李保軍,鄧 欣,申曉紅,黎 昵,何 軻,姜 喆 ,王海燕*
(1. 西北工業(yè)大學航海學院,陜西 西安 710072;2. 湛江南海西部石油勘察設計有限公司,廣東 湛江 524057)
深水隔水管疲勞監(jiān)測方法初探
李保軍1,鄧 欣2,申曉紅1,黎 昵2,何 軻1,姜 喆1,王海燕1*
(1. 西北工業(yè)大學航海學院,陜西 西安 710072;2. 湛江南海西部石油勘察設計有限公司,廣東 湛江 524057)
深水隔水管是海洋油氣鉆探開發(fā)的關鍵構成,也是最脆弱、最危險的部件。深水隔水管疲勞監(jiān)測技術在預防隔水管事故方面具有不可或缺的作用。我國已踏上深水油氣鉆探開發(fā)的新征程,迫切需要強大的隔水管監(jiān)測技術作支撐。為此,介紹了隔水管監(jiān)測的目的和意義,探討了深水隔水管疲勞監(jiān)測的相關方法,特別對疲勞參數(shù)檢測及其傳輸方法兩個關鍵難題給予足夠關注。隨后介紹了我國的隔水管疲勞監(jiān)測技術以及南海試驗,旨在為深水油氣鉆探開發(fā)的安全進行提供技術支持。
深水隔水管; 疲勞; 監(jiān)測; 水聲監(jiān)測網絡
鑒于油氣資源需求的持續(xù)走高和陸地油氣資源的日漸枯竭,人類將目光投向廣袤的海洋[1]。進入21世紀,隨著國際石油勘探轉向深海大趨勢的形成和南海深水資源的發(fā)現(xiàn),中國向深海進軍的步伐明顯加快[2]。2012年5月9日,隨著具有3 000 m水深作業(yè)能力的第六代深水半潛式鉆井平臺“海洋石油981”在南海1 500 m水深海域開鉆,我國邁進深水油氣勘探開發(fā)的新時代。
隔水管是深水油氣勘探開發(fā)的重要武器,也是深水油氣開發(fā)技術上要求最高、最具挑戰(zhàn)性的部分。首先,隔水管是海上鉆井作業(yè)的先決條件,是鉆井要下水的第一層管柱,并一直起到提供循環(huán)通道、支撐井口防噴器組、提供海面平臺到海面通道的作用[3-4]。其次,在深水區(qū),隔水管自身特點和深水環(huán)境使得其極易疲勞損傷[5-8]。近年來發(fā)生在墨西哥灣、北海、西非海域、巴西海域等地的一系列隔水管疲勞失效事故[9],不僅體現(xiàn)了深水油氣勘探開發(fā)的高風險,更充分說明了隔水管疲勞監(jiān)測的必要性、重要性和緊迫性[10-11]。
隔水管疲勞監(jiān)測發(fā)軔于其服役期間遭遇的慘痛事故和深刻教訓[12-14]。國外的相關單位涉足深水區(qū)域較早[15-16],已在隔水管疲勞監(jiān)測方面積累了豐富的經驗[17-18],并制定了隔水管完整性管理技術[19-20]。通過對監(jiān)測和檢測設備獲得的信息數(shù)據(jù)進行分析、處理和評價,識別危害立管安全的危害、失效因素,并結合公司效益開展風險評估,制定合理的、必要的檢測、維護、維修計劃和實施方案。其目的是保證隔水管系統(tǒng)物理和功能上的完整,使之始終處于受控狀態(tài),通過及時采取措施防止失效事故發(fā)生,減少人員、財產、操作和環(huán)境等方面的損失。
隨著我國海洋油氣鉆探開發(fā)不斷朝深水區(qū)邁進,隔水管用量將急劇攀升。沒有一流的監(jiān)測技術作保障,隔水管將面臨疲勞失效乃至斷裂的風險。但是,國外對我國要么采取技術保密策略,要么索要高昂的費用,單套設備每月租賃費用便高達百萬元人民幣。此外,基于水聲的隔水管疲勞監(jiān)測設備,其性能嚴重依賴于所在區(qū)域的海洋環(huán)境,而我國的海洋環(huán)境之獨特,世界罕有。因此,掌握擁有自主知識產權的深水隔水管疲勞監(jiān)測技術是最佳對策。
本文介紹了隔水管監(jiān)測的目的和意義,探討了深水隔水管疲勞監(jiān)測的相關方法,特別對疲勞參數(shù)檢測及其傳輸方法兩個關鍵難題給予了足夠關注。介紹了我國隔水管疲勞監(jiān)測樣機的南海試驗,旨在促進擁有自主知識產權的深水隔水管疲勞監(jiān)測技術的發(fā)展,為我國深水油氣鉆探開發(fā)的安全進行提供技術支持。
隔水管疲勞損傷受多種因素影響,其中渦激振動(VIV)、位移、碰撞與摩擦等需要進行長期監(jiān)測,其危害詳述如下。
(1) VIV。VIV產生周期性交變應力,在若干周期內就能導致隔水管失效, 是隔水管疲勞的最重要因素[21-22]。與淺水相比,深水隔水管更易發(fā)生VIV,主要原因為:①隔水管長度大幅增加,質量增大,固有頻率變小,降低了VIV的誘發(fā)條件;②深水區(qū)海域開闊,海洋流速大,提高了VIV的頻率模態(tài)和高次諧振的概率。
(2) 位移(偏移)。在深水區(qū),海面采用浮式平臺,隔水管失去固定支撐和毗連物。在海流力作用下,隔水管會擴大拖曳而增大變形,產生大的準靜態(tài)橫向位移[23],即偏離海底井口正上方的位置,如圖1所示。在風浪作用下,平臺漫漂亦使隔水管橫向位移增大。隔水管橫向位移的直接后果是產生應力累積和集中,加速隔水管疲勞損傷。此外,橫向位移增大還會導致隔水管強度降低,也將加速隔水管的疲勞損傷。
圖1 隔水管偏移與包絡線圖解Fig. 1 Offset and envelopes of marine riser
(3) 碰撞與摩擦。碰撞與摩擦是鉆井隔水管疲勞的第三種因素[24],其原因是隔水管位移超出其作業(yè)包絡線[25]。海水深度增加,隔水管的安全包絡線將變窄,但隔水管的轉角卻變大。當?shù)撞哭D角超過額定范圍時,隔水管與旋轉鉆桿之間發(fā)生摩擦而導致隔水管磨損、變薄、應力累積超過屈服應力極限乃至爆裂,從而引發(fā)更嚴重的鉆井事故。
深水油氣勘探開發(fā)是高風險活動。為了降低其風險、避免疲勞損傷事故、確保資源完整性,隔水管監(jiān)測在海洋油氣勘探開發(fā)中占有獨一無二的地位[26]。其重要意義體現(xiàn)在:(1)隔水管疲勞壽命評估。隔水管疲勞監(jiān)測是疲勞壽命評估的前提和基礎。通過分析監(jiān)測數(shù)據(jù),可知其環(huán)境載荷實況、自身的動靜態(tài)響應特性和應力水平,進而利用各種方法計算其疲勞狀態(tài)、預測其剩余壽命[27-28]。(2)掌控隔水管空間姿態(tài),對潛在危害進行預警,為其安全運行提供保障,為隔水管的維護、維修提供依據(jù)。(3)檢驗隔水管設計理論,改進設計規(guī)范[15]。
一個典型的隔水管疲勞監(jiān)測系統(tǒng)包含監(jiān)控中心和若干監(jiān)測設備[29]。監(jiān)控中心一般位于海面平臺或浮式設備中,由工控機或者計算機以及相應的軟件系統(tǒng)構成,用于接收、顯示、存儲來自下位機的疲勞參數(shù),為隔水管作業(yè)狀態(tài)和疲勞壽命評估提供原始數(shù)據(jù)。監(jiān)測設備包含傳感模塊、存儲模塊、通信模塊、電源模塊和控制模塊(CPU)。傳感模塊負責監(jiān)測參數(shù)的傳感與采集,監(jiān)測參數(shù)既包含海洋環(huán)境載荷,又包含隔水管自身的真實響應。存儲模塊負責數(shù)據(jù)存儲,其空間大小由監(jiān)測設備工作期間所采集的數(shù)據(jù)量決定。通信模塊負責將數(shù)據(jù)傳輸至監(jiān)控中心。電源模塊為監(jiān)測設備供電??刂颇K監(jiān)控前述各模塊的工作模式。由于監(jiān)測設備長期在深水中工作,前述各模塊必須有機結合地放置在防水防腐耐壓儀器艙內。
參數(shù)檢測及其傳輸是隔水管疲勞監(jiān)測的核心內容,詳述如下。
隔水管疲勞監(jiān)測的內容包含VIV、偏移以及碰撞與摩擦,具體參數(shù)與作用如下。
(1) 洋流。洋流監(jiān)測的作用:①為隔水管配置和頂張力大小提供參考;②用于隔水管準靜態(tài)分析,估計隔水管的位移;③用于VIV分析,根據(jù)洋流估計VIV的頻響范圍。因原理差異,隔水管周圍海洋流速監(jiān)測方法有兩種:聲學多普勒剖面儀(ADCP)[30]和機械式海流計。ADCP精度高,信息量大,解算復雜,價格昂貴。機械式海流計結構比較簡單,功耗甚微,但精度稍低。目前,國際流行的海洋流速監(jiān)測儀器是ADCP。無論何種方案,流速監(jiān)測都應消除隔水管尾流區(qū)紊流的影響。
(2) 應變。通過隔水管整體的應力[31-34]狀態(tài),可以直接計算其疲勞壽命,是監(jiān)測VIV的重要方法;另一方面,應變監(jiān)測還可以監(jiān)測隔水管的軸向張力和偏移導致的靜態(tài)應變。目前,隔水管裸單根和鋼懸鏈式立管(SCR)的應力應變監(jiān)測主要用光纖布拉格光柵(FBG)傳感器[35-37];頂張緊式立管(TTR)法蘭盤間的應力監(jiān)測設備有應力環(huán)。FBG應變傳感器的加裝有兩種形式,即管外固定和管壁內嵌。對于TTR和SCR等,F(xiàn)BG傳感器采用管外固定;對于柔性管,將FBG應變傳感器內嵌在管壁中[37]。管外固定法應用更廣泛。但是,由于隔水管結構的特殊性和海洋環(huán)境的限制,F(xiàn)BG傳感器面臨著安裝和傳感精度方面的挑戰(zhàn)。
(3) 三維(3D)加速度。隔水管加速度監(jiān)測屬于運動監(jiān)測范疇。通過加速度數(shù)據(jù)來分析隔水管VIV是監(jiān)測VIV的另一重要方法[38-39]。由于存在多種因素的耦合,直接測量隔水管交變應力存在困難[40],通過監(jiān)測隔水管加速度進而間接獲取其疲勞壽命的方法被業(yè)界廣泛使用。由加速度數(shù)據(jù)很容易得知隔水管VIV的頻率響應。但是,因VIV的復雜性,隔水管振幅(位移)的均方根被用來表征VIV特性。由加速度直接到振幅須經三次濾波和兩次積分運算。但是,VIV為低頻多模態(tài)振動,積分運算擴大低頻誤差,而濾波器的低頻截止頻率既不能太大以至將信號濾除,又不能過小而增大誤差,所以將Welch功率譜算法[41]和相關陣分解法[42]等間接法用于計算VIV的均方根位移。
(4) 傾角。監(jiān)測傾角的作用體現(xiàn)在:①剔除混雜在加速度數(shù)據(jù)中的重力分量[43];②掌握隔水管姿態(tài)。主要傳感器有雙軸傾角傳感器、陀螺儀等。在具體的監(jiān)測應用中,主要根據(jù)隔水管的類型來判斷傾角監(jiān)測的作用。
(5) 轉角。隔水管兩端撓性接頭的轉角是表征隔水管作業(yè)窗口的重要參數(shù),主要用姿態(tài)導航系統(tǒng)、陀螺儀、羅盤等共同完成[44]。
(6) 位移(偏移)。偏移是表征隔水管姿態(tài)和海面平臺位置的重要參數(shù)。目前隔水管偏移監(jiān)測有兩種方法:①監(jiān)測隔水管兩端和中跨的傾角、壓力與溫度以及海面平臺偏移[45];②通過監(jiān)測流經隔水管的海洋流速,結合隔水管管徑、密度等參數(shù),利用有限元等方法計算[46]。
BP公司、2H公司等的監(jiān)測實踐表明[47-49],為了達到最佳的監(jiān)測效果,多種參數(shù)常常一并監(jiān)測,如海洋流速和3D加速度、3D加速度和傾角、加速度和應變等[50]。
監(jiān)測設備至監(jiān)控中心的疲勞數(shù)據(jù)傳輸是隔水管疲勞的另一核心技術。根據(jù)供電和數(shù)據(jù)通信方式的差別,將現(xiàn)有的離線、有線和水聲三種監(jiān)測方法[51-54]及其優(yōu)劣對比如下。
(1) 離線監(jiān)測[圖2(a)]。離線監(jiān)測設備由電池供電,數(shù)據(jù)傳輸待設備被取回后,利用通信線纜與監(jiān)控系統(tǒng)進行數(shù)據(jù)讀取。不過離線監(jiān)測設備的取回由(ROV)實現(xiàn)或待隔水管回收時進行。
(2) 有線監(jiān)測[圖2(b)]。有線監(jiān)測供電和數(shù)據(jù)傳輸用電纜實現(xiàn)。
(3) 水聲監(jiān)測[圖2(c)]。其由電池供電,數(shù)據(jù)經水聲通信傳至監(jiān)控中心。
圖2 三種隔水管疲勞數(shù)據(jù)傳輸方式圖解Fig. 2 Three kinds of marine riser fatigue data transmission methods
三種方法的優(yōu)劣對比如表1所示。
表1 三種方法優(yōu)劣對比
在2H公司多年的隔水管VIV監(jiān)測[55-66]中,離線監(jiān)測法最常用(表2)?,F(xiàn)場實測的隔水管VIV
頻率有0.09 Hz、0.1 Hz、0.11~0.42 Hz、0.15~0.2 Hz及0.55~4.65 Hz等,而且隔水管越短,響應頻率越高,與理論相符。上述結果不僅表明隔水管VIV的低頻多模特性,而且可為后續(xù)監(jiān)測設備采樣頻率的選擇提供參考。
但是,離線監(jiān)測無法及時對隔水管狀態(tài)進行預警。有線監(jiān)測不僅費用高昂,而且可靠性差,在深水隔水管監(jiān)測中應用越來越少。隨著水聲通信技術的成熟,基于水聲的隔水管監(jiān)測成為新的發(fā)展方向。Sonardyne公司的隔水管剖面系統(tǒng)[67]、隔水管防噴器(BOP)轉角[44]監(jiān)測設備[圖2(c)]全是基于水聲的。但在已公開的資料中,尚未發(fā)現(xiàn)大量部署基于水聲的VIV監(jiān)測設備用于隔水管疲勞監(jiān)測。
表2 隔水管VIV監(jiān)測實例
注:DrillR表示鉆井隔水管,ACC表示3D加速度記錄儀。
“十一五”期間,中海油研究總院與西北工業(yè)大學聯(lián)合研制出適用于3 000 m水深的隔水管疲勞監(jiān)測系統(tǒng)。該系統(tǒng)由監(jiān)控中心和監(jiān)測設備兩部分構成。監(jiān)控中心以運行監(jiān)測軟件的專業(yè)工控機、數(shù)據(jù)接收機為基礎,并配備全球定位系統(tǒng)(GPS),負責隔水管疲勞數(shù)據(jù)的接收、顯示、存儲與預警。監(jiān)測設備能記錄海洋環(huán)境載荷和隔水管響應兩方面的海洋流速、3D加速度、傾角和隔水管應變4類參數(shù),而且數(shù)據(jù)傳輸利用水聲通信實現(xiàn)。深水隔水管監(jiān)測系統(tǒng)樣機于2012年在HYSY981鉆井平臺上順利通過海試。圖3和圖4給出了監(jiān)測系統(tǒng)樣機海試的安裝過程。圖5是數(shù)據(jù)接收端界面。海試所測傾角與HYSY981鉆井平臺的Kongsberg所測結果大體一致。該監(jiān)測系統(tǒng)的測量精度與國外同類產品持平,總體性能略優(yōu)于國外產品。同時,與國外的監(jiān)測儀器相比,我國的隔水管疲勞監(jiān)測樣機體積較大,不易安裝。下一步應對其進行優(yōu)化,在保證監(jiān)測指標要求的前提下,減小體積,降低質量,以便于運輸和安裝操作。
圖3 隔水管監(jiān)測系統(tǒng)樣機加裝Fig. 3 Prototype installation of riser monitoring system
圖4 監(jiān)測系統(tǒng)樣機海試照片F(xiàn)ig. 4 Sea trials of riser monitoring system
圖5 監(jiān)控中心操作界面Fig. 5 Operation interface of monitoring and command center
我國深水隔水管疲勞監(jiān)測技術的研究工作起步較晚,但在掌握先進技術的基礎上,避免了國外遭遇的曲折,起點較高。目前正在進行由多套監(jiān)測設備構成的深水隔水管疲勞全局監(jiān)測的研究工作,如圖6所示。
圖6 深水隔水管疲勞監(jiān)測網絡Fig. 6 Network architecture for fatigue monitoring of deepwater riser
在參數(shù)監(jiān)測方面,監(jiān)測系統(tǒng)不僅具有VIV、應變、海洋流速、偏移、防噴器(BOP)處轉角等參數(shù)的監(jiān)測能力,而且還有隔水管姿態(tài)報警功能,是一種全新的監(jiān)測策略。在數(shù)據(jù)傳輸方面,是一個水聲網絡組網問題。隔水管疲勞監(jiān)測受以下幾方面的制約:(1)水聲信道,其可用帶寬有限、時延大、衰減嚴重[68-70]、速率距離之積不超過40 km·kb/s[71]、環(huán)境噪聲和其他聲源干擾嚴重[72]。(2)監(jiān)測裝置本身由電池供電,為能量受限系統(tǒng)。
下一步應重點解決隔水管疲勞監(jiān)測網絡所遇制約因素,提高其效用。
本文首先介紹了隔水管疲勞監(jiān)測的原因、目的與意義,隨后介紹了疲勞監(jiān)測的原理與內容,重點關注參數(shù)檢測與數(shù)據(jù)傳輸兩個核心技術,并對各種參數(shù)監(jiān)測的作用、數(shù)據(jù)傳輸方法進行比較?;谒晜鬏?shù)谋O(jiān)測技術代表著深水隔水管疲勞監(jiān)測技術的發(fā)展方向。
與國外相比,我國的隔水管疲勞監(jiān)測技術起步較晚,但起點較高,且避免了國外所走的彎路?;谒暰W絡的深水隔水管疲勞監(jiān)測技術將進一步提高監(jiān)測性能,為我國深水石油勘探開發(fā)的安全、可靠進行提供強有力的技術保障。
[1] Vaclavik R. Deepwater GoM challenges span full well process [J]. E&P, 2009(5): 24.
[2] 孫龍德,撒利明,董世泰.中國未來油氣新領域與物探技術對策[J].石油地球物理勘探, 2013, 48(2): 308.
[3] 姜偉. 海洋石油鉆井工程力學研究與實踐[M]. 北京: 石油工業(yè)出版社, 2008. 30-88.
[4] Det Norske Veritas. DNV-OS-F201. Dynamic risers[S]. Oslo: Det Norske Veritas, 2001.
[5] 謝彬, 段夢蘭, 秦太驗,等. 海洋深水立管的疲勞斷裂與可靠性評估研究進展[J]. 石油學報, 2004, 25(3): 95.
[6] 孫友義, 鞠少棟, 蔣世全, 等. 超深水鉆井隔水管-井口系統(tǒng)渦激振動疲勞分析[J]. 石油學報, 2011, 32(6): 1050.
[7] 孫友義, 陳國明. 超深水鉆井系統(tǒng)隔水管波致疲勞研究[J]. 石油學報, 2009, 30(3): 460.
[8] Det Norske Veritas. DNV-RP-F204. Riser fatigue[S]. Oslo: Det Norske Veritas, 2005.
[9] 暢元江. 深水鉆井隔水管設計方法及其應用研究[D]. 北京: 中國石油大學, 2008.
[10] Lyons G J, Vandiver J K, Larsen C M, et al. Vortex induced vibrations measured in service in the Foinaven dynamic umbilical, and lessons from prediction[J]. J Fluids and Structures, 2003, 17(8): 1079.
[11] An P. Offshore structural monitoring, why and how[C]. 2nd Annual Deepwater Asia-Pacific, 2009.
[12] Middleditch B. Deepwater drilling riser technical challenges[C]. IBC Energy Offshore Drilling Conference, 2011.
[13] Lim F, Howells H. Deepwater riser VIV, fatigue and monitoring[C]. Deepwater Pipeline & Riser Technology Conference, 2000.
[14] Howells H. Deep water drilling riser technology, VIV & fatigue management[C]. Drilling Engineering Association (Europe) 4th Quarter Meeting, 1998.
[15] Mansour G, Jukes P, Skinner J. Deepwater riser design, fatigue life and standards study report[R]. TA&R Project Number 572, Document No. 86330-20-R-RP-005, Houston, 2007.
[16] Howells H, Lim F. Deep water riser VIV monitoring[C]. Advances in Riser Technologies, 1999.
[17] Chezhian M, Meling T S, Lespinasse P, et al. NDP review of state of the art in riser monitoring: lessons learned and experiences gained[C]. OTC, 2006: 17810.
[18] Chezhian M, Meling T S. Riser monitoring systems: then and now[J]. Exploration & Production-Oil & Gas Review, 2007(2): 82.
[19] Det Norske Veritas. DNV-RP-F206. Riser integrity management[S]. Oslo: Det Norske Veritas, 2008.
[20] Cook H H, Dopjera D E, Thethi R, et al. Riser integrity management for deepwater developments[C]. OTC, 2006: 17891.
[21] Li X M, Guo H Y, Meng F S. Fatigue life assessment of top tensioned risers under vortex induced vibrations[J]. J Ocean University of China, 2010, 9(1): 43.
[22] Modarres-Sadeghi Y, Mukundan H, Dahl J M, et al. The effect of higher harmonic forces on fatigue life of marine risers[J]. J Sound and Vibration, 2010, 329(1): 43.
[23] Athisakul C, Huang T, Chucheepsakul S. Large strain static analysis of marine risers via a variational approach [C]. ISOPE, 2002: ISOPE-I-02-158.
[24] Chen J, Duan M, Tian K. Dynamic response and fatigue damage analysis for drilling riser[C]. Proceedings of 2012 International Conference on Mechanical Engineering and Material Science, 2012.
[25] Farrant T, Javed K. Minimising the effect of deepwater currents on drilling riser operations[C]. Deepwater Drilling Technologies Conference, 2001: 30.
[26] 彭朋. 深水鉆井隔水管壽命管理技術研究[D]. 青島: 中國石油大學(華東), 2009.
[27] Iranpoura M, Taheri F, Vandiver J K. Structural life assessment of oil and gas risers under vortex-induced vibration[J]. Marine Structures, 2008, 21(4) : 353.
[28] Baarholm G S, Larsen C M, Lie H. On fatigue damage accumulation from in-line and cross-flow vortex-induced vibrations on risers[J]. J Fluids and Structures, 2006, 22(1): 109.
[29] Natarajan S, Howells H, Deka D, et al. Optimization of sensor placement to capture riser VIV response[C]. OMAE, 2006: 401.
[30] Ukani S. Monitoring and instrumentation[C]. SUT London, 2010.
[31] Ordonez M, Sonnaillont M O, Murrin D, et al. An advanced measurement system for vortex-induced-vibrations characterization in large-scale risers[C]. OCEANS 2007, 2007.
[32] Inaudi D. Long-gauge strain sensors for underwater and deep-water applications[C]. 21st International Conference on Optical Fiber Sensors, 2011.
[33] Inaudi D, Glisic B. fiber optic sensing for innovative oil & gas production and transport systems[C]. 18th International Conference on Optical Fiber Sensors, 2006.
[34] Guaita P, Zecchin M, Inaudi D, et al. Qualification of a fiber-optic strain monitoring system[C]. 12th International Conference on Experimental Mechanics, 2004.
[35] Jacques R, Clarke T, Morikawa S, et al. Monitoring the structural integrity of a flexible riser during dynamic loading with a combination of non-destructive testing methods[J]. NDT & E International, 2010, 43(6): 501.
[36] Clarke T, Jacques R, Bisognin A, et al. Monitoring the structural integrity of a flexible riser during a full-scale fatigue test[J]. Engineering Structures, 2011, 33(4): 1181.
[37] Begg D W. A fibre optic sensor for flexible pipeline and riser integrity monitoring[M]. London: HSE, 1997. 400-499.
[38] Mukundan H. Vortex-induced vibration of marine risers: motion and force reconstruction from field and experimental data [D]. Cambridge: Massachusetts Institute of Technology, 2008.
[39] Mukundan H, Modarres-Sadeghi Y, Dahl J M, et al. Monitoring VIV fatigue damage on marine risers[J]. J Fluids and Structures, 2009, 25(4): 617.
[40] Huang C. Structural health monitoring system for deepwater risers with vortex-induced vibration: nonlinear modeling, blind identification fatigue/damage estimation and local monitoring using magnetic flux leakage[D]. Houston: Rice University, 2012.
[41] Simantiras P, Willis N. Steel catenary risers-Allegheny offshore VIV monitoring campaign and large scale simulation of seabed interaction[C]. DOT, 2001.
[42] 李保軍, 王海燕, 申曉紅, 等. 一種隔水管渦激振動檢測新算法[J]. 計算機測量與控制, 2011, 19(6): 1273.
[43] Jain A B. Vortex-induced vibrations of an inclined cylinder in flow [D]. Amherst: University of Massachusetts Amherst, 2012.
[44] Sonardyne. Acoustic BOP control system[OL]. http://www.sonardyne.com/products/monitoring-a-control/acoustic-bop-controller.html.
[45] Vikestad K, Larsen C M, Vandiver J K. Norwegian Deepwater Program: damping of vortex-induced vibrations[C]. OTC, 2000: 11998.
[46] Rustad A M. Modeling and control of top tensioned risers[D]. Trondheim: Norwegian University of Science and Technology, 2007.
[47] Willis N. Instrumentation of deepwater marine risers: techniques and results from campaigns at Allegheny and offshore Brazil[C]. Deepwater Conference, 2002.
[48] MacDonald J. Riser system integrity management in the GoM[C]. Deepwater Operations Fechnology and Regulations Conference, 2011.
[49] Trim A D, Braaten H, Lie H. Experimental investigation of vortex-induced vibration of long marine risers[J]. J Fluids and Structures, 2005, 21(3): 335.
[50] Willis N. STRIDE PROJECT. Steel risers in deepwater environments-recent highlights[C]. IBC Deep & Ultra Deepwater Risers, 2001.
[51] Podskarbi M, Walters D. Review and evaluation of riser integrity monitoring systems and data processing methods[C]. DOT, 2006.
[52] Stockton T R. Disconnect information and monitoring system for dynamically positioned offshore drilling rigs. US: 5978739 [P]. 1999-11-02.
[53] Podskarbi M, Walters D. Integrated approach to riser design and integrity monitoring[C]. ASME IOPF, 2006.
[54] Maheshwari H, Ruf W, Walters D. Riser integrity monitoring techniques and data processing methods[C]. ISOPE, 2008: ISOPE-I-08-035.
[55] Lie H, Kaasen K E. Modal analysis of measurements from a large-scale VIV model test of a riser in linearly sheared flow[J]. J Fluids and Structures, 2006, 22(4): 557.
[56] Tognarelli M A, Taggart S, Campbell M. Actual VIV fatigue response of full scale drilling risers: with and without suppression devices[C]. OMAE, 2008: 57046.
[57] Chaplin J R, Bearman P W, Cheng Y, et al. Blind predictions of laboratory measurements of vortex induced vibrations of a tension riser[J]. J Fluids and Structures, 2005, 21(1): 25.
[58] Beynet P, Shilling R, Campbell M, et al. Full scale VIV response measurements of a drill pipe in Gulf of Mexico loop currents[C]. OMAE, 2008: 57610.
[59] Dale N M, Bridge C D. Measured VIV response of a deepwater SCR[C]. ISOPE, 2007.
[60] Karayaka M, Ruf W. Steel catenary riser response characterization with on-line monitoring devices[C]. OMAE, 2009: 79437.
[61] Cornut S F A, Vandiver J K. Offshore VIV monitoring at Schiehallion: analysis of riser VIV response[C]. ETCE/OMAE, 2000: 005022.
[62] Karayaka M, Chen J, Blankenship C, et al. Tahiti online monitoring system for steel catenary risers and flowlines[C]. OTC, 2009: 19860.
[63] Thethi R, An P. Performance monitoring of deepwater risers[C]. OMAE, 2008: 57018.
[64] Thethi R, Howells H, Natarajan S, et al. A fatigue monitoring strategy & implementation on a deepwater top tensioned riser[C]. OTC, 2005: 17248.
[65] Sworn A, Howells H. Fatigue life evaluation through the calibration of a VIV prediction tool with full scale field measurements at the schiehallion field[C]. DOT, 2003.
[66] Natarajan S, Podskarbi M, Karayaka M, et al. Deepwater spar steel catenary riser monitoring strategy[C]. OMAE, 2007: 29344.
[67] Sonardyne. RiserView [OL]. http://www.sonardyne.com/products/monitoring-a-control/riserview-system.html.
[68] Heidemann J, Ye W, Wills J, et al. Research challenges and applications for underwater sensor networking[C]. WCNC, 2006, 1: 228.
[69] Stojanovic M, Preisig J. Underwater acoustic communication channels: propagation models and statistical characterization[J]. IEEE Communications Magazine, 2009, 47(1): 84.
[70] Zorzi M, Casari P, Baldo N, et al. Energy-efficient routing schemes for underwater acoustic networks[J]. IEEE J Selected Areas in Communications, 2008, 26(9): 1754.
[71] Kilfoyle D B, Baggeroer A B. The state of the art in underwater acoustic telemetry[J]. IEEE J Oceanic Engineering, 2000, 25(1): 4.
[72] Stocker M. Deepwater fossil fuel extraction and production technologies-a developing source of ocean noise pollution[J]. J Acoustical Society of America, 2010, 128(4): 2382.
PreliminaryInvestigationonMonitoringMethodsforDeepwaterRisers
LI Bao-jun1, DENG Xin2, SHEN Xiao-hong1, LI Ni2, HE Ke1, JIANG Zhe1, WANG Hai-yan1
(1.SchoolofMarineScienceandTechnology,NorthwesternPolytechnicalUniversity,Xi’an,Shaanxi710072,China;2.Survey&DesignCompany,CONHW,Zhanjiang,Guangdong524057,China)
Marine riser is the key but the most brittle assembly in deepwater oil exploration and production. The fatigue and fracture accident of deepwater risers, which are caused by factors such as vortex-induced vibration(VIV), offset of platform and so on, not only lead to huge economic loss, but also bring out marine ecological disaster and even create international political problems. The deepwater riser monitoring technology, starting from the fatigue and fracture accident the risers encountered, is the important guaranty for them to run safely during service and plays a vital role in the evaluation of structural fatigue damage and early warning of fracture accident. The advanced fatigue monitoring technologies are required urgently to meet the new journey of deepwater exploration and production industry that our country has embarked on. The why and how on fatigue monitoring of deep water riser is reviewed. The key parameters to monitor, the detecting methods and the manners of data transmission for their fatigue monitoring are introduced, and more attention is paid to the latter two. At last, the states of the art of fatigue monitoring methods in China and the test in South China Sea are discussed. Some suggestions on deepwater riser monitoring are given to support exploration and operation of deepwater oil and gas industry in a safe and environmentally responsible manner.
deepwater riser; fatigue; monitoring; underwater acoustic monitoring network
TE973.92
A
2095-7297(2014)01-0062-08
2014-02-21
國家科技重大專項(2011ZX05026-001-06)、國家自然科學基金(51249005,60972153)、教育部博士點基金(20106102120013,20096102110038)
李保軍(1983—),男,博士研究生,主要從事海洋油氣管線監(jiān)測方面的研究。
*通信作者