賈振偉,高樹新,張永春,張顯華內(nèi)蒙古民族大學(xué)動物科技學(xué)院,黃牛遺傳繁育研究所,通遼 028043
TET 蛋白的去甲基化機制及其在調(diào)控小鼠發(fā)育過程中的作用
賈振偉,高樹新,張永春,張顯華
內(nèi)蒙古民族大學(xué)動物科技學(xué)院,黃牛遺傳繁育研究所,通遼 028043
TET(Ten-eleven translocation)蛋白家族共有3個成員,分別為TET1、TET2和TET3,均屬于α-酮戊二酸(α-KG)和 Fe2+依賴的雙加氧酶,可以將 5-甲基胞嘧啶(5-methylcytosine, 5 mC)氧化為 5-羥甲基胞嘧啶(5-hydroxymethylcytosine, 5 hmC)、 5-甲 酰 基 胞 嘧 啶 (5-formylcytosine, 5 fC)及 5-羧 基 胞 嘧 啶(5-carboxylcytosine, 5 caC)。研究表明,TET蛋白通過不同機制以主動或被動的方式調(diào)控DNA去甲基化,且去甲基化的活性可能受其他因子的調(diào)控。TET蛋白廣泛參與哺乳動物發(fā)育過程的調(diào)節(jié),其中在原始生殖細胞的形成、胚胎發(fā)育、干細胞多能性及神經(jīng)和腦發(fā)育等方面發(fā)揮了重要作用。TET蛋白生物功能的發(fā)現(xiàn)為表觀遺傳學(xué)研究開辟了全新的研究領(lǐng)域,而且相關(guān)研究結(jié)果對拓展生命科學(xué)研究具有重要意義。文章綜述了 TET蛋白家族的結(jié)構(gòu)、去甲基化分子機制及在小鼠發(fā)育過程中的作用,為深入了解TET蛋白的功能提供理論基礎(chǔ)。
TET蛋白;去甲基化;表觀遺傳;小鼠發(fā)育
DNA甲基化是一種重要的表觀遺傳修飾方式,在哺乳動物體內(nèi),DNA甲基化修飾主要發(fā)生在胞嘧啶第5位碳原子上,稱為5-甲基胞嘧啶(5-methylcytosine, 5 mC)。DNA甲基化參與了諸多的生物學(xué)過程,包括維持正常細胞功能、胚胎發(fā)育、遺傳印記、細胞分化、X染色體失活以及腫瘤發(fā)生等。胞嘧啶的甲基化修飾是一個動態(tài)可逆過程,即5 mC還存在去甲基過程,但對其機制還知之甚少。研究表明,TET(Ten-eleven translocation)蛋白通過將5 mC氧化參與DNA去甲基化的途徑[1,2],因此,TET蛋白介導(dǎo)的 DNA去甲基化機制成為近年來表觀遺傳研究領(lǐng)域的熱點。目前,許多研究發(fā)現(xiàn)TET蛋白的去甲基化功能在調(diào)控哺乳動物原始生殖細胞的形成、胚胎發(fā)育、干細胞多能性及腦和神經(jīng)發(fā)育等生命過程中發(fā)揮了重要作用,并且該領(lǐng)域取得了大量的研究進展[3~7]?;诖耍疚木C述了TET蛋白種類結(jié)構(gòu)、去甲基化分子機制及在小鼠發(fā)育過程中的作用,為深入了解TET蛋白的功能提供理論基礎(chǔ)。
哺乳動物TET蛋白家族共有3個成員,分別為TET1、TET2和TET3,其中TET1和TET3蛋白在N端區(qū)域含有CXXC型鋅指結(jié)構(gòu)。目前研究認為,TET1的鋅指結(jié)構(gòu)能夠識別未甲基化的胞嘧啶、5 mC和5 hmC,并且更易結(jié)合在未甲基化的CpG含量高的區(qū)域[8];TET3的鋅指結(jié)構(gòu)能夠識別CpG和非CpG未甲基化的胞嘧啶,保證了其準確的染色體定位,但具體功能尚不確定[9]。TET2不含有CXXC結(jié)構(gòu)域,可能在 CXXC4蛋白輔助的作用下保證其準確的基因定位[10]。
另外,TET蛋白在靠近C端區(qū)域擁有一個催化結(jié)構(gòu)域(Catalytic-dioxygenase domain),該結(jié)構(gòu)域具有3個金屬離子(Fe2+)和1個α-酮戊二酸(α-ketoglutarate, α-KG)的結(jié)合位點,催化結(jié)構(gòu)域前還有一段富含半胱氨酸區(qū)域(Cys-rich domain)。TET蛋白催化結(jié)構(gòu)域(Catalytic-domain)和半胱氨酸區(qū)組成的結(jié)構(gòu)具有α-KG和Fe2+依賴的雙加氧酶活性(圖1),在α-KG 和Fe2+的輔助下,TET蛋白通過將5 mC氧化為5 hmC參與DNA去甲基化的途徑。
圖1 TET家族蛋白結(jié)構(gòu)
目前普遍認為,TET蛋白以主動或被動的方式催化 DNA去甲基化,且其過程存在多種途徑和機制,涉及多種蛋白的參與(圖 2)。在 TET蛋白催化DNA主動去甲基化機制方面,Guo等[11]研究認為,TET蛋白將5 mC氧化為5 hmC,然后5 hmC在活化誘導(dǎo)脫氨酶(Activation-induced deaminase, AID)的作用下脫氨基,形成5-羥甲基尿嘧啶(5-hydroxymethyluracil, 5 hmU),而且AID也能將5 mC脫氨基,5 hmC/ 5 mC脫氨基產(chǎn)物經(jīng)堿基切除修復(fù)(Base-excision repair, BER)途徑實現(xiàn)DNA主動去甲基化。另外,TET蛋白氧化5 mC為5 hmC,也可以將5 hmC繼續(xù)氧化為5-甲酰基胞嘧啶(5-formylcytosine, 5 fC)和5-羧基胞嘧啶(5-carboxylcytosine, 5 caC),5 fC/5 caC在胸腺嘧啶 DNA糖基化酶(Thymine DNA glycosylase, TDG)以及 BER通路的作用下被修復(fù)產(chǎn)生未修飾的胞嘧啶,進而實現(xiàn)DNA主動去甲基化[2,12,13]。在TET蛋白催化 DNA被動去甲基化機制方面,Valinluck 等[14,15]發(fā)現(xiàn),細胞分裂期間TET蛋白將5 mC氧化為5 hmC,5 hmC能夠阻滯Dnmt1的維持甲基化作用,致使隨后的DNA復(fù)制循環(huán)中稀釋/降低基因組中甲基化胞嘧啶的密度,進而實現(xiàn) DNA被動去甲基化。在受精卵早期發(fā)育過程中,隨著 DNA的復(fù)制,基因組的5 hmC、5 fC和5 caC水平逐漸減少,這種被動的去甲基化是受精卵早期發(fā)育過程中的重要機制[16]。
圖2 TET蛋白調(diào)控DNA去甲基化途徑和機制
另外,TET蛋白去甲基化的活性可能受其他因子的調(diào)控。例如,維生素C是TET蛋白的輔助因子,通過增強TET1/2氧化5 mC的能力促進胚胎干細胞(Embryonic stem cells, ESCs)DNA去甲基化[17]。鋅指蛋白轉(zhuǎn)錄抑制因子(Positive regulatory domain zinc finger protein, PRDM)家族成員 PRDM14能夠促進TET1/2募集到靶基因位點,增強 TET1/2主動去甲基化的能力,進而誘導(dǎo)ESCs的多能性相關(guān)基因、生殖細胞特異性基因及印記基因去甲基化[18]。糖基轉(zhuǎn)移酶(O-GlcNAc transferase, OGT)能夠催化 TET3 O-GlcNAc糖基化,同時促進TET3向細胞核外轉(zhuǎn)運,進而抑制其去甲基化的能力[19]。
3.1 原始生殖細胞及配子發(fā)育
一般認為,小鼠胚胎發(fā)育至 7.25 d(Embryonic day 7.25, E7.25)外胚層原始生殖細胞(Primordial germ cell, PGCs)開始特化,隨后逐漸向胚內(nèi)遷移,在胚胎期E11.5大量PGCs進入生殖嵴,PGCs遷移期間經(jīng)歷廣泛的表觀重編程,包括DNA去甲基化、基因組印記消除及染色體重構(gòu)[20~22]。近年研究發(fā)現(xiàn),TET1和TET2在小鼠E9.25-11.5期的PGCs高表達,但TET3不表達,說明TET1/2可能是PGCs DNA去甲基化的主要介導(dǎo)者[7,23,24]。另外,基于TET1/2在小鼠 PGCs的表達,Yamaguchi等[25]分析了不同發(fā)育時期PGCs的5 mC和5 hmC水平,發(fā)現(xiàn)5 mC/5 hmC水平在E8.5較低,5 hmC水平在E9.5-10.5期間開始增加,發(fā)育至E11.5達到峰值后逐漸下降。然而,Gu等[26]發(fā)現(xiàn),TET1/2在 PGCs表達較高,但在卵母細胞內(nèi)表達較少,相反,TET3在卵母細胞內(nèi)表達較高,說明TET3可能是卵母細胞DNA去甲基化的主要介導(dǎo)者[27]。
另外,一些學(xué)者將小鼠 Tet1/2基因突變或敲除發(fā)現(xiàn),在TET1/2蛋白表達缺陷的條件下,并沒有影響 PGCs基因組范圍內(nèi)去甲基化,但導(dǎo)致特定位點基因去甲基化異常,同時影響了一些與減數(shù)分裂和印記相關(guān)的基因表達[7,28]。但小鼠Tet1/2/3基因被敲除后,PGCs能夠形成正常的精子或卵母細胞[26,29,30]。綜上所述,TET蛋白參與了PGCs表觀重編程,但沒有顯著影響PGCs的發(fā)育及配子的形成。
3.2 受精卵發(fā)育
雌雄配子受精后形成受精卵的過程也存在基因組DNA去甲基化現(xiàn)象,在受精后啟動DNA復(fù)制前,父源基因組DNA迅速的發(fā)生主動去甲基化,而母源基因組仍然保持甲基化狀態(tài),隨著卵裂的進行,母源基因組發(fā)生被動的脫甲基化[31]。目前研究認為,5 mC氧化似乎是父源基因組DNA去甲基化的關(guān)鍵步驟,TET3可能是受精卵 DNA去甲基化的主要介導(dǎo)者。例如,受精卵雄原核5 mC水平減少的同時,5 hmC、5 fC和5 caC水平迅速增加[32,33]。TET1/2在受精卵表達較低,但TET3表達較高[33],并且Tet3基因被敲除后阻礙了受精卵雄原核5 mC轉(zhuǎn)化為5 hmC[26]。另外,盡管BER途徑參與了附植前胚胎主動去甲基化,但5 hmC、5 fC和5 caC似乎沒有迅速地被未甲基化的堿基C代替[34,35],相反它們持久存在父源基因組中,并且隨著卵裂含量逐漸下降[26,32],揭示附植前胚胎發(fā)育期間,這些修飾堿基可能通過DNA復(fù)制的機制被稀釋消除。但TET3氧化5 mC達到多大程度后進行DNA復(fù)制,導(dǎo)致受精卵父源基因組被動去甲基化尚不確定。
3.3 胚胎附植及胚胎干細胞發(fā)育
隨著受精卵發(fā)育至囊胚階段,TET1/2/3呈現(xiàn)差異表達模式,其中TET1/2在內(nèi)細胞團和ESCs上高表達,但 TET3表達較少[3,32,33],說明 TET1/2可能與維持ESCs多能性有關(guān)。Ficz等[4]采用基因敲降的方法研究TET1/2在維持ESCs多能性的作用,發(fā)現(xiàn)Tet1/2同時敲降的條件下一些與ESCs多能性相關(guān)的基因表達下調(diào),進而導(dǎo)致 ESCs分化。另外,由于TET1能夠?qū)? mC氧化為5 hmC,Ito等[3]研究發(fā)現(xiàn),小鼠TET家族蛋白都能將5 mC催化為5 hmC,其中TET1蛋白在小鼠ESCs上特異表達,Tet1基因敲降后導(dǎo)致5 hmC水平下降、Nanog基因近端啟動子區(qū)域甲基化水平增加,進而使Nanog基因表達量下降,最終導(dǎo)致囊胚內(nèi)細胞團細胞分化為滋養(yǎng)層細胞,揭示TET蛋白的氧化產(chǎn)物5 hmC可能參與了小鼠ESCs的DNA去甲基化,進而影響了基因的表達調(diào)控。隨后,Wu和Zhang[36]發(fā)現(xiàn),TET1和5 hmC在小鼠ESCs一些多能性基因啟動子區(qū)域富集豐富。
為了深入了解5 hmC的功能,許多學(xué)者對其在小鼠ESCs基因組中的分布進行了研究。最近研究發(fā)現(xiàn),5 hmC在基因組不同區(qū)域的分布水平受TET1/TET2調(diào)控,即TET1主要調(diào)控基因啟動子區(qū)的5 hmC水平,TET2主要調(diào)控基因內(nèi)(Gene body) 的5 hmC水平[37]。在啟動子區(qū)域,5 hmC主要富集于CpG含量為低中度水平的啟動子區(qū)域,而且這些基因表達水平較低。另外,5 hmC在組蛋白二價標記(H3K4me3+/ H3K27me3+)的啟動子區(qū)也大量富集。H3K4me3+是激活基因表達的一種組蛋白修飾;H3K27me3+由 PRC2(Polycomb repressive complex 2)蛋白復(fù)合體催化形成,是抑制基因表達的一種組蛋白修飾。5 hmC存在于組蛋白二價標記的基因啟動子區(qū)域,說明TET1和5 hmC可能具有轉(zhuǎn)錄沉默的作用。Wu 和 Zhang[36]發(fā)現(xiàn),TET1不僅與轉(zhuǎn)錄活性高的基因啟動子結(jié)合,而且也與 PRC2抑制基因的啟動子結(jié)合。Wu等[38]認為,5 hmC在小鼠ESCs的TET1/ PRC2結(jié)合的基因啟動子區(qū)含量豐富,Tet1基因敲除后導(dǎo)致基因組范圍內(nèi)TET1結(jié)合基因的啟動子區(qū)5 hmC水平的減少。Wu等[6]發(fā)現(xiàn),小鼠ESCs的Tet1基因敲除后,干擾了 TET1募集 PRC2核心亞基(Ezh2)至組蛋白二價標記基因的啟動子區(qū)域。以上研究揭示,TET1和5 hmC可能通過PRC2的介導(dǎo)抑制ESCs分化基因的表達。5 hmC除了在基因的啟動子區(qū)域富集外,其在基因內(nèi)部特別是外顯子區(qū)域也高度富集[4],而且在轉(zhuǎn)錄起始位點、5′非翻譯區(qū)及活躍的增強子和絕緣子等順式調(diào)控元件位點富集程度也較高[4, 38, 39]。5 hmC在基因內(nèi)部和順式調(diào)控元件位點富集與轉(zhuǎn)錄激活有關(guān)[4,38,39]。另外,許多學(xué)者在研究TET1和5 hmC調(diào)控ESCs基因表達的功能時發(fā)現(xiàn),小鼠ESCs的Tet1基因被敲除后導(dǎo)致與細胞分化相關(guān)的基因(Cdx2、Sox17及Krt8)表達上調(diào),同時使多能性相關(guān)的轉(zhuǎn)錄因子(Nanog、Tcl1及 Esrrb)表達下調(diào)[4,6,38],進一步說明TET1和5 hmC作用于靶基因,通過促進或抑制的雙重機制調(diào)控ESCs基因表達,進而有效維持干細胞的多能性狀態(tài)。
此外,Dawlaty等[29]對Tet1基因敲除小鼠繁殖力的研究發(fā)現(xiàn),Tet1基因敲除的雌、雄小鼠交配后產(chǎn)生的后代數(shù)量顯著減少,一些Tet1基因敲除小鼠胚胎發(fā)育致死或生殖細胞發(fā)育受損。然而,另有學(xué)者認為,Tet1/Tet2基因敲降后,并沒有影響小鼠多能性因子的表達及ESCs分化[40,41],而且Tet1/Tet2基因被敲除后,小鼠發(fā)育正常,并且具有繁殖能力[5,29]。原因可能歸咎于 Tet1/Tet2基因被敲除后,僅導(dǎo)致部分5 hmC水平下降,而TET3蛋白起到了補償作用[3,8,29]。另外,Gu等[26]對 Tet3基因敲除小鼠的發(fā)育進行了研究,發(fā)現(xiàn)Tet3基因敲除后導(dǎo)致小鼠出生后致死,TET3參與了胚胎形成期間多個組織的發(fā)育。綜上所述,TET蛋白家族在精確調(diào)控小鼠胚胎發(fā)育方面發(fā)揮了重要的作用,但可能在功能上具有冗余性。
3.4 出生后發(fā)育
目前,一些研究證明小鼠不同組織、器官能夠檢測到5 hmC,而且在不同發(fā)育時期5 hmC水平存在差異[3,42];另外,Ito等[3]發(fā)現(xiàn),TET2/3在成年小鼠不同組織廣泛表達,且表達水平亦存在差異,揭示TET2/3和5 hmC也可能通過調(diào)控靶基因表達影響了小鼠出生后發(fā)育。鑒于此,為了研究TET蛋白在調(diào)控小鼠出生后神經(jīng)和腦的發(fā)育方面的作用,Song等[43]分析了 5 hmC在小鼠腦上的水平分布情況,發(fā)現(xiàn)小鼠出生后發(fā)育至成年階段,小腦5 hmC水平逐漸增加。Hahn等[44]采用基因敲除的方法,發(fā)現(xiàn)Tet2/3基因敲除后阻礙了小鼠神經(jīng)祖細胞分化為神經(jīng)元細胞。另外,許多研究發(fā)現(xiàn),Tet2基因敲除后導(dǎo)致小鼠骨髓和脾臟5 hmC水平下降,同時影響了造血細胞的分化和成熟,導(dǎo)致髓系惡性血液病[5,45,46],揭示TET2也可能通過調(diào)控DNA的去甲基化影響與造血功能相關(guān)的基因表達,但具體的分子機制尚不明確。由于Tet3基因敲除后導(dǎo)致小鼠出生后死亡,因此,關(guān)于 TET3蛋白在調(diào)控小鼠出生后發(fā)育方面的具體作用機制尚不確定。隨著基因打靶等條件性敲除技術(shù)的成熟,對Tet3基因在小鼠不同組織器官進行敲除,將可能識別 TET3蛋白調(diào)控小鼠出生后發(fā)育的功能。
TET蛋白催化 DNA去甲基化在調(diào)控小鼠發(fā)育過程中發(fā)揮了重要作用,其催化DNA去甲基化存在多種機制,但每種機制對DNA去甲基化的貢獻及各種機制如何協(xié)同完成靶基因的去甲基化尚不確定。TET依次氧化5 mC為5 hmC、5 fC和5 caC,這些修飾堿基除了作為DNA去甲基化的中間產(chǎn)物外,也可能作為組蛋白的表觀遺傳標志調(diào)控染色體的結(jié)構(gòu)和功能。近年研究表明,TET蛋白與O-GlcNAc糖基化轉(zhuǎn)移酶互作促進了組蛋白 O-GlcNAc糖基化修飾[47],說明TET蛋白除了具有去甲基化的作用,可能存在其他的生物學(xué)功能,但具體的生物學(xué)功能還需要深入研究。
另外,TET蛋白催化DNA去甲基化的活性受到其他蛋白復(fù)合體的影響,但TET蛋白如何與其他蛋白復(fù)合體互作調(diào)控 DNA的去甲基化尚不明確。而且,在哺乳動物發(fā)育期間,環(huán)境刺激、細胞代謝狀態(tài)及發(fā)育信號是否能夠影響TET蛋白催化5 mC的能力亦不確定,也需要進行深入研究。此外,除了通過生物化學(xué)和基因組學(xué)等手段研究TET蛋白生物學(xué)功能,還需要進一步建立 Tet1/2/3基因條件性敲除小鼠模型,深入了解TET蛋白在小鼠不同發(fā)育階段和組織中的功能作用。
總之,隨著分子生物學(xué)、基因組學(xué)、表觀遺傳學(xué)的發(fā)展及 Tet家族基因條件性敲除小鼠模型的建立,人們對TET蛋白的功能和作用機制的認識將會更全面、更深入。
[1]Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 2009, 324(5929): 930-935.
[2]Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science, 2011, 333(6047): 1300-1303.
[3]Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. Role of Tet proteins in 5 mC to 5 hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature, 2010, 466(7310): 1129-1133.
[4]Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature, 2011, 473(7347): 398-402. [5]Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, Figueroa ME, Vasanthakumar A, Patel J, Zhao XY, Perna F, Pandey S, Madzo J, Song CX, Dai Q, He C, Ibrahim S, Beran M, Zavadil J, Nimer SD, Melnick A, Godley LA, Aifantis I, Levine RL. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell, 2011, 20(1): 11-24.
[6]Wu H, D'Alessio AC, Ito S, Xia K, Wang ZB, Cui KR, Zhao KJ, Sun YE, Zhang Y. Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature, 2011, 473(7347): 389-393.
[7]Yamaguchi S, Hong K, Liu R, Shen L, Inoue A, Diep D, Zhang K, Zhang Y. Tet1 controls meiosis by regulating meiotic gene expression. Nature, 2012, 492(7429): 443-447.
[8]Xu YF, Wu FZ, Tan L, Kong LC, Xiong LJ, Deng J, Barbera AJ, Zheng LJ, Zhang HK, Huang S, Min JR, Nicholson T, Chen TP, Xu GL, Shi Y, Zhang K, Shi YG. Genome-wide regulation of 5 hmC, 5 mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell, 2011, 42(4): 451-464.
[9]Xu YF, Xu C, Kato A, Tempel W, Abreu JG, Bian CB, Hu YG, Hu D, Zhao B, Cerovina T, Diao JB, Wu FZ, He HH, Cui QC, Clark E, Ma C, Barbara A, Veenstra GJC, Xu GL,Kaiser UB, Liu XS, Sugrue SP, He X, Min JR, Kato Y, Shi YG. Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development. Cell, 2012, 151(6): 1200-1213.
[10]Ko M, An J, Bandukwala HS, Chavez L, ?ij? T, Pastor WA, Segal MF, Li HM, Koh KP, L?hdesm?ki H, Hogan PG, Aravind L, Rao A. Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Nature, 2013, 497(7447): 122-126.
[11]Guo JU, Su YJ, Zhong C, Ming GL, Song HJ. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell, 2011, 145(3): 423-434.
[12]He YF, Li BZ, Li Z, Liu P, Wang Y, Tang QY, Ding JP, Jia YY, Chen ZC, Li L, Sun Y, Li XX, Dai Q, Song CX, Zhang KL, He C, Xu GL. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science, 2011, 333(6047): 1303-1307.
[13]Zhang L, Lu XY, Lu JY, Liang HH, Dai Q, Xu GL, Luo C, Jiang HL, He C. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nat Chem Biol, 2012, 8(4): 328-330.
[14]Valinluck V, Tsai HH, Rogstad DK, Burdzy A, Bird A, Sowers LC. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res, 2004, 32(14): 4100-4108.
[15]Valinluck V, Sowers LC. Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res, 2007, 67(3): 946-950.
[16]Inoue A, Zhang Y. Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science, 2011, 334(6053): 194.
[17]Blaschke K, Ebata KT, Karimi MM, Zepeda-Martínez JA, Goyal P, Mahapatra S, Tam A, Laird DJ, Hirst M, Rao A, Lorincz MC, Ramalho-Santos M. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature, 2013, 500(7461): 222-226.
[18]Okashita N, Kumaki Y, Ebi K, Nishi M, Okamoto Y, Nakayama M, Hashimoto S, Nakamura T, Sugasawa K, Kojima N, Takada T, Okano M, Seki Y. PRDM14 promotes active DNA demethylation through the ten-eleven translocation (TET)-mediated base excision repair pathway in embryonic stem cells. Development, 2014, 141(2): 269- 280.
[19]Zhang Q, Liu XG, Gao WQ, Li PS, Hou JL, Li JW, Wong JM. Differential regulation of the ten-eleven translocation (TET) family of dioxygenases by O-linked β-N-acetylglucosamine transferase (OGT). J Biol Chem, 2014, 289(9): 5986-5996.
[20]Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, Walter J, Surani MA. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev, 2002, 117(1-2): 15-23.
[21]Hajkova P, Ancelin K, Waldmann T, Lacoste N, Lange UC, Cesari F, Lee C, Almouzni G, Schneider R, Surani MA. Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature, 2008, 452(7189): 877-881.
[22]Kota SK, Feil R. Epigenetic transitions in germ cell development and meiosis. Dev Cell, 2011, 19(5): 675-686.
[23]Hackett JA, Sengupta R, Zylicz JJ, Murakami K, Lee C, Down TA, Surani MA. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science, 2013, 339(6118): 448-452.
[24]Vincent JJ, Huang Y, Chen PY, Feng SH, Calvopi?a JH, Nee K, Lee SA, Le T, Yoon AJ, Faull K, Fan GP, Rao A, Jacobsen SE, Pellegrini M, Clark AT. Stage-specific roles for tet1 and tet2 in DNA demethylation in primordial germ cells. Cell Stem Cell, 2013, 12(4): 470-478.
[25]Yamaguchi S, Hong K, Liu R, Inoue A, Shen L, Zhang K, Zhang Y. Dynamics of 5-methylcytosine and 5-hydroxymethylcytosine during germ cell reprogramming. Cell Res, 2013, 23(3): 329-339.
[26]Gu TP, Guo F, Yang H, Wu HP, Xu GF, Liu W, Xie ZG, Shi LY, He XY, Jin SG, Iqbal K, Shi YG, Deng ZX, Szabó PE, Pfeifer GP, Li JS, Xu GL. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature, 2011, 477(7366): 606-610.
[27]Yu C, Zhang YL, Pan WW, Li XM, Wang ZW, Ge ZJ, Zhou JJ, Cang Y, Tong C, Sun QY, Fan HY. CRL4 complex regulates mammalian oocyte survival and reprogramming by activation of TET proteins. Science, 2013, 342(6165): 1518-1521.
[28]Dawlaty MM, Breiling A, Le T, Raddatz G, Barrasa MI, Cheng AW, Gao Q, Powell BE, Li Z, Xu M, Faull KF, Lyko F, Jaenisch R. Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev Cell, 2013, 24(3): 310-323.
[29]Dawlaty MM, Ganz K, Powell BE, Hu YC, Markoulaki S, Cheng AW, Gao Q, Kim J, Choi SW, Page DC, Jaenisch R. Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell, 2011, 9(2): 166-175.
[30]Ko M, Bandukwala HS, An J, Lamperti ED, ThompsonEC, Hastie R, Tsangaratou A, Rajewsky K, Koralov SB, Rao A. Ten-Eleven-Translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc Natl Acad Sci USA, 2011, 108(35): 14566-14571.
[31]Oswald J1, Engemann S, Lane N, Mayer W, Olek A, Fundele R, Dean W, Reik W, Walter J. Active demethylation of the paternal genome in the mouse zygote. Curr Biol, 2000, 10(18): 475-478.
[32]Iqbal K, Jin SG, Pfeifer GP, Szabó PE. Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci USA, 2011, 108(9): 3642-3647.
[33]Wossidlo M, Nakamura T, Lepikhov K, Marques CJ, Zakhartchenko V, Boiani M, Arand J, Nakano T, Reik W, Walter J. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun, 2011, 2(3): 241.
[34]Gehring M, Reik W, Henikoff S. DNA demethylation by DNA repair. Trends Genet, 2009, 25(2): 82-90.
[35]Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol, 2010, 11(9): 607-620. [36]Wu H, Zhang Y. Tet1 and 5-hydroxymethylation: A genome-wide view in mouse embryonic stem cells. Cell Cycle, 2011, 10(15): 2428-2436.
[37]Huang Y, Chavez L, Chang X, Wang X, Pastor WA, Kang J, Zepeda-Martínez JA, Pape UJ, Jacobsen SE, Peters B, Rao A. Distinct roles of the methylcytosine oxidases Tet1 and Tet2 in mouse embryonic stem cells. Proc Natl Acad Sci USA, 2014, 111(4): 1361-1366.
[38]Wu H, D'Alessio AC, Ito S, Wang Z, Cui K, Zhao K, Sun YE, Zhang Y. 2011. Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev, 2011, 25(7): 679-684.
[39]Pastor WA, Pape UJ, Huang Y, Henderson HR, Lister R, Ko M, McLoughlin EM, Brudno Y, Mahapatra S, Kapranov P, Tahiliani M, Daley GQ, Liu XS, Ecker JR, Milos PM, Agarwal S, Rao A. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature, 2011, 473(7347): 394-397.
[40]Koh KP, Yabuuchi A, Rao S, Huang Y, Cunniff K, Nardone J, Laiho A, Tahiliani M, Sommer CA, Mostoslavsky G, Lahesmaa R, Orkin SH, Rodig SJ, Daley GQ, Rao A. Tet1 and Tet2 late 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell, 2011, 8(2): 200-213.
[41]Williams K, Christensen J, Pedersen MT, Johansen JV, Cloos PA, Rappsilber J, Helin K. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature, 2011, 473(7347): 343-348.
[42]Globisch D, Münzel M, Müller M, Michalakis S, Wagner M, Koch S, Brückl T, Biel M, Carell T. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One, 2010, 5(12): e15367.
[43]Song CX, Szulwach KE, Fu Y, Dai Q, Yi CQ, Li XK, Li YJ, Chen CH, Zhang W, Jian X, Wang J, Zhang L, Looney TJ, Zhang BC, Godley LA, Hicks LM, Lahn BT, Jin P, He C. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol, 2011, 29(1): 68-72.
[44]Hahn MA, Qiu RX, Wu WX, Li AX, Zhang HY, Wang J, Jui J, Jin SG, Jiang Y, Pfeifer GP, Lu Q. Dynamics of 5-hydroxymethylcytosine and chromatin marks in mammalian neurogenesis. Cell Rep, 2013, 3(2): 291-300.
[45]Li Z, Cai XQ, Cai CL, Wang JP, Zhang WY, Petersen BE, Yang FC, Xu MJ. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood, 2011, 118(17): 4509-4518.
[46]Quivoron C, Couronné L, Della Valle V, Lopez CK, Plo I, Wagner-Ballon O, Do Cruzeiro M, Delhommeau F, Arnulf B, Stern MH, Godley L, Opolon P, Tilly H, Solary E, Duffourd Y, Dessen P, Merle-Beral H, Nguyen-Khac F, Fontenay M, Vainchenker W, Bastard C, Mercher T, Bernard OA. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell, 2011, 20(1): 25-38.
[47]Chen Q, Chen YB, Bian CJ, Fujiki R, Yu XC. TET2 promotes histone O-GlcNAcylation during gene transcription. Nature, 2013, 493(7433): 561-564.
(責(zé)任編委: 方向東)
Mechanisms of TET protein-mediated DNA demethylation and its role in the regulation of mouse development
Zhenwei Jia, Shuxin Gao, Yongchun Zhang, Xianhua Zhang
Institute of Yellow Cattle Genetics-Breeding and Reproduction, College of Animal Science and Technology, Inner Mongolia University for the Nationalities, Tongliao 028000, China
TET (ten-eleven translocation) protein family includes three members TET1, TET2 and TET3, which belong to alpha-ketoglutaric acid ( α-KG )- and Fe2+-dependent dioxygenase superfamily, and have the capacity to convert 5-methylcytosine (5 mC) to 5-hydroxymethylcytosine (5 hmC), 5-formylcytosine (5 fC) and 5-carboxylcytosine (5 caC). At present, growing lines of evidence indicate that TET proteins are involved in the control of active or passive DNA demethylation via different mechanisms; moreover, their activities may be regulated by some cellular factors. TET proteins play vital roles in modulating mammal development, including primordial germ cell formation, embryonic development, stem cells pluripotency, nerve and brain development, etc. The identification of biological roles of TET proteins will open a new field in epigenetic research, and these studies on TET proteins are of great significance to life science research. Here, we review TET proteins from their structure, molecular mechanisms ofDNA demethylation and function in the regulation of mouse development, which may provide the basis for understanding the functions of TET proteins.
TET proteins; demethylation; epigenetics; mouse development
2014-04-08;
2014-09-20
內(nèi)蒙古民族大學(xué)博士科研啟動基金項目(編號:BS299)資助
賈振偉,博士,研究方向:配子與胚胎生物技術(shù)研究。E-mail: zhenwei1999@sina.com
張顯華,教授,研究方向:配子與胚胎生物技術(shù)研究。E-mail: zxh7469@163.com
10.16288/j.yczz.2015.01.005
時間: 2014-12-16 13:07:36
URL: http://www.cnki.net/kcms/doi/10.3724/SP.J.1005.2014.0000.html