唐 斌,林青青,鄔夢(mèng)靜,施興榮,王世貴
(杭州師范大學(xué)動(dòng)物適應(yīng)與進(jìn)化重點(diǎn)實(shí)驗(yàn)室,杭州 310036)
昆蟲(chóng)屬于變溫動(dòng)物,體溫隨著環(huán)境溫度的改變而改變。尤其是冬季的寒冷氣候條件對(duì)昆蟲(chóng)的生長(zhǎng)發(fā)育和存活有較大影響,低溫不僅使其活動(dòng)減緩,易被天敵捕食,同時(shí)也易造成其凍傷或死亡(鄭霞林,2012)。自然界中,不同氣候地區(qū)的昆蟲(chóng)每年都遭受著長(zhǎng)期或短期對(duì)生命活動(dòng)不同程度的冬季低溫傷害。低溫對(duì)包括昆蟲(chóng)在內(nèi)的所有生物的傷害可分為冷害和凍害(Cristina et al.,2011)。為了能夠安全越冬,昆蟲(chóng)進(jìn)化形成了一系列適應(yīng)低溫的策略,主要依靠提高昆蟲(chóng)自身的抗寒能力來(lái)實(shí)現(xiàn)。
昆蟲(chóng)的耐寒性指昆蟲(chóng)長(zhǎng)期或短期暴露于低溫條件下的存活能力(Lee,1989),昆蟲(chóng)耐寒能力強(qiáng)弱決定其種群的發(fā)生、擴(kuò)散和分布,嚴(yán)格限制著昆蟲(chóng)種群的延續(xù)(景曉紅和康樂(lè),2002)。昆蟲(chóng)耐寒性的強(qiáng)弱不僅與自身固有的遺傳性狀有關(guān),還受外界環(huán)境因子的顯著影響,如地理緯度(Hoffmann,2007)、食物(景曉紅和康樂(lè),2002)、光周期(時(shí)愛(ài)菊,2007)、季節(jié)性氣候(馬延龍等,2009)、低溫馴化和降溫速率(Colinet et al.,2006)等,具有較大幅度的可塑性。這為研究天敵昆蟲(chóng)的長(zhǎng)期低溫保存技術(shù)提供有利的支撐。
1901年Bachmejew 在一次實(shí)驗(yàn)中偶然間發(fā)現(xiàn):當(dāng)昆蟲(chóng)的體液低于冰點(diǎn)溫度時(shí),蟲(chóng)體仍能保持液體狀態(tài)的現(xiàn)象,并確定其為昆蟲(chóng)的過(guò)冷卻現(xiàn)象(Super-cooled phenomenon)。其后通過(guò)對(duì)890 多種昆蟲(chóng)的進(jìn)一步實(shí)驗(yàn),證實(shí)了昆蟲(chóng)確實(shí)存在過(guò)冷卻現(xiàn)象這一特性(戈峰,2008),科學(xué)家將能使昆蟲(chóng)體液保持液態(tài)的最低溫度稱為昆蟲(chóng)的過(guò)冷卻點(diǎn)(super-cooling point,SCP)(Morey et al.,2012)。直至今日,過(guò)冷卻點(diǎn)的高低仍作為昆蟲(chóng)耐寒性的主要指標(biāo)之一(張飛萍等,2009)。越冬昆蟲(chóng)一般都有較低的過(guò)冷卻點(diǎn),例如美國(guó)白蛾Hyphantriacunea 的SCP 為-11.9℃(孔鋒等,2007),中華通草蛉Chrysoperla sinica 成蟲(chóng)的SCP約為-13℃(郭海波等,2006),寄生在黑松上的雌松突圓蚧Hemiberlesia pitysophila Takagi 的SCP 約為-12.91℃(鐘景輝,2009),25℃時(shí)異色瓢蟲(chóng)Harmonia axyridis 成蟲(chóng)的SCP 主要集中在-10℃至-9℃范圍內(nèi)(趙靜,2011)。
昆蟲(chóng)在長(zhǎng)期進(jìn)化中形成兩種主要的低溫適應(yīng)性對(duì)策:一是行為對(duì)策,即通過(guò)某些行為活動(dòng)尋找躲避場(chǎng)所,如通過(guò)遠(yuǎn)距離的遷飛、休眠、滯育等躲避低溫等;二是生理策略,即通過(guò)改變生理狀態(tài)來(lái)提高昆蟲(chóng)的抗寒性,如儲(chǔ)存更多的抗寒物質(zhì)(秦資,2012)。不同種類的昆蟲(chóng)有著不同的策略,且同種昆蟲(chóng)的不同發(fā)育階段、不同個(gè)體間的抗寒性也有很大差異(陳豪等,2010)。根據(jù)昆蟲(chóng)抗寒能力的生理生化機(jī)制,可以將昆蟲(chóng)分為耐寒昆蟲(chóng)(freeze-susceptibles)和耐凍昆蟲(chóng)(freeze-tolerants)(景曉紅和康樂(lè),2002;Morey et al.,2012),絕大多數(shù)昆蟲(chóng)為耐寒昆蟲(chóng)(Jacques and Barbara,2007)。
耐寒昆蟲(chóng)指可忍耐0℃以上低溫傷害的昆蟲(chóng),其通過(guò)維持蟲(chóng)體的過(guò)冷卻狀態(tài),阻止體內(nèi)液體結(jié)冰使之免受凍害(梅增霞和李建慶,2006)。為了避免體液結(jié)冰,昆蟲(chóng)在越冬前把冰核物質(zhì)排出體外或使之失去活性,以降低過(guò)冷卻點(diǎn),減少越冬死亡率(崔雙雙和賀一原,2011)。其次,通過(guò)排除水分以增加體內(nèi)溶質(zhì)的濃度,降低了體液的冰點(diǎn)和過(guò)冷卻點(diǎn)。接著,昆蟲(chóng)通過(guò)提高兩類抗寒性物質(zhì)的合成,即小分子的物質(zhì)和抗凍類蛋白(antifreeze proteins,AFPs)(Zachariassen and Husby,1982;王鵬等,2011),進(jìn)一步提高抗過(guò)寒能力。
某些低溫生物為適應(yīng)極端寒冷環(huán)境產(chǎn)生了一類抑制冰晶生長(zhǎng)的蛋白質(zhì),它能以非依數(shù)性形式降低溶液的冰點(diǎn)(Holden and Storey,1994)。1969年,斯坦福大學(xué)的Devries 在南極Mcmurdo 海峽捕獲的一種名為Nototheneniid 的魚的血液中首次發(fā)現(xiàn)此種蛋白,并命名為抗凍蛋白,其也常定義為具有熱滯活性的冰結(jié)合蛋白(高媛和田淑琴,2010)。研究發(fā)現(xiàn)昆蟲(chóng)抗凍蛋白可以把血淋巴的冰點(diǎn)降低5℃甚至更多,而一般魚類抗凍蛋白只能把體液冰點(diǎn)降低1.5℃(毛新芳和張富春,2009)。因此,昆蟲(chóng)體內(nèi)AFPs 的抗凍活性比魚類AFPs 的抗凍活性要高許多,且其最大活性能夠達(dá)到魚類抗凍蛋白最大活性的3-4 倍(Yue and Zhang,2009),此外昆蟲(chóng)和魚類的抗凍蛋白的分子結(jié)構(gòu)也有所不同,這可能與冬季陸地的溫度更低有關(guān)(田云等,2002)。
2.1.1 昆蟲(chóng)抗凍蛋白的類型及結(jié)構(gòu)特性
相關(guān)研究結(jié)果發(fā)現(xiàn):低溫下抗凍蛋白能夠長(zhǎng)時(shí)間的維持昆蟲(chóng)亞穩(wěn)定的過(guò)冷卻狀態(tài)(馬紀(jì)和趙干,2006)。昆蟲(chóng)的體液以及腸液和細(xì)胞內(nèi)液中都能分泌并合成抗凍蛋白(陳豪等,2010)。到目前為止,昆蟲(chóng)科學(xué)研究工作者在昆蟲(chóng)體內(nèi)已經(jīng)提取出二十多種不同抗凍蛋白,這些昆蟲(chóng)包括鞘翅目、長(zhǎng)翅目、半翅目、直翅目、彈尾目等(彭淑紅等,2003),其中鞘翅目抗凍蛋白的研究比較深入,幾種主要昆蟲(chóng)抗凍蛋白基因及其編碼蛋白的特性見(jiàn)表1。昆蟲(chóng)AFPs 的分子量一般約為8 kd-9 kd,無(wú)糖基化位點(diǎn)并且含有較多的親水性氨基酸,有40%-50%的氨基酸殘基能形成氫鍵(劉忠淵等,2004)。
表1 幾種主要昆蟲(chóng)抗凍蛋白基因及其編碼蛋白的特性Table 1 Characteristics of some insect antifreeze protein genes and their coding proteins
2.1.2 抗凍蛋白的特性及作用機(jī)制
抗凍蛋白的常定義為:一類具有熱滯活性的冰結(jié)合蛋白(毛興芳,2011),因此,抗凍蛋白亦稱為熱滯蛋白(Thermal Hysteresis Proteins,THPs)(GrahamL et al.,1997)??箖龅鞍拙哂袔追N特殊的性質(zhì),使之具有不同于其他蛋白的“抗凍”活性,其抗凍活性的高低與本身的性質(zhì)有關(guān)而與數(shù)量無(wú)關(guān)(Ko?tál et al.,2011)。學(xué)者們常以熱滯活性作為衡量抗凍蛋白活性的指標(biāo),熱滯活性是指昆蟲(chóng)體液冰點(diǎn)和熔點(diǎn)的差值,差值越大抗凍活性越大(孫琳杰,2008)??箖龅鞍淄瑫r(shí)還具有2個(gè)保護(hù)有機(jī)體免受結(jié)冰傷害的主要特征:熱滯效應(yīng)(Thermal Hysteresis Activity,THA)、重結(jié)晶抑制效應(yīng)(Recrystalization Inhabition)(高媛和田淑琴,2010)。以非依數(shù)性形式只降低水溶液的冰點(diǎn)但不影響其熔點(diǎn)的熱滯效應(yīng)是抗凍蛋白的一個(gè)重要特征(毛新芳和張富春,2009)。
昆蟲(chóng)的抗凍蛋白主要通過(guò)重結(jié)晶抑制效應(yīng)來(lái)降低生物有機(jī)體因體內(nèi)結(jié)冰引起的傷害(馬紀(jì)和趙干,2006)??箖龅鞍卓梢蕴禺惖?、不可逆地與冰晶結(jié)合(Kostal et al.,2004)抑制冰晶生長(zhǎng)外,同時(shí)還可改變冰晶形態(tài)、降低過(guò)冷卻點(diǎn)、抑制成冰核蛋白的作用和降低玻璃化與去玻璃化損傷(Pertaya et al.,2007)。相關(guān)研究還表明抗凍蛋白的產(chǎn)生還具有明顯的季節(jié)性(Barrett,2001;趙靜等,2010)。
熱激蛋白(heat-shock proteins,HSPs),又稱為熱休克蛋白,首先是在果蠅 Drosophila melanogaster 體內(nèi)發(fā)現(xiàn)的(Ritossa,1964)。熱激蛋白是一種抗逆蛋白,在細(xì)胞受到脅迫時(shí)表達(dá)量會(huì)增加,對(duì)細(xì)胞起到一種保護(hù)作用,幫助生物機(jī)體度過(guò)不利環(huán)境條件(Craig et al.,1983)。1974年,Tissieres 進(jìn)一步通過(guò)實(shí)驗(yàn)分離得到了在熱激下產(chǎn)生的這種特殊蛋白,該反應(yīng)稱之為熱激反應(yīng)(heat shock response)(Tissieres et al.,1974)。隨后的研究發(fā)現(xiàn),熱激蛋白普遍存在大部分的生物體中,為生物體在高溫或者其他環(huán)境的脅迫下所產(chǎn)生的一種特定的應(yīng)激性的蛋白,是一種進(jìn)化上高度保守的蛋白(景曉紅和康樂(lè),2002)。熱激蛋白由熱休克基因轉(zhuǎn)錄翻譯后產(chǎn)生,熱休克基因是編碼誘導(dǎo)型HSPs 的基因,而編碼組成型表達(dá)的熱休克相關(guān)蛋白的基因稱為熱休克相關(guān)基因(heat shock cognate genes)(Tissieres et al.,1974)。
圖1 赤擬谷盜熱激蛋白的聚類分析Fig.1 Phylogenetic analysis of heat shock proteins in Tribolium castaneum
圖2 黑腹果蠅、意大利蜜蜂、甜菜夜蛾、東亞飛蝗熱激蛋白的聚類分析Fig.2 Phylogenetic analysis of heat shock proteins in Drosophila melanogaster,Apis mellifera,Spodoptera exigua and Locusta migratoria
2.2.1 熱激蛋白的類型
熱激蛋白廣泛存在于微生物和動(dòng)植物體內(nèi),是一個(gè)蛋白質(zhì)超家族,按照其相對(duì)分子量、結(jié)構(gòu)和功能,可以分為以下幾大類:HSP40、HSP60、HSP70、HSP90、HSPl00 和低分子量家族(陳莉,2012)。許多昆蟲(chóng)的熱激蛋白被研究和報(bào)道,赤擬谷盜基因組序列中發(fā)現(xiàn)25個(gè)HSP 編碼蛋白(圖1)(Mahroof et al.,2007),其它昆蟲(chóng)中同樣也有眾多多個(gè)HSP 被克隆和研究報(bào)道(圖2)(Hoskins et al.,2002;Kaminker et al.,2002;Misra et al.,2002;Celniker et al.,2002;Quesneville et al.,2005;Wang and Kang,2005;Wang et al.,2006;Smith et al.,2007;Wang et al.,2007;Hoskins et al.,2007;Xu et al.,2011)。
2.2.2 熱激蛋白的性質(zhì)及作用機(jī)制
在冷、熱脅迫下,機(jī)體內(nèi)最明顯的生理變化之一是熱休克蛋白的表達(dá)量升高(陳亮,2007)。熱激蛋白具有普遍性,所有的原核、真核生物都具有熱激蛋白。熱激蛋白具有進(jìn)化上的保守性和范圍上的廣泛性,說(shuō)明熱激蛋白在生物體內(nèi)具有重要的生理意義(陳亞瓊等,2006)。熱激蛋白是一類重要的分子伴侶,它參與蛋白的折疊、蛋白的降解以及細(xì)胞內(nèi)物質(zhì)的運(yùn)輸?shù)冗^(guò)程,調(diào)節(jié)靶細(xì)胞的活性,但是不參與靶蛋白的合成(黃惠芳和馬飛,2004)。在機(jī)體受到刺激時(shí),細(xì)胞發(fā)生損害,產(chǎn)生變性蛋白,表現(xiàn)為肽鏈?zhǔn)ケP旋和折疊,失去原本的空間結(jié)構(gòu),使得蛋白活性功能喪失。而這時(shí)產(chǎn)生的熱激蛋白可以促進(jìn)肽鏈重新進(jìn)行折疊,修復(fù)錯(cuò)誤折疊的蛋白,恢復(fù)原有的空間結(jié)構(gòu)和生物活性,提高其耐受性(Beekmann et al.,1990;Moseley et al.,1997)。
熱激蛋白受多種外界條件的影響,外界不良環(huán)境易誘導(dǎo)昆蟲(chóng)體內(nèi)熱激蛋白的產(chǎn)生。例如,冷休克處理能誘導(dǎo)美洲斑潛蠅Liriomyza sativae Blanchard 體內(nèi)熱休克蛋白基因HSP90、HSP70、HSP40 和一些小分子HSPs 的表達(dá)(Huang and Kang,2007)。熱激蛋白具有多樣性、同源性。熱激蛋白的種類多樣,分子量從15 kD-110 kD 或更高,定位于多種細(xì)胞器(王建義和慈忠玲,2008)。不同物種有同源性很高的熱激蛋白,如酵母菌Saccharomyces cerevisiae 與果蠅的HSP70 在氨基酸序列中有72%相同,兩者的HSP84 氨基酸序列有63%同源(Kanteng and Phlla,1991)。
在自然界中,昆蟲(chóng)越冬前都是經(jīng)歷一個(gè)溫度漸變的過(guò)程(即氣候馴化),使它們得以為渡過(guò)低溫環(huán)境作一些生理上的準(zhǔn)備(Leather et al.,1993),作出相應(yīng)的抗寒對(duì)策,如提高抗寒基因的表達(dá)等。冷馴化(cold-acclimation)是將昆蟲(chóng)暴露于亞致死低溫一段時(shí)間可有效地提高其在致死低溫下存活率的過(guò)程和現(xiàn)象,適當(dāng)?shù)睦漶Z化可以提高昆蟲(chóng)的抗寒能力。自然界中,針對(duì)不同的低溫棲境,昆蟲(chóng)會(huì)采取不同的抗寒策略。對(duì)于所有昆蟲(chóng)來(lái)說(shuō),這種能夠增強(qiáng)低溫抵抗能力的機(jī)制可以通過(guò)低溫誘導(dǎo)不同時(shí)間來(lái)觸發(fā)。增強(qiáng)昆蟲(chóng)耐寒性的2種主要馴化策略有快速冷馴化和長(zhǎng)時(shí)冷馴化(Rajamohan and Sinclair,2008)。
適度的低溫冷馴化可以提高昆蟲(chóng)成蟲(chóng)的低溫抵抗力,但是冷馴化在誘導(dǎo)昆蟲(chóng)耐寒能力增加的同時(shí)不可避免地對(duì)生長(zhǎng)發(fā)育或者適合度的其他方面產(chǎn)生影響(郭海波等,2006)。例如,異色瓢蟲(chóng)親代經(jīng)歷冷馴化后,后代生命表參數(shù)內(nèi)稟增長(zhǎng)率、周限增長(zhǎng)率、凈生殖力和年齡特征存活率均降低,而后代雌蟲(chóng)所占比例卻升高(趙靜等,2010)。
快速冷馴化(rapid cold hardening,RCH)是指在短時(shí)間內(nèi)用較低的溫度提高昆蟲(chóng)的耐寒性,增強(qiáng)它們的耐寒能力,降低昆蟲(chóng)的過(guò)冷卻點(diǎn)。快速冷馴化是一個(gè)較為簡(jiǎn)單、耗時(shí)較短的冷馴化方式,是昆蟲(chóng)應(yīng)對(duì)自然界溫度急劇變化和短期低溫暴露的一種有效策略(岳雷等,2013)。昆蟲(chóng)快速冷馴化能夠提高昆蟲(chóng)耐寒性,例如,蠅在冷暴露于-5℃之前經(jīng)RCH(以0.1℃/min 從25℃降溫至0℃,并在0℃保持1 h)處理72 h 的死亡率為37%,顯著低于直接進(jìn)行冷休克處理的60%(Overgaard et al.,2007)。
RCH 可以抑制昆蟲(chóng)體內(nèi)物質(zhì)的產(chǎn)生避免細(xì)胞甚至蟲(chóng)體死亡。Yi 和Lee(2011)的深入研究表明,RCH 通過(guò)抑制紅尾肉蠅Sarcophaga crassipalpis半胱氨酸酶前體的活化來(lái)避免冷休克誘導(dǎo)的細(xì)胞程序性死亡,從而降低組織細(xì)胞的死亡率。快速冷馴化可以誘導(dǎo)機(jī)體內(nèi)抗凍蛋白、熱激蛋白及抗寒性小分子基因的快速表達(dá),有利于提高機(jī)體內(nèi)抗寒物質(zhì)的增加(馬延龍等,2009)。例如,在冷馴化期間,美洲斑潛蠅Liriomyza sativae 體內(nèi)小分子熱休克蛋白基因HSP19.5、HSP20.8 和HSP21.7被顯著誘導(dǎo)產(chǎn)生熱休克蛋白,其中以HSP20.8 對(duì)冷馴化最為敏感,且不同強(qiáng)度冷脅迫條件下其表達(dá)的熱休克蛋白種類和含量不同(Huang et al.,2009)。
長(zhǎng)時(shí)冷馴化(cold acclimation,ACC)通常需要較長(zhǎng)時(shí)間(幾天,幾周甚至幾個(gè)月)完成,可顯著延長(zhǎng)昆蟲(chóng)在亞致死低溫下的存活時(shí)間,處理溫度相對(duì)溫和,通常由季節(jié)信號(hào)(如光周期縮短、環(huán)境溫度降低)誘導(dǎo)產(chǎn)生(Kostál et al.,2004)。長(zhǎng)時(shí)冷馴化的條件很溫和,溫度降低緩慢,處理時(shí)間較長(zhǎng),可以使昆蟲(chóng)一直保持在一個(gè)較適宜的機(jī)體平衡下,死亡率也較低(Ko?tál et al.,2011)。例如德國(guó)小蠊以0.1℃/min 的較慢速率降溫比1.0℃/min 的較快速率降溫存活率高2 倍多(劉峰和賴世宏,2004)。
長(zhǎng)時(shí)冷馴化同時(shí)也與昆蟲(chóng)的越冬息息相關(guān)。例如,桃小食心蟲(chóng)Carposina niponensis 越冬幼蟲(chóng)體內(nèi)總脂肪、總蛋白、糖原和水的含量變化與幼蟲(chóng)SCP 的變化趨勢(shì)具有一定的相似性,說(shuō)明3種生化物質(zhì)的總含量和含水量與SCP 間存在明顯的內(nèi)在聯(lián)系(王鵬等,2011)。長(zhǎng)時(shí)冷馴化處理后,昆蟲(chóng)體內(nèi)AFP 基因表達(dá)水平在處理的第5 天與對(duì)照組相比差異顯著(Kostál,2004)。長(zhǎng)時(shí)冷馴化通常引起昆蟲(chóng)細(xì)胞膜蛋白、酶活性及體內(nèi)代謝譜的改變(趙靜等,2010)。Shintani 和Ishikawa 對(duì)黃星天牛Psacothea hilaris 卵的耐寒性研究表明,經(jīng)ACC(15.5℃保持9 d)處理再暴露于0℃至-22℃的低溫時(shí),卵存活率顯著高于未經(jīng)ACC 處理的對(duì)照(25℃保持5 d 后進(jìn)行低溫暴露);在冷脅迫(-10℃暴露8 h 以上)條件下經(jīng)ACC 處理的卵的存活率顯著高于經(jīng)RCH(0℃暴露4 h)處理的卵;相反,在卵的過(guò)冷卻點(diǎn)-26℃左右,ACC處理和對(duì)照的存活率均很低,RCH 處理的存活率則較高(Shintani and Ishikawa,2007)。
當(dāng)昆蟲(chóng)面對(duì)寒冷環(huán)境時(shí),會(huì)啟動(dòng)一系列抗寒機(jī)制來(lái)保護(hù)自身的安全,如通過(guò)調(diào)控體內(nèi)相關(guān)抗寒基因大量表達(dá),一方面大量合成抗逆物質(zhì)等,另一方面增加細(xì)胞內(nèi)的抗凍蛋白、熱激蛋白等抗凍類蛋白的含量。昆蟲(chóng)機(jī)體能夠在經(jīng)歷一次次的冷環(huán)境馴化后,抗寒能力大大增強(qiáng)。
昆蟲(chóng)耐寒性研究是昆蟲(chóng)生態(tài)學(xué)和生物進(jìn)化研究的熱點(diǎn)領(lǐng)域,也是害蟲(chóng)預(yù)測(cè)預(yù)報(bào)和防治的理論基礎(chǔ)。首先,通過(guò)體外高效表達(dá)AFPs 等抗寒類蛋白的研究,可將其用在食品冷凍貯藏中,從而保持食品質(zhì)量和口感(Warren and Mueller,1992);另一方面,抗凍蛋白和抗逆物質(zhì)的研究可能對(duì)器官移植、低溫水域水產(chǎn)養(yǎng)殖等方面有所幫助。更為重要的是,在植物害蟲(chóng)生物防治領(lǐng)域,通過(guò)對(duì)昆蟲(chóng)耐寒性、抗寒基因調(diào)控的研究,了解昆蟲(chóng)的抗寒機(jī)制,探索適宜的冷馴化處理?xiàng)l件,來(lái)提高天敵昆蟲(chóng)的儲(chǔ)存時(shí)間,并保證其捕食效果,為天敵昆蟲(chóng)的長(zhǎng)期低溫保存和篩選高抗逆品系提供理論依據(jù),以解決天敵昆蟲(chóng)的“貨架期短”和“低抗逆”等潛在問(wèn)題,從而培育出“高抗逆”和“貨架期長(zhǎng)”的天敵昆蟲(chóng)種類或者品系,大大促進(jìn)和推動(dòng)我國(guó)“以蟲(chóng)治蟲(chóng)”的生物防治事業(yè)發(fā)展。赤眼蜂是我國(guó)目前人工繁殖量最大和應(yīng)用范圍最廣的寄生性天敵,作為天敵昆蟲(chóng),防治效果好,防治成本低,若可以更長(zhǎng)時(shí)間的儲(chǔ)存赤眼蜂,不但能夠降低害蟲(chóng)控制的成本,還可以保護(hù)自然界的生態(tài)和諧,并為我國(guó)的綠色和有機(jī)食品安全生產(chǎn)保駕護(hù)航。因此,以部分昆蟲(chóng)為研究對(duì)象,先充分研究其耐寒性,分析其抗寒的分子機(jī)理,這對(duì)于其他昆蟲(chóng)物種尤其是天敵昆蟲(chóng)的低溫儲(chǔ)存具有重要的理論意義。這些研究也是提高生物防治在害蟲(chóng)防治中比例的基礎(chǔ),將大大推動(dòng)和促進(jìn)我國(guó)害蟲(chóng)生物防治事業(yè)的發(fā)展。
References)
Barrett J.Thermal hysteresis proteins[J].Int.J.Biochem.Cell.Biol.,2001,33(2):105-117.
Celniker SE,Wheeler DA,KronmillerB,et al.Finishing a whole-genome shotgun:release 3 of the Drosophila melanogaster euchromatic genome sequence[J].Genome Biol.,2002,3(12):RESEARCH0079.
Chen H,Liang GM,Zou LY,et al.Research progresses in the cold hardiness of insects[J].Plant Protection,2010,36(2):18-24.[陳豪,梁革梅,鄒朗云,等.昆蟲(chóng)抗寒性的研究進(jìn)展[J].植物保護(hù),2010,36(2):18-24]
Chen L.Cloning and Expression Analysis of HSP90 Gene from the Chinese Oak Silkworm,Antheraea pemyi[D].Anhui:Anhui Agricultural University,2012.[陳莉.柞蠶熱激蛋白90 基因的克隆與表達(dá)分析[D].安徽:安徽農(nóng)業(yè)大學(xué),2012]
Chen L.Expression Analysis of Heat Shock Protein 70 Gene and Antifreeze Protein Gene from Anatolica polita borealis[D].Xinjiang:Xinjiang University,2007.[陳亮.光滑鱉甲熱休克蛋白70 基因及抗凍蛋白基因表達(dá)規(guī)律的初步研究[D].新疆:新疆大學(xué),2007]
Chen YJ,Sun XG,Zhang WG,et al.Relationship between variation of protein,amino acid,low-molecular carbohydrate in over-wintering Diaphania pyloalis Walker larvae and cold-hardiness[J].Science of Sericulture,2005,31(2):111-115.[陳永杰,孫緒艮,張衛(wèi)光,等.桑螟越冬幼蟲(chóng)體內(nèi)蛋白質(zhì)、氨基酸、碳水化合物的變化與抗寒性的關(guān)系[J].蠶業(yè)科學(xué),2005,31(2):111-115]
Chen YQ,Xiao TH,Zhou ZK.The relationship between heat shock proteins and biological adaptation and evolution[J].Progress in Natural Science,2006,16(9):1066-1073.[陳亞瓊,肖調(diào)紅,周浙昆.熱激蛋白與生物環(huán)境適應(yīng)及進(jìn)化的關(guān)系[J].自然科學(xué)進(jìn)展,2006,16(9):1066-1073]
Colinet H,Renault D,Hance T,et al.The impact of fluctuating thermal regimes on the survival of a cold-exposed parasitic wasp,Aphidius colemani[J].Physiological Entomology,2006,31(3):234-240.
Cui SS,He YY.Insect cold hardiness and the influencing factors[J].Life Science Research,2011,15(3):273-276.[崔雙雙,賀一原.昆蟲(chóng)的耐寒性及其影響因素[J].生命科學(xué)研究,2011,15(3):273-276]
Devries AL,Wohlschlog DE.Freezing resistance in some antartic fishes[J].Science,1969,163(3871):1073-1075.
Gao Y,Tian SQ.The research progress and challenges of antifreeze proteins[J].Research and Application of Veterinary Drug,2010,10:45-46.[高媛,田淑琴.抗凍蛋白新近研究進(jìn)展及面臨的挑戰(zhàn)[J].獸藥研究與應(yīng)用,2010,10:45-46]
Ge F.Principle and Methods of Insect Ecology[M].Beijing:Higher Education Press,2008,158-162.[戈峰.昆蟲(chóng)生態(tài)學(xué)原理與方法[M].北京:高等教育出版社,2008,158-162]
Graham LA,Liou YC,Walker VK,et al.Hyperactive antifreeze protein from beetles[J].Nature,1997,388(6644):727-728.
Guo HB,Xu YY,Ju Z,et al.Seasonal changes of cold hardiness of the green lacewing,Chrysoperla sinica(Tjeder)(Neuroptera:Chrysopidae)[J].Acta Ecologica Sinica,2006,26(10):3238-3244.[郭海波,許永玉,鞠珍,等.中華通草蛉成蟲(chóng)抗寒能力季節(jié)性變化[J].生態(tài)學(xué)報(bào),2006,26(10):3238-3244]
Hoffmann AA,Hallas R,Sinclair C,et al.Levels of variation in stress resistance in drosophila among strains,local populations,and geographic regions:patterns for desiccation,starvation,cold resistance,and associated traits[J].Evolution,2007,55(8):1621-1630.
Holden CP,Storey KB.6-phosphogluconate dehydrogenase from a freeze tolerant insect:control of the hexose monophosphate shunt and NADPH production during cryoprotectant synthesis[J].Insect Biochemical Biol.,1994,24(2):167-173.
Hoskins RA,Carlson JW,Kennedy C,et al.Sequence finishing and mapping of Drosophila melanogaster heterochromatin[J].Science,2007,316(5831):1625-1628.
Hoskins RA,Smith CD,Carlson JW,et al.Heterochromatic sequences in a Drosophila whole-genome shotgun assembly[J].Genome Biol.,2002,3(12):research0085.1-85.16.
Huang HF,Ma F.The molecular evolution of heat shock protein[J].Journal of Xiamen Univesity(Natural Science),2004,43:166-170.[黃惠芳,馬飛.熱激蛋白的分子進(jìn)化研究[J].廈門大學(xué)學(xué)報(bào)(自然科學(xué)版),2004,43:166-170]
Huang LH,Kang L.Cloning and interspecific altered expression of heat shock protein genes in two leafminer species in response to thermal stress[J].Insect Mol.Biol.,2007,16(4):491-500.
Huang LH,Wang CZ,Kang L.Cloning and expression of five heat shock protein genes in relation to cold hardening and development in the leafminer,Liriomyza sativae[J].J.Insect Physiol.,2009,55(3):279-285.
Jacques R,Barbara B.Modeling cold tolerance in the mountain pine beetle,Dendroctonus ponderosae[J].Journal of Insect Physiology,2007,53(6):559-572.
Jing XH,Kang L.Research progress in insect cold hardines[J].Acta Ecologica Sinica,2002,22(12):2202-2207.[景曉紅,康樂(lè).昆蟲(chóng)耐寒性研究.生態(tài)學(xué)報(bào),2002,22(12):2202-2207]
Kaminker JS,Bergman CM,Kronmiller B,et al.The transposable elements of the Drosophila melanogaster euchromatin:a genomics perspective[J].Genome Biol.,2002,3(12):RESEARCH0084.
Kanteng WS,Phlla BA.Flavonoid,but not protein kinase C inhibitors,prevents stress protein synthesis during erythrophagocytosis[J].Biochem.Biophys.Res.Commun.,1991,180:308-314.
Keeling CI,Henderson H,Li M,et al.Transcriptome and full-length cDNA resources for the mountain pine beetle,Dendroctonus ponderosae Hopkins,a major insect pest of pine forests[J].Insect Biochem.Mol.Biol.,2012,42(8):525-536.
Kong F,Han RD,Pei YH,et al.Cold hardiness of the overwintering pupae of fall webworm Hyphantria cunea(Drury)(Lepidoptera:Arctiidae)[J].Science of Sericulture,2007,33(4):534-537.[孔鋒,韓瑞東,裴元慧,李紅梅,等.美國(guó)白蛾Hyphantria cunea(Drury)越冬蛹的抗寒性研究[J].蠶業(yè)科學(xué),2007,33(4):534-537]
Ko?tál V,Korbelová J,Jan Rozsypal,et al.Long-term cold acclimation extends survival time at 0℃ and modifies the metabolomicprofiles of the larvae of the fruit fly Drosophila melanogaster[J].PLoS ONE,2011,6(9):e25025.
Kostál V,Vambera J,Bastl J.On the nature of prefreeze mortality in insects:water balance,ion homeostasis and energy charge in the adults of Pyrrhocoris apterus[J].J.Exp.Biol.,2004,207:1509-1521.
Kristiansen E,Ramlov H,Hojrup P,et al.Structural characteristics of a novel antifreeze protein from the longhorn beetle Rhagium inquisitor[J].Insect Biochem.Mol.Biol.,2011,41(2):109-117.
Leather SR,Walters KFA,Bale JS.The Ecology of Insect Overwintering[M].Cambridge:Cambridge University Press,1993.
Lee RE.Insect cold hardiness:to freeze or not to freeze[J].Bioscience,1989,39(2):308-313.
Liu F,Lai SH.Study on cold resistance of Blattella germanica method[J].Journal of Medical Pest Control,2004,20(7):396-397.[劉峰,賴世宏.德國(guó)小蠊耐寒性研究方法的探討[J].醫(yī)學(xué)動(dòng)物防制,2004,20(7):396-397]
Liu ZD,Gong PY,Wu KJ,et al.Effects of larval host plants on overwintering preparedness and survival of the cotton bollworm,Helicoverpa armigera(Hübner)(Lepidoptera:Noctuidae)[J].Journal of Insect Physiology,2007,53(10):1016-1026.
Liu ZY,Zhang FC,Wang Y,et al.Research of insect's antifreeze proteins[J].Biotechnology,2004,14(3):73-75.[劉忠淵,張富春,王蕓,等.昆蟲(chóng)抗凍蛋白的研究[J].生物技術(shù),2004,14(3):73-75]
Mahroof R,Yan ZK,Neven L,et al.Expression patterns of three heat shock protein 70 genes among developmental stages of the red flour beetle,Tribolium castaneum(Coleoptera:Tenebrionidae)[J].Comp.Biochem.Physiol.B,Biochem.Mol.Biol.,2005,141(2):247-256.
Mao XF.Characterization and Functional Study of Antifreeze Protein from the Desert Beetle Anatolicapolita borealis[D].Xinjiang:XinJiang University,2011.[毛新芳.新疆荒漠昆蟲(chóng)光滑鱉甲抗凍蛋白的性質(zhì)及功能研究[D].新疆:新疆大學(xué),2011]
Mao XF,Zhang FC.The Purification and Properties Analysis of Insect Antifreeze Proteins[D].Chinese Bulletin of Entomology,2009,46(1):26-32.[毛新芳,張富春.昆蟲(chóng)抗凍蛋白的分離純化及特性分析[D].昆蟲(chóng)知識(shí),2009,46(1):26-32]
Ma J,Zhao G.The structures and biological proper ties of insect antifreeze proteins[J].Biotechnology Bulletin,2006,5:37-44.[馬紀(jì),趙干.昆蟲(chóng)抗凍蛋白的結(jié)構(gòu)與生物學(xué)特性研究[J].生物技術(shù)通報(bào),2006,5:37-44]
Ma YL,Hou F,Ma J.Seasonal changes in cold tolerance of desert beetle Anatolica polita borealis(Coleoptera:Tenebrionidae)and their physiological mechanisms[J].Acta Entomologica Sinica,2009,52(4):372-379.[馬延龍,候鳳,馬紀(jì).荒漠昆蟲(chóng)光滑鱉甲的耐寒性季節(jié)變化及其生理機(jī)制[J].昆蟲(chóng)學(xué)報(bào),2009,52(4):372-379]
Mei ZX,Li JQ.The physiological mechanism and influential factors of insect cold tolerance[J].Journal of Binzhou University,2006,22(3):57-61.[梅增霞,李建慶.昆蟲(chóng)抗寒性的生理機(jī)制及影響因子[J].濱州學(xué)院學(xué)報(bào),2006,22(3):57-61]
Micael R,Cristina PV,Ramiro MH,et al.A comparative study of the short term cold resistance response in distantly related Drosophila species:The role of regucalcin and frost[J].PLoS ONE,2011,6(10):e25520.
Misra S,Crosby MA,MungallCJ,et al.Annotation of the Drosophila melanogaster euchromatic genome:a systematic review[J].Genome Biol.,2002,3(12):0083-0083.22.
Morey AC,Hutchison WD,VenetteRC,et al.Cold hardiness of Helicoverpa zea(Lepidoptera:Noctuidae)pupae[J].Environmental Entomology,2012,41(1):172-179.
Moseley PL.Heat shock proteins and heat adaptation of the whole organism[J].Journal of Applied Physiology,1997,83:1413-1417.
Overgaard J,Malmendal A,Sorensen J,et al.Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster[J].J.Insect Physiol.,2007,53(12):1218-1232.
Peng SH,Yao PC,Xu N.The characteristics of antifreeze proteins and mechanism of action[J].Progress in Physiological Sciences,2003,34(3):238-240.[彭淑紅,姚鵬程,徐寧.抗凍蛋白的特性和作用機(jī)制[J].生理科學(xué)進(jìn)展,2003,34(3):238-240]
Qin Z.The Expression Analysis of TPS and Trehlgenes under Cold Induction in Harmonia axvridis[D].Hangzhou:Hangzhou Normal University,2012.[秦資.異色瓢蟲(chóng)TPS 與Treh1 基因低溫誘導(dǎo)表達(dá)分析[D].杭州:杭州師范大學(xué),2012]
Quesneville H,Bergman CM,Andrieu O,et al.Combined evidence annotation of transposable elements in genome sequences[J].PLoS Comput.Biol.,2005,1(2):166-175.
Ritossa FM.A new pufing pattern induced by temperature shock and DNP in Drosophila[J].Experiantia.,1962,18(1):571-573.
Ritossa FM.Experimental activation of specific loci in polutene chromosomes of Drosophila[J].Exp.Cell Res.,1964 35:601-607.
Shi AJ.Characteristics of Prepupal Diapause of Chrysopa pallens(Rambur)[D].Shandong:Shandong Agricultural University,2007.[時(shí)愛(ài)菊.大草嶺滯育特性的研究[D].山東:山東農(nóng)業(yè)大學(xué),2007]
Shintani Y,Ishikawa Y.Relationship between rapid cold hardening and coldacclimation in the eggs of the yellow spotted longicorn beetle Psacothea hilaris[J].Journal of Insect Physiology,2007,53:1055-1062.
Smith CD,Shu S,Mungall CJ,et al.The Release 5.1 annotation of Drosophila melanogaster heterochromatin[J].Science,2007,316(5831):1586-1591.
Sun LJ.Application of Antifreeze Protein from Xinjiang Desert Insect in the Preservation of Saccharomyces cereiseiae at Low Temperatures[D].Xinjiang:Xinjiang University,2008.[孫琳杰.新疆荒漠昆蟲(chóng)抗凍蛋白在釀酒酵母低溫保存中的應(yīng)用[D].新疆:新疆大學(xué),2008]
Tian Y,Lu XY,Zhang HW.Advances in the antifreeze proteins[J].Journal of Chinese Biology,2002,22(6):48-53.[田云,盧向陽(yáng),張海文.抗凍蛋白研究進(jìn)展[J].中國(guó)生物工程雜志,2002,22(6):48-53]
Tissieres A.Mitchell HK,Tracy UM.Protein synthesis in salivary glands of Drosophila melanogaster:relation to chromosome puffs[J].Journal of Molecular Biology,1974,84:389-398.
Tyshenko MG,Doucet D,Walker VK.Analysis of antifreeze proteins within spruce budworm sister species[J].Insect Mol.Biol.,2005,14(3):319-326.
Wang HS,Wang XH,Zhou CS,et al.cDNA cloning of heat shock proteins and their expression in the two phases of the migratory locust[J].Insect Mol.Biol.,2007,16(2):207-219.
Wang HS,Zhou CS,GuoW,et al.Thermoperiodic acclimations enhance cold hardiness of the eggs of the migratory locust[J].Cryobiology,2006,53(2):206-217.
Wang JY,Ci ZL.Advances in study of heat shock protein[J].Shanxi Forestry Science and Technology,2008,1:27-32.[王建義,慈忠玲.熱激蛋白的研究進(jìn)展.山西林業(yè)科技,2008,1:27-32]
Wang P,Ling F,Yu Y,et al.The dynamics of super-cooling ability and biochemical substances in the overwintering Carposina niponensi Walsingham(Lepidoptera:Carposinidae)larvae[J].Acta Ecologica Sinica,2011,31(3):638-945.[王鵬,凌飛,于毅,等.桃小食心蟲(chóng)越冬幼蟲(chóng)過(guò)冷卻能力及體內(nèi)生化物質(zhì)動(dòng)態(tài)[J].生態(tài)學(xué)報(bào),2011,31(3):638-945]
Wang XH,Kang L.Differences in egg thermotolerance between tropical and temperate populations of the migratory locust Locusta migratoria(Orthoptera:Acridiidae)[J].J.Insect Physiol.,2005,51(11):1277-1285.
Warren CJ,Mueller GM.Ice crystal growth suppression poly peptides and methods of preparation[J].DNA Plant Technology Corp,1992,118:792-794.
Xu Q,Zou Q,Zheng H,et al.Three heat shock proteins from Spodoptera exigua:Gene cloning,characterization and comparative stress response during heat and cold shocks[J].Comp.Biochem.Physiol.B,Biochem.Mol.Biol.,2011,159(2):92-102.
Yue CW,Zhang YZ.Cloning and expression of Tenebrio molitor antifreeze protein in Escherichia coli[J].Mol.Bio.Rep.,2009,36:529-536.
Yue L,Guo JY,Zhou ZS,et al.Effects of cold acclimatization on insect cold hardiness and fitness[J].Chinese Journal of Biological Control,2013,29(2):286-293.[岳雷,郭建英,周忠實(shí),等.冷馴化對(duì)昆蟲(chóng)耐寒性及其適合度的影響[J].中國(guó)生物防治學(xué)報(bào),2013,29(2):286-293]
Yi SX,Lee RE.Rapid cold-hardening blocks cold induced apoptosis by inhibiting the activation of procaspases in the flesh fly Sarcophaga crassipalpis[J].Apoptosis,2011,16(3):249-255.
Zachariassen KE,Husby JA.Antifreeze effect of thermal hysteresis agents proteins highly supercooled insects[J].Nature,1982,285-287.
Zhang FP,Zhong JH,Jiang BH,et al.Seasonal variation in cold tolerance of the population of pine armored scale,Hemiberlesia pitysophila Takagi(Homoptera:Diaspididae)[J].Acta Ecologica Sinica,2009,29(11):5813-5822.[張飛萍,鐘景輝,江寶福,等.松突圓蚧種群耐寒性的季節(jié)變化[J].生態(tài)學(xué)報(bào),2009,29(11):5813-5822]
Zhao J.Response to Cold Stress and Overwintering Strategy of Harmonia axyridis(Coleoptera:Coccinellidae)Adults[D].Taian:Shandong Agricultural University,2011.[趙靜.異色瓢蟲(chóng)低溫脅迫耐受性及其越冬策略的研究[D].泰安:山東農(nóng)業(yè)大學(xué),2011]
Zhao J,Cui NN,Zhang F,et al.Effects of body size and fat content on cold tolerance in adults of Harmonia axyridis(Pallas)(Coleoptera:Coccinellidae)[J].Acta Entomologica Sinica,2010,53(11):1213-1219.[趙靜,崔寧寧,張帆,等.異色瓢蟲(chóng)成蟲(chóng)體型及體內(nèi)脂肪含量對(duì)其耐寒能力的影響[J].昆蟲(chóng)學(xué)報(bào),2010,53(11):1213-1219]
Zhao J,Chen ZZ,Zheng FQ,et al.Effects of cold acclimation on developmental characteristics and fitness of Harmonia axyridis(Coleoptera:Coccinellidae)offsprings[J].Acta Entomologica Sinica,2012,55(7):810-815.[趙靜,陳珍珍,鄭方強(qiáng),等.冷馴化對(duì)異色瓢蟲(chóng)后代生長(zhǎng)發(fā)育及適合度的影響[J].昆蟲(chóng)學(xué)報(bào),2012,55(7):810-815]
Zheng XL.Studies on the Cold Hardening and Overwintering Regions of Spodoptera exiguain China[D].Wuhan:Huazhong Agricultural University,2012.[鄭霞林.甜菜夜蛾抗寒力及在中國(guó)的越冬區(qū)劃研究[D].武漢:華中農(nóng)業(yè)大學(xué),2012]
Zhong JH.Extreme Temperature Tolerance of Hemiberlesia pitysophila Takagi and Coccobius azumai Tachikawa[D].Fuzhou:Fujian University,2009.[鐘景輝.松突圓蚧及其天敵花角蚜小蜂對(duì)極端溫度的耐受性[D].福州:福建農(nóng)林大學(xué),2009]