟀鍓K拼合及古亞洲洋最終關(guān)閉時(shí)限有力證據(jù)的重要載體,因此,備受廣大地質(zhì)學(xué)者的關(guān)注[2-11]。自20世紀(jì)80年代以來,許多學(xué)者對(duì)本區(qū)花崗巖的形成機(jī)制、地球動(dòng)力學(xué)背景、成巖物質(zhì)來源及與金屬成礦關(guān)系做過深入研究,試圖通過花崗巖巖相學(xué)、地球化學(xué)、同位素年代學(xué)等特征,探索該區(qū)地殼側(cè)向增生與垂向增生的形成機(jī)理,揭示華北板塊、古蒙古洋殼和西伯利亞板塊之間的俯沖、碰撞、對(duì)接和增生的造山過程,已取得了許多重要成果。但是,前人對(duì)古蒙古洋閉合及碰撞造山的時(shí)限一直存在著爭(zhēng)議。目前古洋盆的閉合時(shí)間有泥盆紀(jì)[12-14]、晚泥盆世——早石炭世[3-5, 15-17]、石炭紀(jì)末期[18-19]、早二疊世[7, 20]、晚二疊世[21-23]、晚侏羅世——早白堊世[24-26]等不同認(rèn)識(shí)。
洪大衛(wèi)等[4]在二連——東烏珠穆沁旗一帶識(shí)別出大量晚古生代后碰撞巖漿作用事件,提出在286~276 Ma大量發(fā)育的堿性花崗巖標(biāo)志著古蒙古洋已經(jīng)進(jìn)入后碰撞演化階段。張玉清等[27]在東烏珠穆沁旗京斯臺(tái)一帶獲得堿性花崗巖年齡為(284.8±1.1) Ma,認(rèn)為該階段處于造山后演化階段。韓寶福等[28]在內(nèi)蒙古西部呼倫陶勒蓋地區(qū)發(fā)現(xiàn)早二疊世A型花崗巖,并獲得了(277±2) Ma、(278±4) Ma兩個(gè)同位素年齡。施光海等[29]在錫林浩特A型花崗巖中獲得的SHRIMP鋯石U-Pb年齡為(276±2) Ma,并認(rèn)為其為造山后伸展事件的產(chǎn)物。童英等[30]對(duì)錫林浩特代托吉卡山中粒晶洞正長(zhǎng)花崗巖進(jìn)行了研究,獲得其成巖年齡為(268.0±6.9) Ma,并認(rèn)為賀根山洋閉合早于中二疊世。辛后田等[31]在晚古生代寶力高廟組安山巖中獲得320.1 Ma的成巖年齡,并認(rèn)為其為造山階段的產(chǎn)物。Robinson等[32]發(fā)現(xiàn)中二疊統(tǒng)哲斯組不整合在賀根山蛇綠巖之上。古生物資料顯示,在志留紀(jì)——泥盆紀(jì)期間古亞洲洋對(duì)生物存在阻隔,而到了二疊紀(jì)卻失去了對(duì)生物遷移的阻隔能力[33-35]。盡管前人對(duì)興蒙造山帶碰撞演化的研究獲得大量成果,對(duì)興蒙造山帶后碰撞早期階段巖漿記錄的研究卻較為薄弱,從碰撞到后碰撞轉(zhuǎn)換階段缺少精確的年代數(shù)據(jù)。鑒于此,筆者基于2010——2012年?yáng)|烏珠穆沁旗地區(qū)開展的銅鉛鋅礦產(chǎn)資源潛力評(píng)價(jià)項(xiàng)目,在詳細(xì)野外調(diào)查的基礎(chǔ)上,對(duì)阿欽楚魯花崗巖體進(jìn)行了SHRIMP鋯石U-Pb定年和較為深入的巖相學(xué)和地球化學(xué)研究,旨在探討其巖石成因、形成時(shí)代和構(gòu)造背景,為興蒙造山帶中東部構(gòu)造巖漿演化、殼幔相互作用過程及古亞洲洋閉合時(shí)限提供新的佐證,并且為該區(qū)礦產(chǎn)資源勘查提供重要信息。
阿欽楚魯二長(zhǎng)花崗巖體位于西伯利亞板塊東南緣查干敖包——奧尤特——朝不楞早古生代構(gòu)造-巖漿巖帶中段,其東南側(cè)就是西伯利亞板塊與華北板塊的縫合帶——二連浩特——賀根山深大斷裂帶[36-37](圖1)。區(qū)域范圍內(nèi)出露的地層有中奧陶統(tǒng)、上志留統(tǒng)、泥盆系、下二疊統(tǒng)、侏羅系和白堊系火山-沉積巖以及第三系和第四系沉積物。其中,上泥盆統(tǒng)安格爾音烏拉組分布面積較廣,在吉林寶力格——額仁高畢——滿都胡寶力格和安格爾音烏拉一帶呈北東向帶狀展布,巖性組合為砂巖、粉砂巖、板巖和火山碎屑巖,為本區(qū)重要的容礦圍巖。區(qū)內(nèi)主干斷裂為北東向二連浩特——賀根山深大斷裂和查干敖包——東烏珠穆沁旗深大斷裂。褶皺構(gòu)造發(fā)育,褶皺軸向與區(qū)域主干斷裂一致,表現(xiàn)為一系列的北東向復(fù)式背斜和向斜。古生界火山-沉積巖地層中北東向復(fù)式背斜和復(fù)式向斜構(gòu)造亦比較發(fā)育,其中個(gè)別向斜的翼部就是賦礦的有利部位。受西伯利亞板塊、古蒙古洋殼和華北板塊多期次俯沖、碰撞和對(duì)接作用的影響,區(qū)內(nèi)各種巖石類型、不同形成時(shí)代和不等產(chǎn)出規(guī)模的侵入巖體分布廣泛,主要形成時(shí)期為華力西期、印支期和燕山期[4, 8, 38-39]。華力西期侵入巖位于東烏珠穆沁旗地區(qū)的中部,巖體大多為中小型巖株,個(gè)別呈巖基狀產(chǎn)出。巖石類型有黑云母花崗巖、似斑狀黑云母花崗巖、二長(zhǎng)花崗巖、鉀長(zhǎng)花崗巖等,其中大多數(shù)巖石以具有似斑狀結(jié)構(gòu)、花崗結(jié)構(gòu)及塊狀構(gòu)造為特征。印支期侵入巖主要分布在額仁高比幅的查干敖包和霍吉勒芒和一帶,多以巖株?duì)町a(chǎn)出,巖性為石英閃長(zhǎng)巖、黑云二長(zhǎng)花崗巖和黑云母花崗巖。燕山侵入巖在東烏珠穆沁旗地區(qū)分布廣泛,常常與華力西期花崗巖構(gòu)成復(fù)式侵入巖體。各類巖體大多以大的巖基或巖株?duì)钋秩胗谀嗯柘蛋哺駹栆魹趵M和塔爾巴格特組火山-沉積巖中,并被上侏羅統(tǒng)酸性火山巖覆蓋。巖性以酸性和中酸性為主,中基性巖少見,主要巖石類型有黑云母花崗巖、黑云母似斑狀花崗巖、花崗閃長(zhǎng)巖、二長(zhǎng)花崗巖、二云二長(zhǎng)花崗巖和黑云母二長(zhǎng)花崗巖等。
1.第四系;2.第三系;3.上侏羅統(tǒng)白音高老組;4.上侏羅統(tǒng)滿克頭鄂博組;5.上石炭統(tǒng)寶力格廟組;6.上泥盆統(tǒng)安格爾音烏拉組;7.華力西期二長(zhǎng)花崗巖;8.華力西期花崗閃長(zhǎng)巖;9.正長(zhǎng)斑巖脈;10.二長(zhǎng)斑巖脈;11.花崗巖脈;12.花崗斑巖脈;13.閃長(zhǎng)玢巖脈;14.輝綠巖脈;15.石英脈;16.前寒武紀(jì)微陸塊;17.斷層;18.板塊縫合線;19.銀多金屬礦體;20.采樣位置。圖1 內(nèi)蒙古阿欽楚魯二長(zhǎng)花崗巖體地質(zhì)圖(據(jù)文獻(xiàn)[37]修編)Fig.1 Geological map for Achieng Qulu monzogranite complex (modified from reference[37])
阿欽楚魯二長(zhǎng)花崗巖體位于東烏珠穆沁旗額仁高比蘇木布敦花腦特——阿欽楚魯一帶,吉林寶力格銀多金屬礦床就位于巖體東南約5 km處,巖體呈北東向產(chǎn)出,北東——南西長(zhǎng)26~38 km,北西——南東寬7~14 km,出露面積大于300 km2(圖1)。該巖體侵入于泥盆系安格爾音烏拉組泥質(zhì)板巖、粉砂巖中,受巖體侵入熱源烘烤,在靠近巖體附近的泥質(zhì)板巖、粉砂巖等往往出現(xiàn)角巖化,并產(chǎn)生熱變質(zhì)形成的斑點(diǎn)。從巖相變化來看,巖石主要為細(xì)粒二長(zhǎng)花崗巖和中粒二長(zhǎng)花崗巖(圖2a、b)。
a.細(xì)粒二長(zhǎng)花崗巖野外露頭;b.中粒二長(zhǎng)花崗巖野外露頭;c.細(xì)粒二長(zhǎng)花崗巖正交鏡下顯微照片;d.中粒二長(zhǎng)花崗巖正交鏡下顯微照片。Qtz.石英;Pl.斜長(zhǎng)石;Kfs.鉀長(zhǎng)石;Bt.黑云母。圖2 阿欽楚魯二長(zhǎng)花崗巖野外及顯微照片F(xiàn)ig.2 Field and micro graghs of Achieng Qulu monzogranite
細(xì)粒二長(zhǎng)花崗巖,灰白色帶肉紅色,具細(xì)粒二長(zhǎng)結(jié)構(gòu),塊狀構(gòu)造。主要礦物組成為石英(20%~30%)、斜長(zhǎng)石(30%~35%)、鉀長(zhǎng)石(40%~45%)、黑云母(5%~7%),副礦物為磷灰石、榍石和鋯石等。石英呈他形粒狀,具波狀消光;堿性長(zhǎng)石呈半自形板狀,發(fā)育卡氏雙晶;斜長(zhǎng)石呈半自形,發(fā)育聚片雙晶,絹云母化,局部被綠泥石、綠簾石交代;黑云母呈褐色,葉片狀。礦物粒徑一般為0.3~2.0 mm,個(gè)別石英和斜長(zhǎng)石粒徑可達(dá)2.0~5.0 mm(圖2c)。
中粒二長(zhǎng)花崗巖,灰白色帶肉紅色,風(fēng)化后呈灰黃色,具中粒二長(zhǎng)結(jié)構(gòu),塊狀構(gòu)造。主要礦物組成為石英(20%~30%)、斜長(zhǎng)石(30%~35%)、鉀長(zhǎng)石(34%~40%)、黑云母(5%~7%),副礦物為磷灰石、榍石、鋯石和磁鐵礦等。石英呈他形粒狀,具波狀消光;堿性長(zhǎng)石多呈他形板狀,部分呈自形板狀,發(fā)育紡錘狀格子雙晶,少數(shù)具條紋結(jié)構(gòu);斜長(zhǎng)石呈半自形,發(fā)育聚片雙晶,絹云母化,局部被綠泥石、綠簾石交代;黑云母呈褐色,葉片狀,多色性、吸收性明顯,局部見有綠泥石化現(xiàn)象;礦物粒徑一般為0.5~2.0 mm,少量石英和斜長(zhǎng)石粒徑可達(dá)3.0~5.0 mm,甚至達(dá)15 mm(圖2d)。
3.1 樣品采集
本次用于定年的樣品(AHGY-40)采自阿欽楚魯巖體中心部位,巖性為中、細(xì)粒二長(zhǎng)花崗巖,巖石新鮮,蝕變較弱,質(zhì)量約4 kg,挑選其中的鋯石進(jìn)行SHRIMP U-Pb年代學(xué)研究。樣品具體采樣位置見圖1,地理坐標(biāo)為東經(jīng)117°50′57.6″,北緯46°06′26.2″。用于元素地球化學(xué)分析的8件花崗巖樣品均采自阿欽楚魯巖體中心部位附近,采樣時(shí),盡量選擇新鮮巖體,但是部分樣品仍有較弱的蝕變現(xiàn)象。
3.2 鋯石分選和分析流程
鋯石分選在河北省區(qū)域地質(zhì)礦產(chǎn)調(diào)查研究所完成。鋯石的制靶、顯微鏡照相、陰極發(fā)光(CL)圖像分析在中國(guó)地質(zhì)科學(xué)院北京離子探針中心完成,同位素測(cè)定在中國(guó)地質(zhì)科學(xué)院北京離子探針中心SHRIMP實(shí)驗(yàn)室完成。
樣品經(jīng)破碎達(dá)到合適粒度后,用常規(guī)方法分選出鋯石。在雙目鏡下挑選出完整的、透明度好的鋯石顆粒用于測(cè)年。將挑選出的鋯石顆粒與標(biāo)準(zhǔn)鋯石一起置于環(huán)氧樹脂中,制成樣品靶。將待測(cè)鋯石和標(biāo)準(zhǔn)鋯石TEM在玻璃板上用環(huán)氧樹膠固定,拋光到暴露出鋯石的中心面,用反射光和透射光照相,然后鍍金,進(jìn)行陰極發(fā)光照相,以檢查鋯石的內(nèi)部結(jié)構(gòu)[40]。根據(jù)鋯石的光學(xué)圖像和CL圖像,避開裂隙和包裹體,以便在進(jìn)行SHRIMP測(cè)定時(shí)選取合適的分析部位及測(cè)定后對(duì)相應(yīng)數(shù)據(jù)進(jìn)行合理解釋[41]。在分析過程中,用標(biāo)準(zhǔn)鋯石TEM(206Pb/238U年齡為(416.8±1.3) Ma)的測(cè)定值來進(jìn)行206Pb/238U值的校正;用M257(206Pb/238U年齡為(561.3±0.3) Ma,w(U)為840×10-6)進(jìn)行U質(zhì)量分?jǐn)?shù)校正[42]。具體實(shí)驗(yàn)原理和流程參見文獻(xiàn)[40, 43]。束斑直徑約為30 μm,在SHRIMP分析過程中,對(duì)同一測(cè)點(diǎn)均連續(xù)進(jìn)行5次掃描分析,并以這5次分析的加權(quán)平均值作為該測(cè)點(diǎn)的年齡分析值。在樣品測(cè)試過程中,盡量選擇無包裹體及無裂紋的部位作為一次離子流斑點(diǎn)的目標(biāo)位置。數(shù)據(jù)處理及U-Pb諧和圖繪制采用Squid程序和Isoplot程序完成。年齡值采用206Pb/238U年齡,單個(gè)點(diǎn)的誤差為1σ,加權(quán)平均值的誤差為95%置信度誤差。
3.3 巖石地球化學(xué)測(cè)試方法
巖石主量元素、痕量元素由中國(guó)地質(zhì)科學(xué)院國(guó)家地質(zhì)測(cè)試中心測(cè)試。主量元素使用型號(hào)為理學(xué)3080E的X-熒光光譜儀(XRF)測(cè)試,檢測(cè)下限為0.05%,其中FeO采用容量滴定法(VOL),CO2用電導(dǎo)法,H2O+用重量法(GR)分析。微量和稀土元素采用等離子體質(zhì)譜法(ICP-MS)或壓片法X-射線熒光光譜(XRF)分析,其中稀土元素檢測(cè)下限為0.05×10-6,部分元素檢測(cè)下限為0.5×10-6。Rb-Sr和Sm-Nd同位素在天津地質(zhì)礦產(chǎn)所同位素實(shí)驗(yàn)室由許新英老師分析,主要分析儀器為TRITON質(zhì)譜儀。
4.1 鋯石特征
阿欽楚魯二長(zhǎng)花崗巖樣品中的鋯石多呈長(zhǎng)柱狀,顆粒較大,粒徑大多為80~200 μm,多數(shù)長(zhǎng)寬比為1.5∶1.0~2.0∶1.0,少數(shù)長(zhǎng)寬比達(dá)到3.0∶1.0。陰極發(fā)光圖像(圖3)顯示,鋯石的自形程度高,晶形完好,透明度好,發(fā)育典型的韻律環(huán)帶,具有巖漿成因鋯石的特征。前人研究[44]表明,不同成因鋯石有不同的Th、U含量與Th/U值。一般情況下:巖漿鋯石的Th、U含量較高,Th/U值較大(一般大于0.4);而變質(zhì)鋯石的Th、U含量低,Th/U值小(通常小于0.07)[45]。阿欽楚魯二長(zhǎng)花崗巖的鋯石Th/U值為0.47~0.85,都大于巖漿鋯石Th/U值的最小值,因此,測(cè)驗(yàn)樣品中的鋯石應(yīng)為巖漿鋯石。
圖3 阿欽楚魯二長(zhǎng)花崗巖樣品AHGY-40鋯石的CL圖像Fig.3 Zircon CL images of sample AHGY-40 from Achieng Qulu monzogranite
4.2 鋯石測(cè)年結(jié)果
阿欽楚魯二長(zhǎng)花崗巖(AHGY-40)的SHRIMP鋯石U-Th-Pb數(shù)據(jù)列于表1。從表1中可以看出,15顆鋯石的206Pb/238U年齡比較集中,為(274.3±5.5)~(324.4±7.5) Ma。在206Pb/238U-207Pb/235U諧和年齡圖上(圖4),12個(gè)測(cè)點(diǎn)都分布在諧和線附近,表明這些鋯石顆粒在形成后U-Pb同位素體系是封閉的,基本沒有發(fā)生Pb同位素的丟失或U的加入,證明樣品的鋯石U-Pb年齡在誤差范圍內(nèi)可信。鋯石的諧和年齡值為(296.3±3.8) Ma(圖4),與在加權(quán)平均年齡計(jì)算中剔除3個(gè)測(cè)點(diǎn)后,得到12個(gè)鋯石的加權(quán)平均年齡值為(295.4±3.6) Ma(圖4),比較接近,能夠代表二長(zhǎng)花崗巖的成巖年齡,表明阿欽楚魯二長(zhǎng)花崗巖形成于石炭紀(jì)晚期。
表1 阿欽楚魯二長(zhǎng)花崗巖鋯石SHRIMP U-Pb同位素測(cè)試結(jié)果
注:206Pbc指普通鉛中206Pb;206Pb*指放射成因鉛中206Pb;應(yīng)用204Pb實(shí)測(cè)值校正普通鉛,并假設(shè)206Pb/238U和207Pb/235U年齡一致。
圖4 阿欽楚魯二長(zhǎng)花崗巖鋯石U-Pb諧和年齡及加權(quán)平均年齡示意圖Fig.4 Sketch of U-Pb concordia age and weighted mean age of zircons from monzonitic granite in Achieng Qulu
4.3 巖石地球化學(xué)特征
4.3.1 主量元素
阿欽楚魯二長(zhǎng)花崗巖樣品主量元素分析結(jié)果見表2。從表2中可以看出,主量元素具有以下特征:硅含量較高,w(SiO2)為73.48%~74.22%,平均值為73.85%;w(Al2O3)為13.63%~14.01%,平均值為13.79%,A/CNK值為1.04~1.10,平均值為1.06,A/NK值為1.18~1.30,平均值為1.24,為過鋁質(zhì);堿質(zhì)含量較高,w(K2O)+w(Na2O)為8.08%~8.75%,平均值為8.39%,里特曼指數(shù)(σ)為2.13~2.46,平均值為2.27,為鈣堿性系列;堿度率(AR)為2.65~2.92,平均值為2.78,相對(duì)富鉀,K2O/Na2O值為1.31~1.54,平均值為1.40;巖石分異程度較高,DI指數(shù)(標(biāo)準(zhǔn)礦物石英+正長(zhǎng)石+鈉長(zhǎng)石)為89.97~92.31,平均值為91.02。在w(K2O)-w(SiO2)圖解中絕大多數(shù)樣品落入高鉀鈣堿性系列區(qū)域(圖5a),在A/NK-A/CNK圖解中顯示為過鋁質(zhì)(圖5b)。綜上所述,主量元素特征顯示阿欽楚魯二長(zhǎng)花崗巖為高鉀鈣堿性系列過鋁質(zhì)花崗巖。
4.3.2 微量元素
阿欽楚魯二長(zhǎng)花崗巖稀土元素顯示具有中等Eu負(fù)異常(δEu=0.52~0.65),稀土總量變化不大,為(112.05~130.16)×10-6,輕重稀土總量比為10.07~13.13,LaN/YbN=11.81~22.69,反映了巖石不同程度的富集輕稀土元素,虧損重稀土元素(表3)。各個(gè)樣品稀土元素配分曲線呈現(xiàn)出略微右傾型,輕稀土較陡,重稀土較緩(圖6a),說明輕稀土分餾程度高,重稀土分餾較弱,這與傳統(tǒng)的地殼重熔型或地幔型的稀土元素構(gòu)成有所不同[50]。鄧晉福等[51]根據(jù)巖石相平衡理論,進(jìn)一步論證了中酸性火成巖的成因,并指出在正常陸殼厚度或加厚陸殼的中上部,陸殼巖石局部熔融產(chǎn)生的是具有負(fù)Eu異常的花崗巖(流紋巖)巖漿,而在加厚的陸殼底部(深度大于50~60 km),陸殼巖石局部熔融產(chǎn)生的是粗面巖(正長(zhǎng)巖)巖漿。阿欽楚魯二長(zhǎng)花崗巖具有明顯的負(fù)Eu異常,稀土配分模式圖表現(xiàn)為左高右低的較平滑曲線(圖6a),輕稀土富集,重稀土虧損,因此可以認(rèn)為阿欽楚魯二長(zhǎng)花崗巖起源于陸殼內(nèi)。
在原始地幔標(biāo)準(zhǔn)化微量元素蛛網(wǎng)圖(圖6b)上,阿欽楚魯二長(zhǎng)花崗巖富集Rb、Th、Ta、Nb、Hf、Zr等元素,相對(duì)虧損Ba、Sr、P、Ti等元素。Ba、Sr虧損表明受長(zhǎng)石結(jié)晶的影響,而Ti的虧損可能是鈦鐵礦的分離結(jié)晶造成的[52]。因?yàn)殁佽F礦、金紅石和榍石都是主要富Ti的礦物,只有鈦鐵礦是在高溫低壓下穩(wěn)定的礦物[53]。金紅石具有很高的Nb、Ta含量[54-57],而鈦鐵礦中Nb、Ta含量很低[57-58], 因此鈦鐵礦結(jié)晶從巖漿中帶走了Ti,導(dǎo)致花崗巖中Ti的虧損,但是并沒有降低Nb和Ta的含量。而且鈦鐵礦的結(jié)晶也符合這種花崗巖高溫、低氧逸度的特征。
4.3.3 Sr、Nd同位素
本次研究對(duì)5件阿欽楚魯二長(zhǎng)花崗巖樣品進(jìn)行了Sr-Nd同位素分析(表4)。w(Rb)為(182.830 9~199.934 1)×10-6,w(Sr)為(375.260 3~415.842 2)×10-6,w(Sm)為(1.485 3~2.217 8)×10-6,w(Nd)變化較大,為(7.636 7~10.904 2)×10-6。(87Sr/86Sr)m值較大,為0.709 476~0.710 566,均值0.709 969,(87Sr/86Sr)i為0.703 849~0.704 236,均值0.703 991,遠(yuǎn)低于原始地?,F(xiàn)代值(0.704 5)[59]。(147Sm/144Nd)m值為0.117 6~0.126 1,均值0.120 7,高于地殼的平均147Sm/144Nd值0.118[60];(143Nd/144Nd)m值為0.512 702~0.512 714,均值0.512 706,(143Nd/144Nd)i值為0.512 466~0.512 471,均值為0.512 469,低于原始地?,F(xiàn)代值(0.512 638)[61]。εSr(t)值變化范圍為-4.2~1.3,εNd(t)值為4.2~4.3。
上述Sr-Nd同位素特征表明,阿欽楚魯二長(zhǎng)花崗巖源區(qū)既不同于典型的原始地幔,也不同于典型的大陸地殼,可能具有殼幔混染的特征。
表2 阿欽楚魯二長(zhǎng)花崗巖主量元素分析結(jié)果及相關(guān)參數(shù)
注:DI為分異指數(shù),是6種標(biāo)準(zhǔn)礦物(石英、正長(zhǎng)石、鈉長(zhǎng)石、霞石、白榴石、六方鉀霞石)的質(zhì)量分?jǐn)?shù)之和;固結(jié)指數(shù)SI=100w(MgO)/w(MgO+FeO+Fe2O3+Na2O+K2O);堿度率AR=w〔Al2O3+CaO+(Na2O+K2O)〕/w〔Al2O3+CaO-(Na2O+K2O)〕;里特曼指數(shù)σ=w(Na2O+K2O)2/(w(SiO2)-43%);Mg#=100(w(MgO)/40)/(w(MgO)/40+w(TFeO)/72);R1=4Si-11(Na+K)-2(Fe+Ti),原子數(shù);R2=6Ca+2Mg+Al,原子數(shù)。
圖5 阿欽楚魯二長(zhǎng)花崗巖w(K2O)-w(SiO2)圖解(a)(底圖據(jù)文獻(xiàn)[46])及A/NK-A/CNK圖解(b)(底圖據(jù)文獻(xiàn)[47])Fig. 5 w(K2O)-w(SiO2) diagram (a) (base map after reference [46]) and A/NK-A/CNK diagram (b)(base map after reference [47])of Achieng Qulu monzogranite
樣品編號(hào)wB/10-6LaCePrNdSmEuGdTbDyHoErTmYbLuYAHGY-3629.854.46.0320.13.370.633.270.553.120.521.570.261.810.2519.4AHGY-3728.359.65.7720.73.720.623.460.523.020.551.680.251.710.2618.2AHGY-4329.353.35.5619.83.520.643.140.542.720.531.610.231.720.2417.8AHGY-4433.754.86.1118.63.140.542.870.442.230.431.320.241.340.2714.6AHGY-4631.653.35.3219.33.110.572.890.412.430.461.520.251.530.2416.5AHGY-4728.748.94.9317.62.950.492.630.372.150.431.280.191.270.1613.6AHGY-4832.251.65.4718.53.140.542.860.432.430.471.470.221.380.2415.3AHGY-4938.949.45.3316.62.750.592.740.392.120.441.290.231.230.2113.9樣品編號(hào)wB/10-6∑REELREERbSrNbBaTaThUZrHfLREE/HREELaN/YbNδEuδCeAHGY-36125.68114.332181388.535241.3218.62.941624.6910.0711.810.570.94AHGY-37130.16118.712451448.645421.3318.73.081784.8310.3711.870.521.08AHGY-43122.85112.122241418.935401.3419.32.921534.3410.4512.220.580.96AHGY-44126.03116.892031488.46471.0823.32.851313.7412.7918.040.540.87AHGY-46122.93113.202021447.315870.9824.64.761333.7311.6314.810.570.92AHGY-47112.05103.572291387.775031.2619.14.431123.5112.2116.210.530.92AHGY-48120.95111.452351598.235401.3218.32.621644.8411.7316.740.540.87AHGY-49122.22113.572571428.416421.0821.32.871363.7113.1322.690.650.73
球粒隕石值引自文獻(xiàn)[48],原始地幔值引自文獻(xiàn)[49]。圖6 阿欽楚魯二長(zhǎng)花崗巖稀土元素(a)及微量元素(b)配分曲線Fig.6 REE distribution graph (a) and trace element distribution graph (b) of Achieng Qulu monzogranite
樣品號(hào)w(Rb)/10-6w(Sr)/10-6(87Rb/86Sr)m(87Sr/86Sr)mw(Sm)/10-6w(Nd)/10-6(147Sm/144Nd)m(143Nd/144Nd)mAHGY-36187.9023383.73981.41680.7102841.88959.70530.11770.512702AHGY-37192.8678394.72321.41380.7100361.48537.63670.11760.512702AHGY-43188.4183415.84221.31110.7094832.171310.40720.12610.512714AHGY-44182.8309401.36641.31810.7094761.93619.82420.11910.512704AHGY-46199.9341375.26031.54160.7105662.217810.90420.12300.512709樣品號(hào)εSr(0)εSr(t)fRb/Sr(87Sr/86Sr)iεNd(0)εNd(t)TDMT2DMfSm/Nd(143Nd/144Nd)iAHGY-3682.11.316.130.7042361.24.3714716-0.400.512471AHGY-3778.6-2.116.100.7040001.24.3713715-0.400.512471AHGY-4370.7-3.714.850.7038861.54.2762723-0.360.512466AHGY-4470.6-4.214.940.7038491.34.3722717-0.390.512470AHGY-4686.1-2.317.640.7039851.44.2744721-0.370.512467
5.1 巖石成因類型
最早Loiselle和Wones[62]將A型花崗巖定義為堿性(alkaline)、貧水(anhydrous)和非造山(annorogenic)的花崗巖,以3個(gè)外文詞的首字母“A”命名,不涉及其成巖物質(zhì)來源,它一般是堿過飽和而鋁不飽和。但近年來的研究顯示,A型花崗巖不僅包括堿性巖類,還擴(kuò)大到鈣堿性、弱堿-準(zhǔn)鋁、弱過鋁甚至強(qiáng)過鋁質(zhì)巖石[63-64]。目前對(duì)A型花崗巖尚沒有一個(gè)統(tǒng)一的概念,但其化學(xué)成分上具有高w(SiO2),低w(CaO)、w(MgO),高TFeO/MgO值和K2O/Na2O值,相對(duì)高的全堿含量,富集REE(除Eu外)、Rb、Th、Hf、Ga、Y、Zr、Nb、Ta,貧Sr、Ba、Cr、Co、Ni、V、Eu等特征[65-66]。阿欽楚魯二長(zhǎng)花崗巖具有A型花崗巖的特征:1)高w(SiO2)(73.48%~74.22%),低w(CaO)(0.90%~1.22%),低w(MgO)(0.32%~0.43%);2)高TFeO/MgO值(3.10~4.21),相對(duì)富鉀,K2O/Na2O值為1.31~1.54,堿質(zhì)含量較高,w(K2O)+w(Na2O)為8.08%~8.54%;3)富集REE,w(∑REE)為(112.05~130.16)×10-6;4)富集Rb、Th、Ta、Nb、Hf、Zr等元素,相對(duì)虧損Ba、Sr、P、Ti等元素;5)具有中等Eu負(fù)異常(δEu=0.52~0.65),LaN/YbN=11.81~22.69,稀土元素配分曲線呈現(xiàn)出右傾型,輕稀土較陡,重稀土較緩??紤]到微量元素易受結(jié)晶分異的影響,B.R.Frost 等[67]提出了判別A型花崗巖的新方法。一個(gè)參數(shù)是巖石的MALI值(w(Na2O+K2O-CaO)),代表了巖石中長(zhǎng)石的含量,并且與巖漿的源區(qū)有關(guān)。在w(Na2O+K2O-CaO)-w(SiO2)判別圖解(圖7a)中,阿欽楚魯二長(zhǎng)花崗巖樣品均落在A型花崗巖區(qū)域。另一個(gè)參數(shù)是巖石中的鐵值(TFeO/(TFeO+MgO)),可能反映花崗質(zhì)巖漿結(jié)晶分異的歷史信息。在TFeO/(TFeO+MgO)-w(SiO2)判別圖解(圖7b)中,阿欽楚魯二長(zhǎng)花崗巖樣品也均落在A型花崗巖區(qū)域。
圖7 阿欽楚魯二長(zhǎng)花崗巖w(K2O+Na2O-CaO)-w(SiO2)圖解(a)及TFeO/(TFeO+MgO)-w(SiO2)圖解(b)(底圖據(jù)文獻(xiàn)[67-68])Fig.7 w(K2O+Na2O-CaO)-w(SiO2) diagram (a) and TFeO/(TFeO+MgO)-w(SiO2) diagram (b) of Achieng Qulu monzogranite (base map after references[67-68])
5.2 巖漿來源
巖相學(xué)、地球化學(xué)和巖體地質(zhì)特征表明,阿欽楚魯二長(zhǎng)花崗巖屬于高鉀、鈣堿性、過鋁質(zhì)A型花崗巖類。吳鎖平等[69]綜合前人對(duì)A型花崗巖研究成果認(rèn)為A型花崗巖的物源具有多樣性,包括陸殼、洋殼、地幔(可有少量混染)和殼?;旌?,但又以陸殼重熔和幔源為主。
在單階段模式下,阿欽楚魯二長(zhǎng)花崗巖的TDM值變化范圍為713~762 Ma,遠(yuǎn)超過巖體的形成年齡((296.3±3.8) Ma)。陳江峰和江博明[70]認(rèn)為,用兩階段模式可以有效地校正花崗巖類巖漿結(jié)晶分異所造成的TDM值變化誤差。用兩階段模式年齡計(jì)算的阿欽楚魯二長(zhǎng)花崗巖T2DM值變化范圍為715~723 Ma,與花崗巖的實(shí)際形成年齡((296.3±3.8) Ma)也有較大差距。通常認(rèn)為,花崗質(zhì)巖石的模式年齡可以用來估算其源區(qū)的年齡,對(duì)于幔源花崗巖而言,模式年齡給出了地幔分餾作用而成的玄武質(zhì)演化為花崗巖的時(shí)間,接近于花崗巖的結(jié)晶年齡[71]。也就是說幔源花崗巖的模式年齡是代表樣品從地幔分離出來的時(shí)間,其前提是假設(shè)為樣品最初起源于地幔。但是,對(duì)于殼源或殼?;煸吹幕◢弾r來說,計(jì)算出的模式年齡與花崗巖的結(jié)晶年齡往往偏差較大[72]。阿欽楚魯二長(zhǎng)花崗巖的單階段模式年齡和兩階段模式年齡都與實(shí)際形成年齡差距較大,這暗示阿欽楚魯二長(zhǎng)花崗巖不是幔源花崗巖,源區(qū)可能與殼幔混染有關(guān)。εNd(t)值反映了巖石結(jié)晶時(shí)的143Nd/144Nd初始值與原始未熔融的地幔相對(duì)偏離。如果εNd(t)=0,表示巖石起源于一個(gè)具有球粒隕石的147Sm/144Nd值的地幔儲(chǔ)庫(kù);正的εNd(t)值表示巖漿來源于比CHUR(原始地幔的初始比值)的147Sm/144Nd值高的源區(qū),如虧損地幔源區(qū);負(fù)的εNd(t)值表示巖漿源區(qū)的147Sm/144Nd值較CHUR低,如富集地幔源區(qū)或地殼源區(qū)[71]。從大陸地殼生長(zhǎng)的定義來看,它是指地幔物質(zhì)添加到地殼的過程,由地幔部分熔融產(chǎn)生的是玄武質(zhì)的巖石,而花崗巖在大多數(shù)情況下并不是直接從地幔起源的,因此花崗巖正εNd(t)值只能說明花崗巖的源巖是具有虧損地幔物質(zhì)加入的初生年輕地殼[73]。地殼生長(zhǎng)的主要形式包括由俯沖導(dǎo)致的島弧巖漿活動(dòng)和島弧增生、地幔柱驅(qū)動(dòng)地幔來源物質(zhì)對(duì)先存地殼的底墊作用、地幔柱驅(qū)動(dòng)的大洋高原增生、由碰撞造山所導(dǎo)致的巖石圈拆沉作用等[6]。
阿欽楚魯二長(zhǎng)花崗巖具較低的87Sr/86Sr初始值(0.703 849~0.704 236),正的εNd(t)值(4.2~4.3),反映出其物質(zhì)來源于興蒙造山帶新元古代至顯生宙以來的新生大陸地殼的熔融[74-78]。在εNd(t)-ISr圖解中(圖8a)上,樣品點(diǎn)均落入第二象限,暗示阿欽楚魯二長(zhǎng)花崗巖源區(qū)有來自虧損地幔端元物質(zhì)的加入。在εNd(t)-TDM圖解(圖8b)上,絕大多數(shù)樣品都落入洪大衛(wèi)等[6]圈出的興蒙造山帶范圍。洪大衛(wèi)等[6]提出,興蒙造山帶大面積的晚古生代——中生代花崗巖可能是由于基性巖漿底侵作用導(dǎo)致800~600 Ma前已俯沖的洋殼形成的新生大陸地殼在拉張?bào)w制下部分熔融而成。通過上述分析,筆者認(rèn)為阿欽楚魯二長(zhǎng)花崗巖來源于幔源巖漿底侵作用形成的新生大陸地殼。
興蒙造山帶和興蒙造山帶微陸塊據(jù)文獻(xiàn)[5];法國(guó)海西花崗巖據(jù)文獻(xiàn)[80-81];喜馬拉雅花崗巖據(jù)文獻(xiàn)[82]。圖8 阿欽楚魯二長(zhǎng)花崗巖εNd(t)-ISr(a)(底圖據(jù)文獻(xiàn)[79])及εNd(t)-TDM圖解(b)Fig. 8 εNd(t)-ISr diagram(a) (base map after reference [79]) and εNd(t)-TDM diagram (b) of Achieng Qulu monzogranite
5.3 成巖構(gòu)造環(huán)境
花崗巖類的地球化學(xué)特征不僅能夠反映其源區(qū)的性質(zhì),而且能夠提供構(gòu)造環(huán)境方面的信息[83-84]。A型花崗巖原先是指出現(xiàn)于非造山環(huán)境的、堿性和無水特征的花崗質(zhì)巖石[68],后來研究發(fā)現(xiàn)A型花崗巖也可以出現(xiàn)在造山后環(huán)境[66, 85-92]。Eby[86-87]在前人研究的基礎(chǔ)上,將A型花崗巖分成A1型和A2型兩類花崗巖,它們具有不同的物質(zhì)來源并分別對(duì)應(yīng)于不同的大地構(gòu)造環(huán)境。其中:A1型花崗巖來源于似大洋島嶼玄武巖侵入于大陸裂谷或在板內(nèi)巖漿作用期間侵入,形成于大陸巖石圈穩(wěn)定之后的拉張階段,是裂谷活動(dòng)開始的征兆;A2型花崗巖漿則直接起源于經(jīng)歷了陸-陸碰撞或島弧巖漿作用的陸殼或下地殼,標(biāo)志造山作用結(jié)束不久即開始的拉張,其規(guī)模和深度均較小,是造山作用結(jié)束的標(biāo)志。據(jù)Bonin[93]研究,富堿性鋁質(zhì)長(zhǎng)英質(zhì)巖屬于造山后巖漿巖系列。造山后巖漿巖總體上以鉀含量高為特點(diǎn),包括過鋁質(zhì)長(zhǎng)英質(zhì)巖套和準(zhǔn)鋁質(zhì)的中鉀到高鉀鈣堿性巖系和橄欖安粗巖系;此外造山后巖漿巖還具備高鈉高堿的特征,包括鈣堿性準(zhǔn)鋁質(zhì)到堿性和過堿性巖系[94]。阿欽楚魯二長(zhǎng)花崗巖屬于過鋁質(zhì)長(zhǎng)英質(zhì)巖系,也屬于高鉀鈣堿性巖系,這正符合造山后巖漿巖的特點(diǎn)。同時(shí),在Ce/Nb-Y/Nb構(gòu)造環(huán)境判別圖(圖9a)中,阿欽楚魯二長(zhǎng)花崗巖樣品都落在A2型花崗巖區(qū)域或附近;在w(Rb)-w(Nb+Y)構(gòu)造環(huán)境判別圖解(圖9b)中,落入后碰撞伸展花崗巖區(qū)和同碰撞花崗巖區(qū)。由此可見,阿欽楚魯二長(zhǎng)花崗巖應(yīng)該為高鉀鈣堿性A2型花崗巖(造山后巖漿巖系列),形成于后碰撞伸展階段。
興蒙造山帶是目前已知發(fā)展歷史最長(zhǎng)、構(gòu)造巖漿活動(dòng)最復(fù)雜的一條巨型造山帶,是全球大陸巖石圈中結(jié)構(gòu)和演化最復(fù)雜的造山帶之一,也是全球大陸巖石圈中最有意義的研究地區(qū)之一[2]。研究區(qū)位于興蒙造山帶的查干敖包——奧尤特——朝不楞早古生代構(gòu)造-巖漿巖帶東段[37, 39]。區(qū)內(nèi)古生界火山-沉積巖地層發(fā)育齊全,華力西期至燕山期巖漿巖類型繁多和各時(shí)代構(gòu)造形跡分布廣泛,成礦地質(zhì)環(huán)境優(yōu)越,各類金屬礦床(點(diǎn))星羅棋布。這里記載了華北陸塊與西伯利亞板塊分而再合的歷史,留下了古亞洲洋殼(或古蒙古洋殼)擴(kuò)張、消減和消亡及古大陸碰撞、增生、對(duì)接和造山等方面的重要信息。同國(guó)內(nèi)外許多重要的構(gòu)造-巖漿巖帶一樣,本區(qū)大地構(gòu)造演化的研究工作也已引起國(guó)內(nèi)外地質(zhì)學(xué)家的高度關(guān)注和極大興趣[3-4, 15, 17, 96-97]。早在20世紀(jì)70年代初期,國(guó)內(nèi)許多地質(zhì)學(xué)家相繼涉足本區(qū),采用各種研究方法從不同角度描述和論證了各構(gòu)造-地層單元(或地質(zhì)體)的地質(zhì)地球化學(xué)特征及其大地構(gòu)造意義。盡管人們均承認(rèn)二連浩特——東烏珠穆沁旗一帶及鄰區(qū)存在溝-弧體系、古板塊縫合帶、蛇綠混雜巖帶和前寒武紀(jì)中間地塊,但是對(duì)于區(qū)內(nèi)不同構(gòu)造-地層單元的形成時(shí)間、時(shí)空分布關(guān)系、運(yùn)動(dòng)方式和原始空間位置及其與西伯利亞板塊和華北陸塊的成因聯(lián)系,尚存在較大的意見分歧。特別是前人對(duì)古亞洲洋(部分學(xué)者稱之為古蒙古洋)閉合及碰撞造山的時(shí)限,一直存在著較大爭(zhēng)議。
圖9 阿欽楚魯二長(zhǎng)花崗巖Ce/Nb-Y/Nb(a)(底圖據(jù)文獻(xiàn)[87])及w(Rb)-w(Y+Nb)(b) (底圖據(jù)文獻(xiàn)[95],Post-COLG據(jù)文獻(xiàn)[84])構(gòu)造環(huán)境判別圖Fig.9 Ce/Nb-Y/Nb(a) (base diagram after reference[87]) and w(Rb)-w(Y+Nb)(b) (base diagram after reference[95], Post-COLG according to reference[84]) tectonic discrimination diagrams of Achieng Qulu monzogranite
張玉清等[27]在京格斯臺(tái)一帶堿性花崗巖中獲得的鋯石U-Pb年齡為(284.8±1.1) Ma,據(jù)此認(rèn)為該階段已進(jìn)入后碰撞階段;童英等[30]提出早二疊世末期戈壁天山——寶力格發(fā)育雙峰式火山巖(含鈉閃石的堿性流紋巖、粗面流紋巖和玄武巖)及黃崗梁——烏蘭浩特中二疊世早期發(fā)育雙峰式大陸裂谷火山巖建造,表明碰撞造山已經(jīng)結(jié)束;辛后田等[31]在東烏珠穆沁旗西部麥狠溫都爾一帶晚石炭世寶力高廟組中獲得了具同碰撞特征安山巖的鋯石U-Pb年齡為(320.1±7.1) Ma,認(rèn)為古亞洲洋閉合應(yīng)在晚泥盆世——晚石炭世。程銀行等[98]通過研究發(fā)現(xiàn),東烏珠穆沁旗狠麥溫都爾地區(qū)發(fā)育了大量的晚古生代花崗巖,SHRIMP鋯石U-Pb同位素定年結(jié)果表明花崗巖的成巖年齡為(299.7±5.3) Ma,其巖石地球化學(xué)特征顯示花崗巖具富堿、富鉀、準(zhǔn)鋁質(zhì),屬高鉀鈣堿性-鉀玄巖系列,具島弧或后碰撞高鉀鈣堿性花崗巖的特征,可能為后碰撞早期伸展階段的產(chǎn)物,與華北板塊和西伯利亞板塊后碰撞作用有關(guān)。本次研究測(cè)得阿欽楚魯高鉀鈣堿性二長(zhǎng)花崗巖的SHRIMP鋯石U-Pb年齡為(296.3±3.8) Ma,巖相學(xué)和巖石地球化學(xué)特征表明阿欽楚魯二長(zhǎng)花崗巖為對(duì)碰撞后伸展作用具有重要指示意義的典型A2型花崗巖,說明東烏珠穆沁旗地區(qū)在(296.3±3.8) Ma時(shí)已經(jīng)處于后碰撞伸展階段。同時(shí),東烏珠穆沁旗地區(qū)晚石炭世寶力高廟組為一套以火山碎屑沉積為主的陸相地層,狠麥溫都爾巖體的南部出現(xiàn)大量紫紅色的火山集塊巖、集塊角礫熔巖和安山巖,具陸相火山噴發(fā)的特點(diǎn),亦表明晚石炭世東烏珠穆沁旗地區(qū)已經(jīng)處于后碰撞伸展階段,古亞洲洋已經(jīng)消失[98]。綜上所述,筆者認(rèn)為古亞洲洋閉合時(shí)限為晚泥盆世——早石炭世,晚石炭世時(shí)華北板塊和西伯利亞板塊主碰撞結(jié)束,已經(jīng)進(jìn)入后碰撞階段。
5.4 成巖方式及深部動(dòng)力學(xué)機(jī)制分析
花崗巖的成因類型明顯受源區(qū)和動(dòng)力學(xué)機(jī)制的共同影響[99-100]。對(duì)于A型花崗巖的成因,大體上有如下幾種觀點(diǎn):1)部分熔融,A型花崗巖主要起源于中下地殼高鉀、貧水巖石的部分熔融[67-68, 101-102];2)分異模式,地幔來源的玄武巖漿分異作用產(chǎn)生A型花崗巖,其化學(xué)成分變化通過堿性長(zhǎng)石和斜長(zhǎng)石的分異,以及少量輝石或者角閃石分異解釋,斜長(zhǎng)石的不斷分離結(jié)晶作用可使殘余巖漿中的Sr、Eu不斷虧損[63, 86-87, 103-104];3)幔源物質(zhì)與地殼物質(zhì)的相互作用,這包括兩種情況,一為幔源巖漿與地殼巖漿的混合或受長(zhǎng)英質(zhì)地殼巖石的結(jié)晶混染作用[105-107],二為底侵的幔源巖漿為上覆地殼物質(zhì)的深熔作用提供所需的能量[105, 108]。
阿欽楚魯二長(zhǎng)花崗巖體為一個(gè)大巖基,SiO2含量極高并且變化范圍窄,表明其不可能直接由分離結(jié)晶作用形成[109]。而實(shí)驗(yàn)證明,鈣堿性巖漿在地殼淺部的脫水熔融可以形成A型花崗巖[102]。因此,中下地殼的部分熔融可能是阿欽楚魯二長(zhǎng)花崗巖漿形成的重要機(jī)制,這與阿欽楚魯二長(zhǎng)花崗巖來源于以幔源巖漿底侵為主的新生大陸地殼的結(jié)論是一致的。
花崗巖的礦物組合和微量元素組成受熔融和結(jié)晶分離程度、源巖性質(zhì)、殘余礦物相組成和熔融溫度(熱量)等方面的制約[110]。Sr和Eu在斜長(zhǎng)石中的分配系數(shù)較高,尤其在偏鋁質(zhì)的酸性巖中Sr在斜長(zhǎng)石、磷灰石中分配系數(shù)最大,而Ba則在黑云母和鉀長(zhǎng)石中的分配系數(shù)最大,Ti在角閃石、黑云母中的平均分配系數(shù)較高[111],P在磷灰石和獨(dú)居石中分配系數(shù)較高,HREE在石榴石和角閃石中的分配系數(shù)較大,尤其Yb和Lu在石榴石中的分配系數(shù)最大[112],而Gd、Dy和Ho在角閃石中的分配系數(shù)較高。
阿欽楚魯二長(zhǎng)花崗巖虧損HREE,表明源巖發(fā)生部分熔融時(shí),可能未發(fā)生石榴石和角閃石的結(jié)晶和分離作用,富集HREE的石榴石和角閃石主要進(jìn)入了殘余礦物相。Y/Yb值為10.35~11.30,均值為10.81,接近于10,HREE配分模式近于平坦型,也表明角閃石進(jìn)入殘余礦物相較多[110]。虧損Ba、Eu、Sr、P和Ti等元素,以及w(SiO2)>73.19%,w(Al2O3)<14.25%,δEu=0.52~0.65,表明斜長(zhǎng)石、鉀長(zhǎng)石、黑云母、磷灰石和獨(dú)居石可能除了從熔體中發(fā)生結(jié)晶分離之外,部分斜長(zhǎng)石、鉀長(zhǎng)石、黑云母和磷灰石也可能從源巖中作為殘留礦物直接進(jìn)入了殘余礦物相,只是斜長(zhǎng)石可能殘留或結(jié)晶分離的比例相應(yīng)較低,即斜長(zhǎng)石將作為主要的熔融相進(jìn)入熔體[113]。此外,阿欽楚魯二長(zhǎng)花崗巖富集高場(chǎng)強(qiáng)元素(Th、Ta、Hf和Zr),表明富集高場(chǎng)強(qiáng)元素的鋯石和磷灰石進(jìn)入熔體較多[114-115]。因此,殘余礦物相主要礦物組成可能包括角閃石、石榴石和部分斜長(zhǎng)石、黑云母、鉀長(zhǎng)石和磷灰石。另外,阿欽楚魯二長(zhǎng)花崗巖的分異指數(shù)為89.97~92.31,w(SiO2)為73.48%~74.22%,變化范圍較窄,而部分鉀長(zhǎng)石中又包裹早期形成的斜長(zhǎng)石和黑云母等礦物,表明源巖部分熔融之后,熔體可能發(fā)生了高度分異[113]。從巖漿形成的深度來看,根據(jù)上述分析,斜長(zhǎng)石將作為主要的熔融相,石榴石將作為主要的殘留體而存在,即源區(qū)物質(zhì)至少應(yīng)存在于大于40 km的地殼深處[116]。另外,由于阿欽楚魯二長(zhǎng)花崗巖屬于高鉀鈣堿性系列,而鄧晉福等[117]根據(jù)Condie[118]的K與地殼厚度的關(guān)系曾經(jīng)估算出中國(guó)東部燕山期高鉀鈣堿性-鉀玄巖系列的A型花崗巖體形成時(shí)的陸殼厚度(≥55~60 km)與阿欽楚魯二長(zhǎng)花崗巖體形成時(shí)的陸殼厚度大致相當(dāng)。
至于巖體形成時(shí)的熱源問題,從阿欽楚魯二長(zhǎng)花崗的微量元素蛛網(wǎng)圖(圖6b)上可以看出,巖體明顯富集放射性高生熱元素K、Rb、U和T,表明源區(qū)可能富集這些高生熱元素,這些元素在源巖部分熔融的過程中會(huì)因蛻變而提供熔融所需的部分熱量[117, 119]。阿欽楚魯二長(zhǎng)花崗巖較低的87Sr/86Sr初始值(0.703 849~0.704 236),正的εNd(t)值(4.2~4.3),反映出其物質(zhì)來源可能主要來源于新生大陸地殼的熔融,并有虧損幔源物質(zhì)的加入。再結(jié)合筆者推測(cè)的巖體巖漿形成時(shí)的深度較深,且位于下部地殼的情況,在構(gòu)造環(huán)境由擠壓增厚向伸展體制轉(zhuǎn)換的動(dòng)力學(xué)背景下,可能會(huì)導(dǎo)致巖石圈發(fā)生拆沉作用,從而誘發(fā)虧損的軟流圈物質(zhì)的上涌底侵作用,這些底侵的幔源巖漿上涌至下地殼的下部,其攜帶的大量熱量會(huì)促使下地殼發(fā)生部分熔融和結(jié)晶分異作用。因此,筆者推測(cè)阿欽楚魯二長(zhǎng)花崗巖形成時(shí)的熱源除了源區(qū)高生熱元素蛻變提供的熱量之外,主要的熱量可能來源于虧損的軟流圈物質(zhì)的上涌底侵作用。
通過上述分析,筆者認(rèn)為阿欽楚魯二長(zhǎng)花崗巖的成因可能類似于上述A型花崗巖成因類型3)中的第二種情況,即源區(qū)主要在底侵的虧損軟流圈物質(zhì)提供的熱量作用下,處于下地殼中的源巖發(fā)生了部分熔融和隨后的結(jié)晶分異作用。其成巖的大致過程可能存在這樣的情況,即研究區(qū)的陸塊在284.8~299.7 Ma,隨著西伯利亞板塊與華北板塊碰撞引起的擠壓作用力的消失,構(gòu)造環(huán)境迅速向強(qiáng)烈伸展轉(zhuǎn)變,在巖石圈由擠壓增厚向伸展體制轉(zhuǎn)換的動(dòng)力學(xué)背景下,巖石圈發(fā)生拆沉作用,導(dǎo)致虧損的軟流圈物質(zhì)的上涌底侵作用,在底侵的軟流圈上涌物質(zhì)提供的熱量和源區(qū)高生熱元素濃集產(chǎn)生的自加熱作用下,早期俯沖進(jìn)入西伯利亞板塊南緣下部地殼中的巖石發(fā)生部分熔融,熔融所需的水分主要由源巖中的含水礦物黑云母和角閃石的分解作用提供。熔融產(chǎn)生的巖漿在阿欽楚魯一帶沿白音呼布爾——滿都寶力格深大斷裂上升的過程中發(fā)生分異作用形成高鉀鈣堿性過鋁質(zhì)A型花崗巖。本次研究結(jié)果再次為東烏珠穆沁旗地區(qū)晚古生代構(gòu)造巖漿演化及西伯利亞板塊與華北地塊碰撞拼貼向碰撞結(jié)束進(jìn)入造山后-伸展構(gòu)造體制轉(zhuǎn)換提供了巖石學(xué)證據(jù)和年齡制約。
1)巖石地球化學(xué)分析結(jié)果顯示,阿欽楚魯二長(zhǎng)花崗巖富硅、過鋁質(zhì)、堿質(zhì)含量較高、相對(duì)高鉀、巖石分異程度較高,輕稀土富集、重稀土相對(duì)虧損,富集Rb、Th、Ta、Nb、Hf、Zr等元素,相對(duì)虧損Ba、Sr、P、Ti等元素,具高鉀鈣堿性A2型花崗巖(造山后巖漿巖系列)的特征。
2)Sr-Nd同位素分析結(jié)果表明,阿欽楚魯二長(zhǎng)花崗巖較低的87Sr/86Sr初始值(0.703 849~0.704 236),正的εNd(t)值(4.2~4.3),反映出其物質(zhì)來源可能主要來源于以幔源巖漿底侵為主的新生大陸地殼。
3)SHRIMP鋯石U-Pb年齡測(cè)試結(jié)果表明,阿欽楚魯二長(zhǎng)花崗巖形成時(shí)代為(296.3±3.8) Ma。成因上為古亞洲洋盆閉合后,在巖石圈由擠壓增厚向伸展體制轉(zhuǎn)換的動(dòng)力學(xué)背景下,研究區(qū)由于俯沖板片的斷離,造成軟流圈上涌和巖石圈地幔的部分熔融,而部分幔源巖漿底侵到地殼的下部或者呈基性侵入體的形式侵入地殼,引起上部地殼的熔融而形成后碰撞高鉀鈣堿性花崗巖,即造山過程演化到后碰撞階段。
[1] Tang Kedong. Tectonic Development of the Paleozoic Foldbelts on the Northern Margin of the Sino-Korean Craton[J]. Tectonics, 1990,9:249-260.
[2] 任紀(jì)舜. 論中國(guó)大陸巖石圈構(gòu)造的基本特征[J].中國(guó)區(qū)域地質(zhì), 1991,10(4): 289-293. Ren Jishun. The Basic Characteristics of the Tectonic Evolution of the Continental Lithosphere in China[J]. Regional Geology of China, 1991,10(4): 289-293.
[3] 唐克東, 張?jiān)势? 內(nèi)蒙古縫合帶的構(gòu)造演化[M]//肖序常, 湯耀慶. 古中亞復(fù)合巨型縫合帶南緣構(gòu)造演化.北京: 北京科學(xué)技術(shù)出版社, 1991:30-54. Tang Kedong, Zhang Yunping. Tectonic Evolution of the Inner Mongolia Suture[M]//Xiao Xuchang,Tang Yaoqing. Tectonic Evolution of the Southern Margin of the Paleo-Asian Composite Megsuture. Beijing:Beijing Scientific and Technical Publishing House, 1991: 30-54.
[4] 洪大衛(wèi), 黃懷曾, 肖宜君, 等. 內(nèi)蒙古中部二疊紀(jì)堿性花崗巖及其地球動(dòng)力學(xué)意義[J].地質(zhì)學(xué)報(bào), 1994,68(3): 219-230. Hong Dawei, Huang Huaizeng, Xiao Yijun, et al. The Permian Alkaline Granites in Central Inner Mongolia and Their Geodynamic Significance[J]. Acta Geologica Sinica, 1994,68(3): 219-230.
[5] 李述靖, 白鐵. 蒙古弧地質(zhì)構(gòu)造特征及形成演化概論[M].北京:地質(zhì)出版社, 1998. Li Shujing, Bai Tie. The Characteristics and Evolution of the Mongolia Arc Tectonic[M].Beijing:Geological Publishing House, 1998.
[6] 洪大衛(wèi), 王式?jīng)? 謝錫林, 等. 興蒙造山帶正εNd(t) 值花崗巖的成因和大陸地殼生長(zhǎng)[J]. 地學(xué)前緣, 2000,7(2): 441-456. Hong Dawei, Wang Shiguang, Xie Xilin, et al. Genesis of PositiveεNd(t) Granitoidsin in the Da Hinggan Mts-Mongolia Orogenic Belt and Growth Continental Crust[J]. Earth Science Frontiers, 2000, 7(2): 441-456.
[7] 任收麥, 黃寶春.晚古生代以來古亞洲洋構(gòu)造域主要塊體運(yùn)動(dòng)學(xué)特征初探[J].地球物理學(xué)進(jìn)展, 2002, 17(1): 113-120. Ren Shoumai,Huang Baochun. Preliminary Study on Post-Late Paleozoic Kinermatics of the Main Blocks of the Paleo-Asian Ocean[J].Progress in Geophysics, 2002, 17(1): 113-120.
[8] 金巖, 劉玉堂, 謝玉玲, 等.內(nèi)蒙古東烏旗地區(qū)巖漿活動(dòng)與多金屬成礦的關(guān)系[J].華南地質(zhì)與礦產(chǎn), 2005(1):8-12. Jin Yan, Liu Yutang, Xie Yuling, et al. Relationship Between Magmatism and Polymetal Mineralization in Dongwuqi Area, Inner Mongolia[J]. Geology and Mineral Resources of South China, 2005(1): 8-12.
[9] 胡朋, 聶鳳軍, 赫英, 等.內(nèi)蒙古沙麥巖體: 正εNd(t)值的過鋁質(zhì)花崗巖[J] . 巖石學(xué)報(bào), 2006, 22(11) : 781-790. Hu Peng, Nie Fengjun, He Ying, et al. A Peraluminous Granite with PositiveεNd(t) Values: The Shamai Pluton in Inner Mongolia, Northeast China[J]. Acta Petrologica Sinica, 2006, 22(11): 781-790.
[10] 李錦軼, 高立明, 孫桂華, 等. 內(nèi)蒙古東部雙井子中三疊世同碰撞殼源花崗巖的確定及其對(duì)西伯利亞與中朝古板塊碰撞時(shí)限的約束[J] . 巖石學(xué)報(bào), 2007, 23(3): 565-582. Li Jinyi, Gao Liming, Sun Guihua, et al. Shuangjingzi Middle Triassic Syn-Collisional Crust-Derived Granite in the East Inner Mongolia and Its Constraint on the Timing of Collision Between Siberian and Sino-Korean Paleo-Plates[J]. Acta Petrologica Sinica, 2007, 23(3):565-582.
[11] 李錦軼, 張進(jìn), 楊天南, 等. 北亞造山區(qū)南部及其毗鄰地區(qū)地殼構(gòu)造分區(qū)與構(gòu)造演化[J].吉林大學(xué)學(xué)報(bào):地球科學(xué)版,2009,39(4): 584-605. Li Jinyi, Zhang Jin, Yang Tiannan, et al. Crustal Tectonic Division and Evolution of the Southern Part of the North Asian Orogenicregion and Its Adjacent Areas[J]. Journal of Jilin University:Earth Science Edition, 2009, 39(4): 584-605.
[12] 曹從周, 楊芳林, 田烈昌, 等.內(nèi)蒙古賀根山地區(qū)蛇綠巖及中朝板塊和西伯利亞板塊之間的縫合帶位置[C]//唐克東. 中國(guó)北方板塊構(gòu)造論文集:1. 北京: 地質(zhì)出版社, 1986: 64-85. Cao Congzhou, Yang Fanglin, Tian Liechang, et al. The Ophiolite in Hegenshan Diatrict, Inner Mongolia and the Position of Suture Line Between Sino-Korean and Siberian Plates[C]//Tang Kedong. Contributions to the Project of Plate Tectonics in Northern China:No1. Beijing: Geological Publishing House, 1986: 64-85.
[13] Zhang Y P,Tang K D.Pre-Jurassic Tectonic Evolution of Intercontinental Region and the Suture Zone Between the North China and Siberian Platforms[J]. Journal of Southeast Asian Earth Sciences, 1989, 3:47-55.
[14] Sengor A M C, Natalin B A, Burtaman V S. Evolution of the Altaid Tectonic Collage and Paleozoic Crustal Growth in Eurasis[J]. Nature, 1993, 364: 299-307.
[15] 肖序常, 湯耀慶.古中亞復(fù)合巨型縫合帶南緣構(gòu)造演化[M] . 北京: 北京科學(xué)技術(shù)出版社, 1991:1-29. Xiao Xuchang, Tang Yaoqing. Tectonic Evolution of the Southern Margin of the Paleo-Asian Composite Megsuture[M]. Beijing: Scientific and Technical Publishing House, 1991: 1-29.
[16] 邵濟(jì)安.中朝板塊北緣中段地殼演化[M]. 北京: 北京大學(xué)出版社, 1991. Shao Ji’an. Crustal Evolution in the Middle Part of the Northern Margin of the Sino-Korean Plate[M]. Beijing: Peking University Press, 1991.
[17] 徐備, 陳斌. 內(nèi)蒙古北部華北板塊與西伯利亞板塊之間中古生代造山帶的結(jié)構(gòu)和演化[J] .中國(guó)科學(xué):D輯, 1997, 27(3): 227-232. Xu Bei, Chen Bin. The Structure and Evolution of a Middle Paleozoic Orogenic Belt Between the North China and Siberian Blocks, Northern Inner Mongolia, China[J]. Science in China: Series D, 1997, 27(3): 227-232.
[18] 白登海, 張麗, 孔祥儒, 等.內(nèi)蒙古東部古生代塊體碰撞區(qū)的大地電磁測(cè)深研究:Ⅰ:觀測(cè)與資料分析[J]. 地球物理學(xué)報(bào), 1993, 36(3): 326-336. Bai Denghai, Zhang Li, Kong Xiangru, et al. A Magnetotelluric Study of the Palaeozoic Collision Zone in the East of Inner Mongolia:Ⅰ:Observations and Analyses[J]. Chinese Journal of Geophysics, 1993, 36(3): 326-336.
[19] 白登海, 張麗, 孔祥儒, 等.內(nèi)蒙古東部古生代塊體碰撞區(qū)的大地電磁測(cè)深研究:Ⅱ:二維解釋[J]. 地球物理學(xué)報(bào), 1993, 36(6): 773-783. Bai Denghai, Zhang Li, Kong Xiangru, et al. A Magnetotelluric Study of the Palaeozoic Collision Zone in the East of Inner Mongolia:Ⅱ:Two-Dimensional Modeling[J]. Chinese Journal of Geophysics, 1993, 36(6):773-783.
[20] 王荃, 劉雪亞, 李錦軼.中國(guó)內(nèi)蒙古中部的古板塊構(gòu)造[J]. 中國(guó)地質(zhì)科學(xué)院院報(bào), 1991(22): 1-15. Wang Quan, Liu Xueya, Li Jinyi. Palaeo Plate Tectonics in Inner Mongolia China[J]. Bulletin of the Chinese Academy of Geological Sciences, 1991(22): 1-15.
[21] Hs K J, Wang Q C, Li J L, et al. Geological Evolution of the Neimonides: A Working Hypothesis[J]. Eclogae Geol Helv, 1991, 84:1-35.
[22] 王荃, 劉雪亞, 李錦軼. 中國(guó)華夏與安加拉古陸間的板塊構(gòu)造[M]. 北京: 北京大學(xué)出版社, 1991:1-151. Wang Quan , Liu Xueya,Li Jinyi. Plate Tectonic Between Cathaysia and Angara[M]. Beijing: Peking University Press, 1991: 1-151.
[23] 吳珍漢. 略論華北地塊北緣顯生宙三類不同的造山作用[J].地質(zhì)力學(xué)學(xué)報(bào), 2000, 6(1): 44-51. Wu Zhenhan. Three Different Types of Phanerozoic Orogenesis of Northern Border Area of North China Craton[J]. Journal of Geomechanics, 2000, 6(1): 44-51.
[24] 馬醒華, 楊振宇. 中國(guó)三大地塊的碰撞拼合與古歐亞大陸的重建[J] . 地球物理學(xué)報(bào), 1993, 36(4): 476-481. Ma Xinghua, Yang Zhenyu. The Collision and Suturing of the Three Major Blocks in China and the Reconstruction of the Pale-Eurasia Continent[J] . Chinese Journal of Geophysics, 1993, 36(4): 476-481.
[25] 李雙林, 歐陽(yáng)自遠(yuǎn). 興蒙造山帶及鄰區(qū)的構(gòu)造格局與構(gòu)造演化[J] .海洋地質(zhì)與第四紀(jì)地質(zhì), 1998, 18(3): 45-54. Li Shuanglin, Ouyang Ziyuan. Tectonic Framework and Evolution of Xing’anling Mongolian Orogenic Belt ( XMOB) and Its Adjacent Region[J] . Marine Geology & Quaternary Geology, 1998, 18(3): 45-54.
[26] Nozaka T,Liu Y. Petrology of the Hegenshan Opiolite and Its Implication for the Tectonic Evolution of Northern China[J]. EPSL, 2002, 202:89-104.
[27] 張玉清, 許立權(quán), 康小龍, 等. 內(nèi)蒙古東烏珠穆沁旗京格斯臺(tái)堿性花崗巖年齡及意義[J] .中國(guó)地質(zhì), 2009, 36(9): 988-995. Zhang Yuqing, Xu Liquan, Kang Xiaolong, et al. Age Dating of Alkali Granite in Jingesitai Area of Dong Ujimqin Banner, Inner Mongolia and Its Significance[J]. Geology in China, 2009, 36(5): 988-992.
[28] 韓寶福, 張臣, 趙磊, 等.內(nèi)蒙古西部呼倫陶勒蓋地區(qū)花崗巖類的初步研究[J].巖石礦物學(xué)雜志, 2010, 29(6): 741-749. Han Baofu, Zhang Chen, Zhao Lei, et al. A Preliminary Study of Granitoids in Western Inner Mongolia[J]. Acta Petrologica et Mineralogica, 2010, 29(6): 741-749.
[29] 施光海, 苗來成, 張福勤, 等. 內(nèi)蒙古錫林浩特A 型花崗巖的時(shí)代及區(qū)域構(gòu)造意義[J]. 科學(xué)通報(bào), 2004, 49(4): 384-389. Shi Guanghai, Miao Laicheng, Zhang Fuqin, et al . The Age and Regional Tectonic Significance of A-Type Granite in Xilinhot, Inner Mongolia[J] . Chinese Science Bulletin, 2004, 49(4): 384-389.
[30] 童英, 洪大衛(wèi), 王濤, 等.中蒙邊境中段花崗巖時(shí)空分布特征及構(gòu)造和找礦意義[J] . 地球?qū)W報(bào), 2010, 31(3) : 395-412. Tong Ying, Hong Dawei, Wang Tao, et al . Spatial and Temporal Distribution of Granitoids in the Middle Segment of the Sino-Mongolian Border and Its Tectonic and Metallogenic Implications[J]. Acta Geoscientica Sinica, 2010, 31(3): 395-412.
[31] 辛后田, 滕學(xué)建, 程銀行. 內(nèi)蒙古東烏旗寶力高廟組地層劃分及其同位素年代學(xué)研究[J]. 地質(zhì)調(diào)查與研究, 2011, 34(1): 1-9. Xin Houtian, Teng Xuejian,Cheng Yinhang. Stratigraphic Subdivision and Isotope Geochronology Study on the Baoligaomiao Formation in the East Ujimqin County, Inner Mongolia[J] .Geological Survey and Research, 2011,34(1): 1-9.
[32] Robison P T, Zhou Meifu, Hu Xufeng, et al. Geo-chemical Constraints on the Origin of the Hegenshan Ophiolite, Inner Mongolia,China[J]. Journal of Asian Earth Sciences, 1999, 17: 423-442.
[33] 廖衛(wèi)華, 戎嘉余, 胡兆珣, 等.吉林中部志留——泥盆紀(jì)生物地層、群落生態(tài)及生物古地理[J]. 地層學(xué)雜志, 1995, 19(4): 241-249. Liao Weihua, Rong Jiayu, Hu Zhaoxun, et al. Silurian-Devonian Biostratigraphy, Synecology and Palaeobiogeography from Central Jilin, NE China[J]. Journal of Stratigraphy, 1995, 19(4): 241-249.
[34] 郭偉, 林英鐋, 劉廣虎. 內(nèi)蒙古西烏旗地區(qū)早二疊世皺紋珊瑚化石組合及其地質(zhì)意義[J]. 吉林大學(xué)學(xué)報(bào):地球科學(xué)版, 2003, 33(4): 399-405. Guo Wei, Lin Yingdang,Liu Guanghu. Early Permian Rugose Coral Assemblage and Its Geological Significances in Xiwuqi of Inner Mongolia[J]. Journal of Jilin University:Earth Science Edition,2003, 33(4): 399-405.
[35] 周志廣, 谷永昌, 柳長(zhǎng)峰, 等.內(nèi)蒙古東烏珠穆沁旗滿都胡寶拉格地區(qū)早——中二疊世華夏植物群的發(fā)現(xiàn)及地質(zhì)意義[J] .地質(zhì)通報(bào), 2010, 29(1): 21-25. Zhou Zhiguang, Gu Yongchang, Liu Changfeng,et al. Discovery of Early-Middle Permian Cathaysian Flora in Manduhubaolage Area, Dong Ujimqin Qi, Inner Mongolia, China and Its Geological Significance[J] . Geological Bulletin of China, 2010, 29(1): 21-25.
[36] 聶鳳軍, 江思宏, 張義, 等.中蒙邊境中東段金屬礦床成礦規(guī)律和找礦方向[M].北京:地質(zhì)出版社, 2007:1-574. Nie Fengjun, Jiang Sihong, Zhang Yi, et al. Metallogenic Studies and Prospecting Orientation in Central and Eastern Segments Along China-Mongolia Border[M]. Beijing: Geological Publishing House, 2007: 1-574.
[37] 張萬益, 聶鳳軍, 江思宏, 等.內(nèi)蒙古東烏珠穆沁旗巖漿活動(dòng)與金屬成礦作用[M].北京: 地質(zhì)出版社, 2009: 1-120. Zhang Wanyi, Nie Fengjun, Jiang Sihong, et al. Magmatic Activity and Metallogeny of Dong Ujimqin Banner, Inner Mongolia[M]. Beijing: Geological Publishing House, 2009:1-120.
[38] 趙一鳴, 王大畏, 張德全, 等. 內(nèi)蒙古東南部銅多金屬成礦地質(zhì)條件及找礦模式[M]. 北京:地震出版社, 1994:1-234. Zhao Yiming, Wang Dawei, Zhang Dequan, et al. Geological Setting and Exploration Model for the Polymetallic Deposits Occurring in the Southeastern Part of Inner Mongolia[M]. Beijing: Seismologic Publishing House,1994:1-234.
[39] 聶鳳軍, 江思宏, 張義, 等.中蒙邊境及鄰區(qū)斑巖型銅礦床地質(zhì)特征及成因[J].礦床地質(zhì), 2004, 23(2):176-189. Nie Fengjun, Jiang Sihong, Zhang Yi, et al. Geological Features and Origin of Porphyry Copper Deposits in China-Mongolia Border Region and Its Neighboring Area[J]. Mineral Deposits, 2004, 23(2):176-189.
[40] 宋彪, 張玉海, 萬渝生, 等. 鋯石SHRIMP樣品靶制作、年齡測(cè)定及有關(guān)現(xiàn)象討論[J]. 地質(zhì)論評(píng), 2002,48(增刊1): 26-30. Song Biao, Zhang Yuhai, Wan Yusheng, et al. The SHRIMP Sample Manufacture, Test and Explanation of Some Phenomena for the Zircon[J].Geological Review, 2002,48(Sup.l): 26-30.
[41] Black L P, Kamo S L, Allen C M, et al. TEMORA 1: A New Zircon Standard for Phanerozoic U-Pb Geochronology[J]. Chemical Geology, 2003, 200:155-170.
[42] Nasdala L,Hofmeister W G,Norberg N, et al.Zircon M257: A Homogeneous Natural Reference Material for the Ion Microprobe U-Pb Analysis of Zircon[J]. Geoanalytical Research, 2008, 32: 247-265.
[43] Compston W, Williams I S , Meyer C E. U-Pb Geochronology of Zircons from Lunar Breccia 73217 Using a Sensitive High Massresolution Ion Microprobe[J]. Geophys Res, 1984,B89(Sup.l): 525-534.
[44] Rubatto D, Gebauer D. Use of Cathodoluminescence for U-Pb Zircon Dating by IOM Microprobe: Some Examples from the Western Alps[C]//Cathodoluminescence in Geoscience.Berlin:Springer-Verlag, 2000:373-400.
[45] Hoskin P W O , Black L P. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon[J]. Journal of Metamorphic Geology, 2000, 18: 423-439.
[46] Middlemost E A K. Magmas and Magmatic Rocks[M]. London: Longman, 1985: 1-266.
[47] Maniar P D, Piccoli P M. Tectonic Discrimination of Granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643.
[48] McDonough W F, Sun S S, Ringwood A E, et al. Potassium, Rubidium, and Cesium in the Earth and Moon and the Evolution of the Mantle of the Earth[J].Geochimica et Cosmochimica Acta, 1982, 56: 1001-1012.
[49] Taylor S R , Mclennan S M. The Continental Crust: Its Composition and Evolution[M]. London: Blackwell, 1985: 57-72.
[50] 李昌年.火成巖微量元素巖石學(xué)[M].武漢: 中國(guó)地質(zhì)大學(xué)出版社, 1992: 1-195. Li Changnian. Trace Element Lithology of Magmatic Rock[M]. Wuhan: China University of Geosciences Press, 1992: 1-195.
[51] 鄧晉福,趙海玲,莫宣學(xué).中國(guó)大陸根-柱構(gòu)造:大陸動(dòng)力學(xué)的鑰匙[M].北京:地質(zhì)出版社, 1996: 1-110. Deng Jinfu, Zhao Hailing, Mo Xuanxue. Continental Root-Plume Tectonics of China:Key to Continental Dynamics[M]. Beijing: Geological Publishing House, 1996: 1-110.
[52] 謝建成, 陳思, 榮偉, 等. 安徽牯牛降A(chǔ)型花崗巖的年代學(xué)、地球化學(xué)和構(gòu)造意義[J].巖石學(xué)報(bào), 2012, 28(12): 4007-4020. Xie Jiancheng, Chen Si, Rong Wei, et al. Geochronology, Geochemistry and Tectonic Significance of Guniujiang A-Type Granite in Anhui Province[J]. Acta Petrologica Sinica, 2012, 28(12): 4007-4020.
[53] Liou J G, Zhang R Y, Ernst W G, et al. Mineral Paragenses in the Piampaludo Eclogitic Body, Gruppo di Voltri, Western Ligurian Alps[J]. Schweizerische Mineralogische und Petrographische Mitteilungen, 1998, 78: 317-335.
[54] Rudnick R L, Barth M, Horn I , et al. Rutile-Bearing Refractory Eclogites: Missing Link Between Continents and Depleted Mantle[J]. Science, 2000, 287(5451):278-281.
[55] Foley S, Tiepolo M, Vannucci R. Growth of Early Continental Crust Controlled by Melting of Amphibolite in Subduction Zones[J]. Nature, 2002, 417(6891): 837-840.
[56] Xiong X L, Adam, Green T H. Rutile Stability and Rutile/Melt HFSE Partitioning During Partial Melting of Hydrous Basalt: Implications for TTG Genesis[J]. Chemical Geology, 2005, 218(3/4):339-359.
[57] Cole R B, Stewart B W. Continental Margin Vol-canism at Sites of Spreading Ridge Subduction: Examples from Southern Alaska and Western California[J]. Tectonophysics, 2009, 464(1/2/3/4): 118-136.
[58] Ding X, Lundstrom C, Huang F, et al. Natural and Experimental Constraints on Formation of the Continental Crust Based on Niobium-Tantalum Fractionation[J]. International Geology Review, 2009, 51(6):473-501.
[59] DePaolo D J, Wasserburg G J. Inferences About Magma Sources and Mantle Structure from Variations of143Nd/144Nd[J]. Geophy Res Lett,1979, 3:743-746.
[60] Jahn B M, Condie K C. Evolution of the Kaapvaal Eraton as Viewed from Geochemical and Sm-Nd Isotopic Analyses of Intracrationic Pelites[J]. Geochim Cosmochim Acta, 1995, 59: 2239-2258.
[61] Wasserburg G J, Jacobsen S B, DePaolo D J,et al. Precise Determination of Sm/Nd Ratios, Sm and Nd Isotopic Abundances in Standard Solutions[J].Geochim et Cosmochim Acta,1981, 45:2311-2323.
[62] Loiselle M C, Wones D R. Characteristics and Origin of Anorogenic Granites[J]. Abstract Prog-GSA,1979,11(7):468.
[63] 袁忠信. 關(guān)于A型花崗巖命名問題的討論[J]. 巖石礦物學(xué)雜志, 2001, 20(3):293-296. Yuan Zhongxin. A Discussion on the Naming of A-Type Granite[J]. Acta Petrological et Mineralogica, 2001, 20(3):293-296.
[64] 廖忠禮, 莫宣學(xué), 潘桂棠,等. 西藏過鋁花崗巖鋯石群型的成因信息[J]. 大地構(gòu)造與成礦學(xué), 2006, 30(1): 63-71. Liao Zhongli, Mo Xuanxue, Pan Guitang, et al. Characteristics and Implication of the Topology of Zircons from the Peraluminous Granites in Tibet[J]. Geotectonica et Metallogenia, 2006, 30(1): 63-71.
[65] Collins W J, Beams S D, White A J R. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982,80: 189-200.
[66] Whalen J B, Currie K L, Chappell B W. A-Type Granites: Geochemical Characteristics, Discriminations and Petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95: 407-419.
[67] Frost B R, Barnes C G, Collins W J, et al. A Geochemical Classification for Granitic Rocks[J]. Journal of Petrology, 2001, 42(11): 2033-2048.
[68] Frost C D, Frost B R. On Ferroan (A-Type) Granitoids:Their Compositional Variability and Modes of Origin[J]. Journal of Petrology, 2011, 52 (1):39-53.
[69] 吳鎖平, 王梅英, 戚開靜. A型花崗巖研究現(xiàn)狀及其述評(píng)[J]. 巖石礦物學(xué)雜志, 2007, 26(1):57-66. Wu Suoping, Wang Meiying, Qi Kaijing. Present Situation of Researches on A-Type Granites: A Review[J]. Acta Petrologica et Mineralogica, 2007, 26(1):57-66.
[70] 陳江峰, 江博明. 釹、鍶、鉛同位素示蹤和中國(guó)東南大陸地殼演化[M]//鄭永飛.化學(xué)地球動(dòng)力學(xué).北京:科學(xué)出版社, 1999: 262-287. Chen Jiangfeng,Jiang Boming. Isotope Tracing of Nd, Sr and Pb, and Continental Crust Evolution of Southeastern China[M]//Zheng Yongfei.Chemical Geodynamics. Beijing: Science Press,1999: 262-287.
[71] Hugh R R. Using Geochemical Data: Evaluation, Presentation, Interpretation[M]. London:Longrnan Scientific Techoicail Limited,1993: 1-278.
[72] Goldstein S L, O’Nions R K, Hamiton P J. A Sm-Nd Study of Atmospheric Dusts and Particulates from Major River Systems[J]. Earth Planet Sci Lett, 1984, 70: 221-236.
[73] 吳福元, 李獻(xiàn)華, 楊進(jìn)輝,等.花崗巖成因研究的若干問題[J].巖石學(xué)報(bào), 2007, 23(6):1217-1238. Wu Fuyuan, Li Xianhua, Yang Jinhui, et al. Discussions on the Petrogenesis of Granites[J]. Acta Petrologica Sinica , 2007, 23(6):1217-1238.
[74] Jahn B M, Wu F Y, Hong D W. Important Crustal Growth in the Phanerozoic: Isotopic Evidence of Granitoids from East Central Asia[J]. Proc Indian Acad Sci:Earth Planet Sci, 2000: 109:5-20.
[75] Jahn B M, Wu F Y, Hong D W. Massive Granitoid Generation in Central Asia: Nd Isotope Evidence and Implication for Continental Growth in the Phanerozoic[J]. Epissodes, 2000, 23:82-92.
[76] Wu F Y, Sun D Y, Li H M, et al. A-Type Granites in Northeasern China: Age and Geochemical Constraints on Their Petrogenesis[J]. Chemical Geology, 2002,187:143-173.
[77] 洪大衛(wèi), 王式?jīng)? 謝錫林,等.從中亞正εNd(t)值花崗巖看超大陸演化和大陸地殼生長(zhǎng)的關(guān)系[J].地質(zhì)學(xué)報(bào), 2003, 77(2): 203-209. Hong Dawei, Wang Shiguang, Xie Xilin, et al . Correlation Between Continental Crustal Growth and the Supercontinental Cycle: Evidence from the Granites with PositiveεNd(t) in the Central Asian Orogenic Belt[J]. Acta Geologica Sinica, 2003, 77(2):203-209.
[78] 洪大衛(wèi), 王式?jīng)? 謝錫林,等. 試析地幔來源物質(zhì)成礦域:以中亞造山帶為例[J].礦床地質(zhì), 2003, 22(1):41-55. Hong Dawei, Wang Shiguang, Xie Xilin, et al. Metallogenic Province Derived from Mantle Sources: A Case Study of Central Asian Orogenic Belt[J]. Mineral Deposits, 2003, 22(1):41-55.
[79] Hu A Q, Jahn B M, Zhang G X , et al. Crustal Evolution and Phanerozoic Crustal in Northern Xinjiang: Nd Isotopic Evidence:Part Ⅰ:Isotopic Characteristics of Basement Rocks[J]. Tectonophysics, 2000, 328:15-51.
[80] Bernard-Griffiths J, Peucat J J, Sheppard S, et al. Petrogenesis of Hercynian Leucogranites from the Southern Armorican Massif: Contribution of REE and Isotopic (Sr, Nd, Pb,and O) Geochemical Data to the Study of Source Rock Characteristics and Ages[J].Earth Planet Sci Lett, 1985, 74:235-250.
[81] Downes H, Shaw A, Williamson B J, et al. Sr, Nd and Pb Isotope Geochemistry of the Hercynian Granodiorites and Monzogranites, Massif Central, France[J] . Chem Geol, 1997, 136: 99-122.
[82] Vidal P, Bernard-Griffiths J, Cocherie A, et al. Geo-chemical Comparison Between Himalayan and Hercynian Leucogranites[J]. Phys Earth Planet Interiors, 1984, 35: 179-190.
[83] Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. J Petrology, 1984, 25(4):956-983.
[84] Forster H J, Tischendorf G, Trumbull R B. An Evaluation of the Rb vs. (Y+Nb) Discrimination Diagram to Infer Tectonic Setting of Silicic Igneous Rocks[J]. Lithos, 1997, 40:261-293.
[85] Sylvester P J. Post-Collisional Alkaline Granites[J]. Journal of Geology, 1989, 97: 261-280.
[86] Eby G N. The A-Type Granitoids: A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis[J]. Lithos, 1990, 26:115-134.
[87] Eby G N. Chemical Subdivision of the A-Type Granitoids:Petrogenesis and Implications[J]. Geology, 1992, 20:641-644.
[88] Whalen J B, Jenner G A, Longstaffe F J, et al. Geochemical and Isotopic (O, Nd, Pb and Sr) Constraints on A-Type Granite: Petrogensis Based on the Topsails Igneous Suite, Newfopundland Appalachians[J]. Journal of Petrology, 1996, 37: 1463-1489.
[89] 張旗, 王焰, 李承東, 等.花崗巖的Sr-Yb分類及其地質(zhì)意義[J]. 巖石學(xué)報(bào), 2006, 22(9): 2249-2269. Zhang Qi, Wang Yan, Li Chengdong, et al. Granite Classification on the Basis of Sr and Yb Contents and Its Implications[J]. Acta Petrologica Sinica, 2006, 22(9): 2249-2269.
[90] 肖娥, 邱檢生, 徐夕生, 等.浙江瑤坑堿性花崗巖體的年代學(xué)、地球化學(xué)及其成因與構(gòu)造指示意義[J]. 巖石學(xué)報(bào), 2007, 23(6): 1431-1440. Xiao E, Qiu Jiansheng, Xu Xisheng, et al. Geochronology and Geochemistry of the Yaokeng Alkaline Granitic Pluton in Zhejiang Province: Petrogenetic and Tectonic Implications[J]. Acta Petrologica Sinica, 2007, 23(6):1431-1440.
[91] Bonin B.A-Type Granites and Related Rocks:Evo-lution of a Concept, Problems and Prospects[J]. Lithos, 2007, 97(1/2):1-29.
[92] 汪洋. 北京白查A型花崗巖的地球化學(xué)特征及其成因與構(gòu)造指示意義[J]. 巖石學(xué)報(bào), 2009, 25(1): 13-24. Wang Yang. Geochemistry of the Baicha A-Type Granite in Beijing Municipality: Petrogenetic and Tectonic Implications[J]. Acta Petrologica Sinica, 2009, 25(1): 13-24.
[93] Bonin B. Do Coval Mafic and Felsic Magmas in Post-Collisional to Within-Plate Regimes Necessarily Imply Two Contrasting, Mantle and Crustal, Sources? A Review[J]. Lithos, 2004, 78:1-24.
[94] 杜楊松, 曹毅, 袁萬明, 等. 安徽沿江地區(qū)中生代碰撞后到造山后巖漿活動(dòng)和殼幔相互作用:來自火山侵入雜巖和巖石包體的證據(jù)[J].巖石學(xué)報(bào), 2007, 23(6): 1294-1302. Du Yangsong, Cao Yi, Yuan Wanming, et al. Mesozoic Post-Collisional to Postorogenic Magmatic Activities and Crustal Interaction with Mantle Along the Yangtze River, Anhui Province: Evidence from Volcanic-Intrusive Complexes and Xenoliths[J]. Acta Petrologica Sinica, 2007, 23(6): 1294-1302.
[95] Pearce J A.Sources and Settings of Granitic Rock[J]. Episodes, 1996, 19( 4) : 120-125.
[96] 徐備, 陳斌, 張臣, 等. 中朝板塊北緣烏華敖包地塊釤-釹同位素等時(shí)線年齡及其意義[J]. 地質(zhì)科學(xué), 1994, 29(2):168-172. Xu Bei, Chen Bin, Zhang Chen, et al. Sm-Nd Isochron and Significance of the Wuhuaoubao Block in Northern Margin of Sino-Korean Plate[J]. Scientia Geologica Sinica, 1994, 29(2):168-172.
[97] Xiao W J, Windley B F, Hao J, et al. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt[J]. Tectonics, 2003, 22(6):1069,1069, doi:10.1029/2002TC001484.
[98] 程銀行, 滕學(xué)建, 辛后田, 等. 內(nèi)蒙古東烏旗狠麥溫都爾花崗巖SHRIMP鋯石U-Pb年齡及其地質(zhì)意義[J]. 巖石礦物學(xué)雜志, 2012, 31(3):323-334. Cheng Yinhang, Teng Xuejian, Xin Houtian, et al. SHRIMP Zircon U-Pb Dating of Granites in Mahonondor Area, East Ujimqin Banner, Inner Mongolia[J]. Acta Petrologica et Mineralogica, 2012, 31(3):323-334.
[99] 洪大衛(wèi), 王濤, 童英, 等. 華北地臺(tái)和秦嶺——大別——蘇魯造山帶的中生代花崗巖與深部地球動(dòng)力學(xué)過程[J]. 地學(xué)前緣, 2003, 10(3): 231-256. Hong Dawei, Wang Tao, Tong Ying, et al. Mesozoic Granitoids from North China Block and Qinling-Dabie-Sulu Orogenic Belt and Their Deep Dynamic Process[J]. Earth Science Frontiers, 2003, 10(3):231-256.
[100] 馬昌前, 佘振兵, 張金陽(yáng), 等. 地殼根、造山熱與巖漿作用[J].地學(xué)前緣, 2006, 13(2):130-139. Ma Changqian, She Zhenbing, Zhang Jinyang, et al. Crustal Roots, Orogrenic Heat and Magmatism[J]. Earth Science Frontiers, 2006, 13(2):130-139.
[101] Landenberger B, Collins W J. Derivation of A-Type Granites from a Dehydrated Charnockitic Lower Crust: Evidence from the Chaelumdi Complex, Eastern Australia[J]. Journal of Petrology, 1996, 37:145-170.
[102] Patino Dounce A E. Generation of Metalumious A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids[J]. Geology, 1997, 25:743-746.
[103] Turner S P, Foden J D, Morrison R S. Derivation of Some A-Type Magmas by Fractionation of Basaltic Magma: An Example from the Padthaway Ridge, South Australia[J]. Lithos, 1992, 28(2):151-179.
[104] King P L, Chappel B W, Allen C M, et al. Are A-Type Granites the High-Temperature Felsic Granites? Evidence from Fractionated Granites of the Wangrah Suite[J]. Australian Journal of Eaarth Sciences, 2001, 48(4):501-514.
[105] 魏春生. A型花崗巖成因模式及其地球動(dòng)力學(xué)意義[J].地學(xué)前緣, 2000, 7(1): 238. Wei Chunsheng. The Genesis Models of A-Type Granites and Its Significance in Geodynamics[J]. Earth Science Frontiers, 2000, 7(1): 238.
[106] 邱檢生, 王德滋, 蟹澤聰史, 等. 福建沿海鋁質(zhì)A型花崗巖的地球化學(xué)及巖石成因[J]. 地球化學(xué), 2000, 29(4): 313-321. Qiu Jiansheng, Wang Dezi, Satoshi K, et al. Geochemical and Petrogenesis of Aluminous A-Type Granites in the Coastal Area of Fujian Province[J]. Geochemica, 2000, 29(4): 313-321.
[107] 謝智, 鄭永飛, 閆峻, 等.大別山沙村中生代A型花崗巖和基性巖的源區(qū)演化關(guān)系[J]. 巖石學(xué)報(bào), 2004, 20(5): 1175-1184. Xie Zhi, Zheng Yongfei, Yan Jun, et al. Source Evolution Relationship Between A-Type Granites and Mafic Rocks from Shacun in Dabieshan[J]. Acta Petroligica Sinica, 2004, 20(5):1175-1184.
[108] 蘇玉平, 唐紅峰, 劉叢強(qiáng), 等. 新疆東準(zhǔn)噶爾蘇吉泉鋁質(zhì)A型花崗巖的確立及其初步研究[J]. 巖石礦物學(xué)雜志, 2006, 25(3): 175-184. Su Yuping, Tang Hongfeng, Liu Congqiang, et al. The Determination and a Preliminary Study of Sujiquan Aluminous A-Type Granites in East Junggar, Xinjiang[J]. Acta Petrologica et Mineralogica, 2006, 25(3):175-184.
[109] 張旗, 潘國(guó)強(qiáng), 李承東, 等.花崗巖結(jié)晶分離作用問題:關(guān)于花崗巖研究的思考之二[J]. 巖石學(xué)報(bào), 2007, 23(6): 1239-1251. Zhang Qi, Pan Guoqiang, Li Chengdong, et al. Does Fractionl Crystallization Occur in Granitic Magma? Some Crucial Questions on Granite Study:2[J].Acta Petrologica Sinica, 2007, 23(6):1239-1251.
[110] 肖慶輝, 鄧晉福, 馬大銓, 等.花崗巖研究思維與方法[M]. 北京:地質(zhì)出版社, 2002:1-294. Xiao Qinghui, Deng Jinfu, Ma Daquan, et al. The Way of Investigation on Granitoids[M]. Beijing: Geological Publishing House, 2002:1-294.
[111] 孫德有, 吳福元, 高山, 等.吉林中部晚三疊世和早侏羅世兩期鋁質(zhì)A型花崗巖的厘定及對(duì)吉黑東部構(gòu)造格局的制約[J]. 地學(xué)前緣, 2005, 12(2): 263-275. Sun Deyou, Wu Fuyuan, Gao Shan, et al. Confirmation of Two Episodes of A-Type Granite Emplacement During Late Triassic and Early Jurassic in the Central Jilin Province, and Their Constraints on the Structural Pattern of Eastern Jilin-Heilongjiang Area, China[J]. Earth Science Frontiers, 2005, 12(2):263-275.
[112] Sorensen S S. Petrology of Amphibolite Facies Mafic and Ultramafic Rocks from Catalina Schist, Southern California:Metamorphism and Magmatisation in a Subduction Zone Metamorphic Setting[J]. J Metamorphic Geor, 1988, 6: 405-435.
[113] 周紅升, 馬昌前, 張超, 等. 華北克拉通南緣泌陽(yáng)春水燕山期鋁質(zhì)A型花崗巖類:年代學(xué)、地球化學(xué)及其啟示[J]. 巖石學(xué)報(bào), 2008, 24(1):49-64. Zhou Hongsheng, Ma Changqian, Zhang Chao, et al. Yanshannian Aluminous A-Type Granitoids in the Chunshui of Biyang, South Margin of North China Craton: Implications from Petrology, Geochronology and Geochemistry[J]. Acta Petrologica Sinica, 2008, 24(1):49-64.
[114] Waston E B,Harrison T M.Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types[J]. Earth Planet Sci Lett, 1983, 64: 295-304.
[115] 陳培榮, 章邦桐. A型花崗巖類研究綜述[J]. 國(guó)外花崗巖類地質(zhì)與礦產(chǎn), 1994, 40(4): 9-14. Chen Peirong, Zhang Bangtong. Review of Study for A-Type Granitoid[J]. Geology and Mineral Resources of South China, 1994, 40(4): 9-14.
[116] 王強(qiáng), 王人鏡, 邱家驤, 等.大別山核部九資河花崗巖成因[J]. 地球化學(xué), 2000, 29(2): 120-131. Wang Qiang, Wang Renjing, Qiu Jiaxiang, et al. Petrogenesis of Jiuzihe Granites in the Core of Dabie Mountains[J]. Geochimica, 2000, 29(2): 120-131.
[117] 鄧晉福, 羅照華, 蘇尚國(guó), 等. 巖石成因構(gòu)造環(huán)境與成礦作用[M]. 北京: 地質(zhì)出版社, 2004: 42-101. Deng Jinfu, Luo Zhaohua, Su Shangguo, et al. Genesis of the Rocks, Tectonic Environment and Metallogenesis[M]. Beijing: Geological Publishing House, 2004: 42-101.
[118] Condie K C. Plate Tectonics and Crustal Evolution[M]. New York: Pergamon, 1982: 1-310.
[119] 鄧晉福, 蘇尚國(guó), 劉翠, 等.關(guān)于華北克拉通燕山期巖石圈減薄的機(jī)制與過程的討論: 是拆沉,還是熱侵蝕和化學(xué)交代?[J]. 地學(xué)前緣, 2006, 13(2):105-119. Deng Jinfu, Su Shangguo, Liu Cui, et al. Discussion on the Lithosperic Thinning of the North China Craton: Delamination or Thermal Erosion and Chemical Metasomatism?[J].Earth Science Frontiers, 2006, 13(2):105-119.
SHRIMP Zircon U-Pb Age and Geochemical Characteristics of the Achieng Qulu Monzogranite in Inner Mongolia
Wang Zhihua1,2, Chang Chunjiao2, Cong Runxiang2, Wang Liang1,2, Ma Dexi2, Wang Xiaojun2
1.SchoolofEarthSciencesandResources,ChinaUniversityofGeosciences,Beijing100083,China
2.InstituteofGoldGeology,ChineseArmedPoliceForce,Langfang065000,Hebei,China
The Achieng Qulu monzogranite complex is located in the middle of Early Paleozoic Chaganaobao-Aoyoute-Chaobuleng tectonic-magmatic belt which belongs to the southeast margin of the Siberian plate. The main rock types of the complex are moderate-and fine-grained monzogranite as well as moderate-and coarse-grained monzogranite. SHRIMP zircon U-Pb isotopic dating result indicates that the emplacement age of Achieng Qulu monzogranite is (296.3±3. 8) Ma, namely Late Hercynian. Rock geochemical analysis shows silicon-rich of the monzogranite, as peraluminous with SiO2content of 73.48% to 74.22%; with Al2O3content of 13.63% to 14.01% and A/CNK ratio of 1.04 to 1.10; alkali-rich, (K2O+Na2O) content of 8.08% to 8.54%, with Rittmann index of (σ) 2.13 to 2.46, relatively rich in potassium, K2O/Na2O ratio of 1.31 to 1.54, belonging to high-K calc-alkaline series; enriched in such large ion lithophile elements as Rb, Sr, Ba and light rare earth elements (LREE), relatively depleted in high field strength elements such as Ta, Nb, Ti; total REE to 112.05 × 10-6-130.16×10-6, moderate negative Eu anomality (δEu = 0.52 to 0.65), showing a slightly rightward with steep LREE line and slow HREE line, containing geochemical characteristics of from post-collision high-K granite to A-type granites. Relatively low initial87Sr/86Sr ratios (0.703 849 to 0.704 236) and positiveεNd(t) values (4.2 to 4.3), reflect that the material source of the complex may be mainly derived from the new continental crust formed by underplating of mantle-derived magma. Based on the data mentioned above and discrimination on tectonic setting, combined with regional comparison, we conclude that the Achieng Qulu monzogranite belongs to post-collision high-K calc-alkaline granite derived from the partial melting of the upper crust, which is caused by sub-ducted slab break-off, asthenosphere upwelling and partial melting of the lithosphere mantle, meanwhile, part of the mantle-derived magma under-plated to the lower part of the crust or formed mafic intrusions invading crust. These events took place under the dynamics background of lithosphere transforming from compressive thickening to extension system. This recognition provides petrology evidence and age restricting for the Late Paleozoic tectonic magmatic evolution of East Wuzhu Muqinqi and for post-orogenic extensional tectonic mechanism transformation from geochemical combination after the collision against Siberian plate and the North China plate.
monzogranite;SHRIMP zircon U-Pb age;geochemistry;post-collision;Inner Mongolia; Achieng Qulu
10.13278/j.cnki.jjuese.201501114.
2014-03-02
中國(guó)地質(zhì)調(diào)查局礦產(chǎn)資源遠(yuǎn)景調(diào)查評(píng)價(jià)項(xiàng)目(1212011085263)
王治華(1978——),男,博士研究生,高級(jí)工程師,主要從事金礦地質(zhì)研究工作,E-mail:zhihuawang686@sina.com。
10.13278/j.cnki.jjuese.201501114
P588.121
A
王治華,常春郊,叢潤(rùn)祥,等. 內(nèi)蒙古阿欽楚魯二長(zhǎng)花崗巖鋯石SHRIMP U-Pb年齡及地球化學(xué)特征.吉林大學(xué)學(xué)報(bào):地球科學(xué)版,2015,45(1):166-187.
Wang Zhihua, Chang Chunjiao, Cong Runxiang, et al.SHRIMP Zircon U-Pb Age and Geochemical Characteristics of the Achieng Qulu Monzogranite in Inner Mongolia.Journal of Jilin University:Earth Science Edition,2015,45(1):166-187.doi:10.13278/j.cnki.jjuese.201501114.
吉林大學(xué)學(xué)報(bào)(地球科學(xué)版)2015年1期