李睿達(dá), 張 凱, 蘇 丹, 逯 非, 萬(wàn)五星,3, 王效科, 鄭 華,*
1 城市與區(qū)域生態(tài)國(guó)家重點(diǎn)實(shí)驗(yàn)室中國(guó)科學(xué)院生態(tài)環(huán)境研究中心, 北京 100085 2 中國(guó)科學(xué)院大學(xué), 北京 100049 3 河北師范大學(xué)生命科學(xué)學(xué)院, 石家莊 050016
施氮對(duì)桉樹人工林生長(zhǎng)季土壤溫室氣體通量的影響
李睿達(dá)1,2, 張 凱1,2, 蘇 丹1,2, 逯 非1, 萬(wàn)五星1,3, 王效科1, 鄭 華1,*
1 城市與區(qū)域生態(tài)國(guó)家重點(diǎn)實(shí)驗(yàn)室中國(guó)科學(xué)院生態(tài)環(huán)境研究中心, 北京 100085 2 中國(guó)科學(xué)院大學(xué), 北京 100049 3 河北師范大學(xué)生命科學(xué)學(xué)院, 石家莊 050016
施肥是維持短期輪伐人工林生產(chǎn)量的重要手段,為了提高肥料利用效率,緩釋氮肥逐漸成為廣泛采用的氮肥種類。評(píng)估緩釋肥施用對(duì)人工林生長(zhǎng)季土壤溫室氣體通量的影響對(duì)于全面評(píng)估人工林施肥的環(huán)境效應(yīng)具有重要意義。以我國(guó)南方廣泛種植的桉樹林為對(duì)象,采用野外控制實(shí)驗(yàn)研究了4種施氮處理(對(duì)照CK:0 kg/hm2;低氮L:84.2 kg/hm2;中氮M:166.8 kg/hm2;高氮H:333.7 kg/hm2)對(duì)土壤-大氣界面3種溫室氣體(CO2、N2O和CH4)通量的影響,結(jié)果表明:(1)4種施氮水平下CO2排放通量、N2O排放通量和CH4吸收通量分別為276.84—342.84 mg m-2h-1、17.64—375.34 μg m-2h-1和29.65—39.70 μg m-2h-1;施氮顯著促進(jìn)了N2O的排放(P<0.01),高氮處理顯著增加CO2排放和顯著減少CH4吸收(P<0.05),且CO2排放通量與CH4吸收通量隨著施氮量的增加分別呈現(xiàn)增加和減少的趨勢(shì);(2)生長(zhǎng)季CO2和N2O排放呈現(xiàn)顯著正相關(guān)(P<0.01),CO2排放和CH4吸收呈現(xiàn)顯著負(fù)相關(guān)(P<0.05),N2O排放和CH4吸收呈現(xiàn)顯著負(fù)相關(guān)(P<0.01);(3)土壤溫度和土壤水分是影響CO2、N2O排放通量和CH4吸收通量的主要環(huán)境因素。結(jié)果表明:施用緩釋肥顯著增加了桉樹林生長(zhǎng)季土壤N2O排放量,且高氮處理還顯著促進(jìn)CO2排放和顯著抑制CH4吸收,上述研究結(jié)果可為人工林緩釋肥對(duì)土壤溫室氣體通量評(píng)估提供參數(shù)。
桉樹人工林; 緩釋氮肥; 溫室氣體通量
全球氣溫升高和人為導(dǎo)致的氮素累積是全球變化的兩大根本因素。全球變暖與大氣中CO2、N2O和CH4等溫室氣體濃度的升高密切相關(guān)。其中,CO2是大氣中最主要的溫室氣體[1]。從工業(yè)革命開始大氣中的N2O濃度急劇上升,到目前N2O向全球排放貢獻(xiàn)了8%的溫室氣體[2]。土壤微生物是產(chǎn)生N2O的主要途徑,并隨著添加氮肥的增加而增加。從1860年至2055年間2.5%的氮肥轉(zhuǎn)化為N2O[3]。CH4化學(xué)性質(zhì)非?;钴S,參與改變大氣的化學(xué)組成的活動(dòng)[4]。CH4與對(duì)流層的羥基自由基反應(yīng),減少羥基自由基的氧化能力,消減大氣污染物(如氟氯碳化物),同時(shí)促進(jìn)其他溫室氣體(O3,CO和CO2)的生成。在平流層,CH4與大氣多種組分發(fā)生反應(yīng)生成水蒸氣,繼而破壞平流層臭氧。因此,對(duì)溫室氣體產(chǎn)生和消耗機(jī)制的研究引起了廣泛關(guān)注。
全球人工林約占森林總面積的7%,并以每年約500萬(wàn)公頃的速度增加[5]。施肥是人工林提高木材產(chǎn)量、促進(jìn)可持續(xù)經(jīng)營(yíng)的主要管理措施之一,這一措施會(huì)改變?nèi)斯ち值纳锘瘜W(xué)循環(huán)并對(duì)全球溫室效應(yīng)產(chǎn)生極重要的反饋[6]。因此,研究施肥對(duì)人工林溫室氣體排放的影響,對(duì)于提高肥料利用效率、減少環(huán)境污染[7]和評(píng)估溫室效應(yīng)具有重要意義。外源氮的添加對(duì)土壤-大氣界面溫室氣體通量的影響已獲得了大量深入的研究[8-9],但不同地區(qū)、不同施氮措施導(dǎo)致氮肥對(duì)溫室氣體產(chǎn)生和消耗的影響存在極大爭(zhēng)議,難以獲得一致的觀點(diǎn)[10-12]。尿素等速效氮肥作為基肥施用會(huì)顯著增加N2O排放[13]同時(shí)抑制CH4氧化[14]。已有研究表明不同的施氮種類會(huì)造成溫室氣體排放的顯著差異[15]。如尿素和緩釋氮肥對(duì)旱地玉米地土壤CO2排放通量達(dá)到顯著差異水平[16],不同的氮肥對(duì)土壤CH4氧化速率也帶來(lái)顯著的差異[17]。由于緩釋氮肥在人工林的應(yīng)用尚未完全展開,因此深入研究緩釋氮肥對(duì)人工林溫室氣體的影響顯得越發(fā)重要和緊迫。
桉樹是我國(guó)南方地區(qū)大面積種植的速生豐產(chǎn)樹種,桉樹人工林緊緊依賴縮短輪伐時(shí)間和大量添加氮肥來(lái)提高木材的生產(chǎn)量。為提高肥料利用效率,緩釋氮肥正在逐漸代替速效氮肥被廣泛采用[18]。本文以桉樹人工林3種強(qiáng)度的緩釋氮肥對(duì)土壤3種溫室氣體的動(dòng)態(tài)變化進(jìn)行比較研究,其目的是:(1)明確緩釋肥及其施肥強(qiáng)度對(duì)CO2、N2O和CH4氣體排放或吸收動(dòng)態(tài)及量值的影響;(2)揭示生長(zhǎng)季人工林土壤CO2、N2O和CH4氣體通量的相關(guān)關(guān)系;(3)研究環(huán)境因子對(duì)桉樹林土壤CO2、N2O和CH4氣體的影響。
本研究樣地位于我國(guó)廣西省扶綏縣國(guó)有東門林場(chǎng)(107°15′—108°00′ E,22°17′—22°30′ N)。該地區(qū)屬于北熱帶季風(fēng)氣候區(qū),光熱充足,雨熱同季,夏濕冬干,年平均氣溫21.2—22.3 ℃,1月均溫13.2 ℃,7月均溫27.9 ℃。年降雨量1100—1300 mm,主要集中在6—8月,占全年降雨量的51.03%。研究區(qū)域土壤以砂頁(yè)巖發(fā)育而成的赤紅壤為主,pH值在4.0—6.0之間。
廣西東門林場(chǎng)是亞洲最大的桉樹基因庫(kù),主要經(jīng)營(yíng)以桉樹為主的商品用材林。在廣西東門林場(chǎng)選取林齡2年的桉樹林樣地20塊,取樣測(cè)定土壤養(yǎng)分狀況,從20塊樣地中,選擇代表平均肥力水平的樣地開展施肥梯度實(shí)驗(yàn)。樣地基本特征是:pH值為3.91,土壤總碳、總氮分別為(2.31±0.13)g/kg和(0.15±0.02)g/kg,速效鉀為(88.85±11.1)μg/g,土壤碳氮比為15.57±0.79。樣地平均坡度約為10°,林木行距4 m,株距2 m,林下植被有桃金娘(Rhodomyrtustomentos)、余甘子(Phyllanthusemblica)、三叉苦(Euodialepta)、飛機(jī)草(Eupatoriumodoratum)、白茅(Imperatacylindrica)等,植被覆蓋度為 60%。
結(jié)合當(dāng)?shù)厥┓柿?xí)慣和施肥強(qiáng)度,采用的施肥方式為穴施(距桉樹樹干基部30—40 cm處挖10 cm深的坑穴,放入肥料后,覆土),肥料種類為脲甲醛緩釋氮肥(含氮量 38.5%,上海大洋生態(tài)有機(jī)肥有限公司),施氮時(shí)間為2013年5月19日。在桉樹林樣地中設(shè)置4個(gè)施氮梯度:對(duì)照(CK 0 kg/hm2)、低氮(L 84.2 kg/hm2)、中氮(M 166.8 kg/hm2)和高氮(H 333.7 kg/hm2),其中中氮水平為東門林場(chǎng)常規(guī)施氮水平。每個(gè)樣地包含12個(gè)10 m×10 m的樣方,每個(gè)樣方之間設(shè)置5 m緩沖帶,每個(gè)施氮水平設(shè)置3個(gè)重復(fù)。
取樣時(shí)間為2013年5月至2013年11月,根據(jù)氣象條件,在桉樹生長(zhǎng)季取樣5次。土壤溫室氣體通量測(cè)定采用靜態(tài)箱—?dú)庀嗌V法。為保證試驗(yàn)的平行性,每次采集氣體樣品時(shí),均在同一點(diǎn)進(jìn)行。采樣前將地表凋落物清理干凈。采樣箱為組合式,由基座和頂箱(透明亞克力)兩部分組成?;?含水封槽):長(zhǎng)×寬×高=41 cm×41 cm×5 cm;頂箱:長(zhǎng)×寬×高=40 cm×40 cm×40 cm。箱蓋裝有空氣攪拌小風(fēng)扇、溫度計(jì)和采氣三通閥。采樣時(shí)間為9:00—11:00。采樣時(shí)間為30 min,每隔10 min用QC-1S型氣體采樣儀(北京市勞保所科技發(fā)展有限責(zé)任公司)每次抽取箱內(nèi)氣體300 mL于500 mL氣體采樣袋(大連海德科技有限公司)中。樣品采集后及時(shí)帶回實(shí)驗(yàn)室采用安捷倫7890A型氣相色譜儀(7890A GC System, USA)同時(shí)測(cè)定CO2、N2O和CH4氣體濃度。
采用下列公式計(jì)算氣體通量(單位時(shí)間內(nèi)單位面積土壤表面氣體質(zhì)量的變化):
F=ρ×V/A×Δc/Δt×273/(273+T)
式中,F(xiàn)為氣體通量(mg m-2h-1,N2O和CH4氣體通量單位為μg m-2h-1),ρ為標(biāo)準(zhǔn)狀態(tài)下的氣體密度(mg/m3),V為靜態(tài)箱的體積(m3),A為靜態(tài)箱橫斷面面積(m2),Δc/Δt為Δt時(shí)間內(nèi)靜態(tài)箱內(nèi)氣體濃度變化速率(m3m-3h-1),T為空氣溫度(℃)。每個(gè)處理下的樣地設(shè)置3個(gè)重復(fù),測(cè)量所得的通量數(shù)據(jù),對(duì)4個(gè)氣樣濃度進(jìn)行線性回歸,只有當(dāng)回歸系數(shù)R2>0.80時(shí),才視為有效數(shù)據(jù)。
采集溫室氣體時(shí),采用土壤溫度水分測(cè)定儀(浙江托普儀器有限公司)同步測(cè)定靜態(tài)箱附近0—5 cm深土壤溫度(T5)和0—10 cm深土壤含水量(W10)。
所有數(shù)據(jù)分析和處理主要借助SPSS 16.0和Sigma Plot 11.0完成。采用雙因素方差分析和Duncan多重比較法檢驗(yàn)不同采樣時(shí)間和施氮處理之間各指標(biāo)的差異顯著性。采用Spearman相關(guān)研究法分析溫室氣體通量間及其與環(huán)境因子間的相關(guān)關(guān)系。采用線性回歸建立施氮量與溫室氣體通量的關(guān)系。
由圖1可知,在桉樹人工林的生長(zhǎng)季過(guò)程中CO2和N2O排放通量呈現(xiàn)出先劇烈增加后逐漸降低的趨勢(shì)。雙因素方差分析表明CO2排放在不同的采樣時(shí)間,其差異達(dá)到極顯著水平(表1):CO2排放通量在6—8月達(dá)到最高,其次是9月的通量值,10—11月間排放通量最低,這一階段的CO2排放通量與施肥前的通量無(wú)顯著性差異。N2O排放在不同采樣時(shí)間也達(dá)到極顯著性差異(表1):N2O排放通量在6月底(施氮后5周)顯著高于其他月份,8—9月的通量顯著高于10—11月。生長(zhǎng)季后期,N2O排放通量與施肥前的通量無(wú)顯著性差異。在生長(zhǎng)季,時(shí)間對(duì)CH4吸收通量的影響并不顯著(表1)。
表1 氮肥與時(shí)間對(duì)溫室氣體通量影響的雙因素方差分析結(jié)果
圖1 溫室氣體通量時(shí)間動(dòng)態(tài)變化Fig.1 Temporal dynamics of GHGs fluxes
由表2可知,高氮處理下的CO2排放通量與對(duì)照處理差異顯著(P<0.05);各個(gè)施氮水平的N2O排放通量均顯著高于對(duì)照(P<0.05);高氮處理下的CH4吸收通量與對(duì)照處理差異顯著(P<0.05)。CO2、N2O的排放通量與施氮量呈現(xiàn)極顯著的線性正相關(guān)(圖2,P<0.001),CH4吸收通量與施氮量呈現(xiàn)極顯著的線性負(fù)相關(guān)(圖2,P<0.01)。
表2 不同施氮處理下的溫室氣體通量均值多重比較
圖2 施氮水平對(duì)溫室氣體通量的影響Fig.2 Effects of fertilization levels on GHGs fluxes
由表3可知,在桉樹生長(zhǎng)季土壤CO2與N2O排放通量的相關(guān)系數(shù)為0.662,達(dá)到了極顯著正相關(guān)關(guān)系(P<0.01)。土壤CO2排放吸收通量與CH4吸收通量的相關(guān)系數(shù)為-0.277,達(dá)到了顯著負(fù)相關(guān)關(guān)系(P<0.05)。土壤N2O排放通量與CH4吸收通量的相關(guān)系數(shù)為-0.362,達(dá)到了極顯著負(fù)相關(guān)關(guān)系(P<0.01)。
在生長(zhǎng)季土壤溫度平均值的變幅為21.57—28.28 ℃,土壤含水量平均值的變幅為9.15—16.11%。由表2可知,土壤溫度顯著影響了3種溫室氣體通量(P<0.01):與CO2和N2O排放呈正相關(guān),并與CH4吸收呈負(fù)相關(guān)。土壤含水量與CO2和N2O排放存在顯著的正相關(guān)(P<0.01和P<0.05)??梢姡寥罍囟群秃恳彩怯绊戣駱淙斯ち稚L(zhǎng)季溫室氣體排放通量的重要因素。
表3 桉樹人工林溫室氣體通量間及其與環(huán)境因子的相關(guān)系數(shù)
N2O排放通量與氮肥施用量呈線性正相關(guān)(圖2,P<0.01)。這與Kim等在日本落葉松林添加不同梯度的NH4NO3溶液結(jié)果一致[11]。氮添加后N2O排放明顯增加的原因可能有:(1)土壤氮素供需不平衡。土壤微生物和植物對(duì)氮素的吸收低于肥料的釋放量,氮素在添加進(jìn)入土壤后被硝化細(xì)菌和反硝化細(xì)菌利用產(chǎn)生了大量的N2O[20-22],歐洲已有研究表明,施加NH4NO3后N2O的排放通量高出對(duì)照的8倍[23];(2)氮的添加刺激桉樹生長(zhǎng),因此根系生物量累積增加,有利于微生物從根部獲取更多的碳源作為硝化和反硝化反應(yīng)的底物并為微生物提供能量,進(jìn)而促進(jìn)N2O的排放[24];(3)外源氮的輸入刺激土壤營(yíng)養(yǎng)元素的礦化分解,更多可利用性礦化態(tài)氮釋放進(jìn)入土壤,進(jìn)一步造成氮素在短期內(nèi)無(wú)法利用,而以氣態(tài)擴(kuò)散或淋溶的形式流失[25-26]。
在桉樹人工林施肥條件下,土壤CO2排放與N2O排放有顯著的正相關(guān)關(guān)系(表2,P<0.01)。這與在溫室氣體在自然條件的濕地[33]和草地[34]的類似研究結(jié)果一致。然而施氮后CO2與N2O的排放保持正相關(guān)的可能原因是:(1)土壤微生物通過(guò)分解有機(jī)質(zhì)獲得基質(zhì)和能量,以促進(jìn)氮的礦化分解和遷移轉(zhuǎn)化,因此硝化和反硝化反應(yīng)與土壤有機(jī)質(zhì)的礦化緊密相關(guān)[33],故CO2與N2O的排放存在顯著正相關(guān);(2)CO2與N2O對(duì)氮添加的響應(yīng)具有同向性。與認(rèn)為施氮抑制土壤呼吸的研究結(jié)果不同,本研究發(fā)現(xiàn)施氮處理下CO2排放通量與施氮量存在良好的正相關(guān)關(guān)系(圖2),這與莫江明等[35]在廣東鼎湖山季風(fēng)林模擬土壤CO2排放對(duì)氮沉降的響應(yīng)結(jié)果一致:各個(gè)施氮水平均均促進(jìn)了土壤CO2的排放量;(3)植物和土壤通過(guò)蒸騰和蒸發(fā)作用形成根際干燥的土壤條件,增加了根際氧氣的擴(kuò)散速率[36],有利于土壤有機(jī)質(zhì)的分解和氮素的礦化轉(zhuǎn)移,進(jìn)而促進(jìn)了CO2和N2O排放。
本研究發(fā)現(xiàn)土壤CO2排放通量與CH4吸收通量存在顯著的負(fù)相關(guān)(表2,P<0.05)。Koschorreck和Conrad的研究發(fā)現(xiàn)在有機(jī)質(zhì)土層(O horizon)具有大量新鮮的或部分分解的有機(jī)物質(zhì),CO2在該層達(dá)到最大值,然而未觀測(cè)到CH4氧化[37]。造成CH4氧化與CO2排放不同步或者呈現(xiàn)相反關(guān)系的原因可能是:(1)CH4氧化通常受到氮肥的抑制,而氮肥對(duì)生長(zhǎng)季的人工林土壤CO2排放表現(xiàn)為促進(jìn)作用;(2)在微生境尺度上,CH4吸收速率的減少歸因于土壤呼吸的增加進(jìn)而引起的土壤氧氣限制[38]。土壤呼吸的大量產(chǎn)生造成土壤局部環(huán)境氧壓的減少,進(jìn)而阻礙CH4氧化。
桉樹生長(zhǎng)季N2O排放通量與CH4氧化通量之間存在顯著正相關(guān)(表2,P<0.01),同時(shí)由圖1可知,在生長(zhǎng)季N2O排放與CH4吸收通量之間大致呈現(xiàn)相反的變化趨勢(shì)。徐慧等[39]在長(zhǎng)白山不同土壤測(cè)定溫室氣體通量時(shí)發(fā)現(xiàn),6—8月間N2O排放和CH4吸收之間存在一種互為消長(zhǎng)的關(guān)系。這可能是由于:(1)施肥使甲烷氧化細(xì)菌(CH4oxidizing bacteria)的相對(duì)活性由甲烷氧化菌(methanotrophs)主導(dǎo)轉(zhuǎn)變?yōu)橄趸?xì)菌(nitrifying bacteria)主導(dǎo)[13],而這一轉(zhuǎn)變同時(shí)導(dǎo)致了土壤CH4吸收量的減弱和N2O排放的加強(qiáng)。因此,在桉樹生長(zhǎng)季2種溫室氣體表現(xiàn)相反的變化趨勢(shì)(圖2);(2)土壤溫度對(duì)N2O和CH4氣體的影響相反。N2O隨著土壤溫度的降低其排放通量顯著逐漸降低(表3,P<0.01),而CH4的吸收則與土壤溫度呈現(xiàn)顯著的負(fù)相關(guān)(表3,P<0.01)。
在桉樹人工林生長(zhǎng)季,土壤呼吸表現(xiàn)出顯著的季節(jié)性動(dòng)態(tài)變化(表1),與我國(guó)熱帶雨林或常綠闊葉林等森林生態(tài)系統(tǒng)中的觀測(cè)結(jié)果一致[40-41]。CO2排放通量在生長(zhǎng)季前期增加隨著生長(zhǎng)季的結(jié)束出現(xiàn)下降,這可能與6—8月降雨集中、氣溫較高有關(guān)(表2)。在此期間,植物生長(zhǎng)迅速且土壤微生物活性較強(qiáng),分解有機(jī)質(zhì)能力高于非生長(zhǎng)季,因此土壤CO2排放通量出現(xiàn)明顯增加[24][42-43]。
土壤溫度和含水量是影響土壤N2O排放的重要環(huán)境因子。硝化過(guò)程的最適溫度為25—35 ℃[36],與本次研究桉樹林生長(zhǎng)季的土壤溫度在21.57—28.28 ℃接近,這可能是本研究中土壤溫度與N2O排放相關(guān)性高的原因。當(dāng)土壤處于飽和含水量以下,硝化作用產(chǎn)生的N2O占總產(chǎn)生量的61%—98%,此時(shí)N2O排放通量隨著土壤含水量的增加而增加[36],即硝化作用是產(chǎn)生N2O的主導(dǎo)過(guò)程。由圖2和表3可知,土壤溫度、含水量和施氮對(duì)土壤N2O排放均產(chǎn)生顯著效應(yīng)。
土壤溫度主要通過(guò)影響甲烷氧化菌酶的活性影響土壤吸收CH4,由于CH4氧化菌是中溫性微生物,土壤吸收CH4的最適溫度為20—30 ℃[44]。然而,本研究中人工林6—11月土壤平均溫度在21.57—28.28 ℃,卻發(fā)現(xiàn)CH4吸收通量與土壤溫度呈顯著的負(fù)相關(guān)(P<0.01)。這可能由于其他因素,如施氮的影響掩蓋了土壤溫度對(duì)CH4的實(shí)際影響。此外,CH4吸收與土壤含水量關(guān)系不顯著(P>0.05),可能是由于研究區(qū)域土壤排水良好,土壤含水量在生長(zhǎng)季處于較低水平(<20%)。這與陳匆瓊等[45]在中亞熱帶米櫧天然林的結(jié)果類似。
研究表明,盡管施氮水平、土壤溫度和土壤含水量3個(gè)因子均表現(xiàn)出與CO2和N2O的排放呈正相關(guān),而與CH4的吸收通量呈負(fù)相關(guān)(圖2,表3),但土壤3種溫室氣體通量并非受到某單一因子的影響,而是受到施氮、土壤溫度和土壤含水量等因子共同作用。已有的研究結(jié)果也表明:土壤溫度和含水量增加會(huì)導(dǎo)致森林土壤的CO2和N2O表現(xiàn)為排放源[46]。本研究中,溫室氣體通量受施氮水平、土壤溫度和土壤含水量3個(gè)因子共同作用的影響,CO2和N2O排放通量以及CH4吸收通量既在不同的施氮處理間呈現(xiàn)顯著差異,也存在明顯的時(shí)間動(dòng)態(tài)規(guī)律。
[1] Jassal R S, Black T A, Trofymow J, Roy R, Nesic Z. Soil CO2and N2O flux dynamics in a nitrogen-fertilized Pacific Northwest Douglas-fir stand. Geoderma, 2010, 157(3): 118-125.
[2] Harter J, Krause H M, Schuettler S, Ruser R, Fromme M, Scholten T, Kappler A, Behrens S. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. The ISME Journal, 2014, 8(3): 660-674.
[3] Davidson E A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nature Geoscience, 2009, 2(9): 659-662.
[4] Le Mer J, Roger P. Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology,2001, 37(1): 25-50.
[5] Global Forest Resources Assessments (FRA). Global Forest Resources Assessment 2010. FAO Forestry Paper, 2010: 163-163.
[6] Basiliko N, Khan A, Prescott C E, Roy R, Grayston S J. Soil greenhouse gas and nutrient dynamics in fertilized western Canadian plantation forests. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 2009, 39(6): 1220-1235.
[7] Smith V H. Eutrophication of freshwater and coastal marine ecosystems a global problem. Environmental Science and Pollution Research, 2003, 10(2): 126-139.
[8] Janssens I A, Dieleman W, Luyssaert S, Subke J A, Reichstein M, Ceulemans R, Ciais P, Dolman A J, Grace J, Matteucci G, Papale D, Piao S L, Schulze E D, Tang J, Law B E. Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 2010, 3(5): 315-322.
[9] B?rjesson G, Nohrstedt H ?. Short-and long-term effects of nitrogen fertilization on methane oxidation in three Swedish forest soils. Biology and Fertility of Soils, 1998, 27(2): 113-118.
[10] J?ger N, Duffner A, Ludwig B, Flessa H. Effect of fertilization history on short-term emission of CO2and N2O after the application of different N fertilizers -a laboratory study. Archives of Agronomy and Soil Science, 2013, 59(2): 161-171.
[11] Kim Y S, Imori M, Watanabe M, Hatano R, Yi M J, Koike T. Simulated nitrogen inputs influence methane and nitrous oxide fluxes from a young larch plantation in northern Japan. Atmospheric Environment, 2012, 46 (1): 36-44.
[12] Moscatelli M C, Lagornarsino A, De Angelis P, Grego S. Short-and medium-term contrasting effects of nitrogen fertilization on C and N cycling in a poplar plantation soil. Forest Ecology and Management, 2008, 255(3/4): 447-454.
[13] Castro M S, Peterjohn W T, Melillo J M, Steudler P A, Gholz H L, Lewis D. Effects of nitrogen fertilization on the fluxes of N2O, CH4, and CO2from soils in a Florida slash pine plantation. Canadian Journal of Forest Research, 1994, 24(1): 9-13..
[14] 張廣斌, 馬靜, 馬二登, 徐華, 蔡祖聰. 尿素施用對(duì)稻田土壤甲烷產(chǎn)生、氧化及排放的影響. 土壤, 2010, 42(2): 178-183.
[15] Inselsbacher E, Wanek W, Ripka K, Hackl E, Sessitsch A, Strauss J, Zechmeister-Boltenstern S. Greenhouse gas fluxes respond to different N fertilizer types due to altered plant-soil-microbe interactions. Plant and Soil, 2011, 343(1/2): 17-35.
[16] 張俊麗, 高明博, 溫曉霞, 陳月星, 楊生婷, 李露, 廖允成. 不同施氮措施對(duì)旱作玉米地土壤酶活性及CO2排放量的影響. 生態(tài)學(xué)報(bào), 2012, 32(19): 6147-6154.
[17] 葛瑞娟, 宋長(zhǎng)春, 王麗麗, 楊桂生. 氮輸入對(duì)小葉章濕地土壤甲烷產(chǎn)生與氧化能力的影響. 濕地科學(xué), 2010, 8(2): 176-181.
[18] 薛利紅, 俞映驚, 楊林章. 太湖流域稻田不同氮肥管理模式下的氮素平衡特征及環(huán)境效應(yīng)評(píng)價(jià). 環(huán)境科學(xué), 2011, 32(4): 1133-1138.
[19] Hanson P, Edwards N, Garten C, Andrews J. Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry, 2000, 48(1): 115-146.
[20] Currie W S. The responsive C and N biogeochemistry of the temperate forest floor. Trends in Ecology and Evolution, 1999, 14(8): 316-320.
[21] Matson P, Lohse K A, Hall S J. The globalization of nitrogen deposition: consequences for terrestrial ecosystems. AMBIO: A Journal of the Human Environment, 2002, 31(2): 113-119.
[22] Venterea R T, Groffman P M, Verchot L V, Magill A H, Aber J D, Steudler P A. Nitrogen oxide gas emissions from temperate forest soils receiving long-term nitrogen inputs. Global Change Biology, 2003, 9(3): 346-357.
[23] Sitaula B, Sitaula J, Aakra ?, Bakken L. Nitrification and methane oxidation in forest soil: Acid deposition, nitrogen input and plant effects. Water, Air, and Soil Pollution, 2001, 130(1/4): 1061-1066.
[24] 宋長(zhǎng)春, 張麗華, 王毅勇, 趙志春. 淡水沼澤濕地CO2, CH4和N2O排放通量年際變化及其對(duì)氮輸入的響應(yīng). 環(huán)境科學(xué), 2007, 27(12): 2369-2375.
[25] Aarnio T, Martikainen P. Mineralization of C and N and nitrification in Scots pine forest soil treated with nitrogen fertilizers containing different proportions of urea and its slow-releasing derivative, ureaformaldehyde. Soil Biology and Biochemistry, 1995, 27(10): 1325-1331.
[26] Bargali S S, Singh S P. Aspects of productivity and nutrient cycling in an 8-year-old Eucalyptus plantation in a moist plain area adjacent to central Himalaya, India. Canadian Journal of Forest Research, 1991, 21(9): 1365-1372.
[27] Papen H, Daum M, Steinkamp R, Butterbach-Bahl K. N2O-and CH4-fluxes from soils of a N-limited and N-fertilized spruce forest ecosystem of the temperate zone. Journal of Applied Botany, 2001, 75(3/4): 159-163.
[28] Bodelier P L, Roslev P, Henckel T, Frenzel P. Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature, 2000, 403(6768): 421-424.
[29] Dunfield P, Knowles R. Kinetics of inhibition of methane oxidation by nitrate, nitrite, and ammonium in a humisol. Applied and Environmental Microbiology, 1995, 61(8): 3129-3135.
[30] King G M, Schnell S. Effect of increasing atmospheric methane concentration on ammonium inhibition of soil methane consumption. Nature, 1994, 370(6487): 282-284.
[31] Whalen S. Influence of N and non-N salts on atmospheric methane oxidation by upland boreal forest and tundra soils. Biology and Fertility of Soils, 2000, 31(3/4): 279-287.
[32] Sitaula B, Bakken L, Abrahamsen G. CH4uptake by temperate forest soil: effect of N input and soil acidification. Soil Biology and Biochemistry, 1995, 27(7): 871-880.
[33] 盧妍, 徐洪文, 宋長(zhǎng)春. 沼澤濕地生態(tài)系統(tǒng)CO2, CH4和N2O排放通量的相互關(guān)系研究. 農(nóng)業(yè)現(xiàn)代化研究, 2011, 32(5): 637-640.
[34] 董云社, 章申, 齊玉春, 陳佐忠, 耿遠(yuǎn)波. 內(nèi)蒙古典型草地CO2, N2O, CH4通量的同時(shí)觀測(cè)及其日變化. 科學(xué)通報(bào), 2000, 45(3): 318-322.
[35] 莫江明, 方運(yùn)霆, 徐國(guó)良, 李德軍, 薛璟花. 鼎湖山苗圃和主要森林土壤CO2排放和CH4吸收對(duì)模擬N沉降的短期響應(yīng). 生態(tài)學(xué)報(bào), 2005, 25(4): 682-690.
[36] 齊玉春, 董云社. 土壤氧化亞氮產(chǎn)生, 排放及其影響因素. 地理學(xué)報(bào), 1999, 54(6): 534-542.
[37] Koschorreck M, Conrad R. Oxidation of atmospheric methane in soil: measurements in the field, in soil cores and in soil samples. Global Biogeochemical Cycles, 1993, 7(1): 109-121.
[38] Azam F, Müller C, Weiske A, Benckiser G, Ottow J. Nitrification and denitrification as sources of atmospheric nitrous oxide-role of oxidizable carbon and pplied nitrogen. Biology and Fertility of Soils, 2002, 35(1): 54-61.
[39] 徐慧, 陳冠雄, 馬成新. 長(zhǎng)白山北坡不同土壤N2O和CH4排放的初步研究. 應(yīng)用生態(tài)學(xué)報(bào), 1995, 6(4): 373-377.
[40] 房秋蘭, 沙麗清. 西雙版納熱帶季節(jié)雨林與橡膠林土壤呼吸. 植物生態(tài)學(xué)報(bào), 2006, 30(1): 97-103.
[41] 馮文婷, 鄒曉明, 沙麗清, 陳建會(huì), 馮志立, 李檢舟. 哀牢山中山濕性常綠闊葉林土壤呼吸季節(jié)和晝夜變化特征及影響因子比較. 植物生態(tài)學(xué)報(bào), 2008, 32(1): 31-39.
[42] assal R S, Black T A, Roy R, Ethier G. Effect of nitrogen fertilization on soil CH4 and N2O fluxes, and soil and bole respiration. Geoderma, 2011, 162(1/2): 182-186.
[43] 周存宇, 張德強(qiáng), 王躍思, 周國(guó)逸, 劉世忠, 唐旭利. 鼎湖山針闊葉混交林地表溫室氣體排放的日變化. 生態(tài)學(xué)報(bào), 2004, 24(8): 1738-1741.
[44] Nesbit S, Breitenbeck G. A laboratory study of factors influencing methane uptake by soils. Agriculture, Ecosystems and Environment, 1992, 41(1): 39-54.
[45] 陳匆瓊, 楊智杰, 謝錦升, 劉小飛, 鐘小劍. 中亞熱帶米櫧天然林土壤甲烷吸收速率季節(jié)變化. 應(yīng)用生態(tài)學(xué)報(bào), 2012, 23(1): 17-22.
[46] 劉碩, 李玉娥, 孫曉涵, 萬(wàn)運(yùn)帆, 高清竹, 秦曉波, 馬欣. 溫度和土壤含水量對(duì)溫帶森林土壤溫室氣體排放的影響. 生態(tài)環(huán)境學(xué)報(bào), 2013, 22(7): 1093-1098.
Effects of nitrogen application on soil greenhouse gas fluxes in aEucalyptusplantation during the growing season
LI Ruida1,2, ZHANG Kai1,2, SU Dan1,2, LU Fei1, WAN Wuxing1,3, WANG Xiaoke1, ZHENG Hua1,*
1StateKeyLaboratoryofUrbanandRegionalEcology,ResearchCenterforEco-EnvironmentalSciences,ChineseAcademyofSciences,Beijing100085,China2UniversityofChineseAcademyofSciences,Beijing100049,China3CollegeofLifeScience,HebeiNormalUniversity,Shijiazhuang050016,China
Fertilization plays a vital role in maintaining the productivity of short-rotation plantations.Eucalyptusplantations are one of the fast-growing and high-yield plantations around the world and are numerous in south China. In order to improve nitrogen use efficiency, slow-release nitrogen fertilizers are being widely adopted. However, few studies have been done to assess the effect of slow-release fertilizer on the soil-atmosphere exchange of greenhouse gases (GHGs), such as carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4). To clarify temporal changes of soil GHGs fluxes following slow-release N fertilizer application, field control trials with four levels of N application (Control: 0 kg/hm2; Low N: 84.2 kg/hm2; Medium N: 166.8 kg/hm2; High N: 333.7 kg/hm2) were initiated in aEucalyptusplantation in Guangxi, southern China. At the beginning of growing season, the nitrogen fertilizer, urea formaldehyde (a kind of slow-release fertilizer), was applied according to the local fertilization practice (once a year). Static chamber and gas chromatography techniques were used to quantify soil GHGs exchange monthly during the study period from May to November 2013. Environmental factors, such as soil temperature at 5 cm depth and soil water content at 10 cm depth, were synchronously monitored while the GHGs were collected. Before N application, no significant differences were observed for soil GHGs fluxes in all N application treatments. The results showed that (1) CO2emission fluxes, N2O emission fluxes, and CH4absorption fluxes under four levels of nitrogen application were 276.84—342.84 mg m-2h-1, 17.64—375.34 μg m-2h-1and 29.65—39.70 μg m-2h-1, respectively. Fertilization resulted in a remarkable but short increase in soil respiration over the first 2 to 3 months during the observation period, and the differences in soil respiration between the High N treatment and the control treatment were significant. Nitrogen application significantly increased the N2O emission and persisted for 5 to 6 months after fertilization. Each N application treatment had a significant effect on N2O emission. Moreover, High N treatment had a significantly negative effect on CH4oxidation. (2) During the growing season, CO2emission had a significantly positive correlation with N2O emission (P< 0.01), and CH4uptake had a significantly negative correlation with both CO2emission and N2O emission (P< 0.05 andP< 0.01, respectively). With the increase of the amount of fertilizer, the CO2emission fluxes increased and CH4oxidation fluxes decreased,respectively. (3) Soil temperature and soil water content were the main factors influencing soil respiration, N2O emission, and CH4oxidation. Soil temperature and soil water content had significantly positive effects on CO2and N2O emission fluxes, and soil temperature had significantly negative effects on CH4absorption fluxes. In conclusion, during the growing season in aEucalyptusplantation, slow-release nitrogen application not only significantly in creases soil N2O emission, but also had significant effects on CO2emission and CH4oxidation after High N treatment. Our results can provide parameters for accurately assessing the effects of slow-release nitrogen application on GHGs fluxes in aEucalyptusplantation.
Eucalyptusplantation; slow-release nitrogen fertilizer; greenhouse gas fluxes
國(guó)家自然科學(xué)基金(31170425); 中國(guó)科學(xué)院知識(shí)創(chuàng)新工程重要方向項(xiàng)目(KZCX2-EW-QN406); 中國(guó)科學(xué)院戰(zhàn)略性先導(dǎo)科技專項(xiàng)子課題(XDA05060102)
2014-01-12;
日期:2014-11-19
10.5846/stxb201401120086
*通訊作者Corresponding author.E-mail: zhenghua@rcees.ac.cn
李睿達(dá), 張凱, 蘇丹, 逯非, 萬(wàn)五星, 王效科, 鄭華.施氮對(duì)桉樹人工林生長(zhǎng)季土壤溫室氣體通量的影響.生態(tài)學(xué)報(bào),2015,35(18):5931-5939.
Li R D, Zhang K, Su D, Lu F, Wan W X, Wang X K, Zheng H.Effects of nitrogen application on soil greenhouse gas fluxes in aEucalyptusplantation during the growing season.Acta Ecologica Sinica,2015,35(18):5931-5939.