李曉玲,彭永臻,*,柴同志,朱建平,王淑瑩 (.哈爾濱工業(yè)大學(xué)城市水資源與水環(huán)境國家重點(diǎn)實(shí)驗(yàn)室,黑龍江 哈爾濱 50090;.北京工業(yè)大學(xué)北京市水質(zhì)科學(xué)與水環(huán)境恢復(fù)工程重點(diǎn)實(shí)驗(yàn)室,北京市污水脫氮除磷處理與過程控制工程技術(shù)研究中心,北京 004)
投堿種類和氨吹脫對(duì)污泥堿性發(fā)酵產(chǎn)酸的影響
李曉玲1,彭永臻1,2*,柴同志1,朱建平1,王淑瑩2(1.哈爾濱工業(yè)大學(xué)城市水資源與水環(huán)境國家重點(diǎn)實(shí)驗(yàn)室,黑龍江 哈爾濱 150090;2.北京工業(yè)大學(xué)北京市水質(zhì)科學(xué)與水環(huán)境恢復(fù)工程重點(diǎn)實(shí)驗(yàn)室,北京市污水脫氮除磷處理與過程控制工程技術(shù)研究中心,北京 100124)
采用完全混合式厭氧反應(yīng)器,比較了NaOH和Ca(OH)22種堿試劑對(duì)污泥厭氧發(fā)酵產(chǎn)酸的作用效果,結(jié)合氨吹脫作用考察了NH4+濃度的降低對(duì)各有機(jī)物水解酸化程度的影響.結(jié)果表明在pH值為10的條件下,以NaOH調(diào)節(jié)的體系中各種有機(jī)物尤其是揮發(fā)性脂肪酸(VFAs)的量明顯高于以Ca(OH)2調(diào)節(jié)的體系.Ca(OH)2調(diào)節(jié)的體系中釋放出的蛋白質(zhì)有部分沉淀,磷酸鹽含量也較低,小于40mg/L;氨吹脫的體系發(fā)酵液中氨氮含量減少了43%,增大了VFAs的積累量;在NaOH和氨吹脫的組合條件下,污泥水解酸化程度最好,SCOD為6732mg/L,蛋白質(zhì)為2029mg/L,碳水化合物374mg/L,VFAs總量2545mg/L,且氨氮含量低于 200mg/L;分析認(rèn)為氨吹脫作用增大 VFAs積累量的原因主要是NH4+濃度的減小,促進(jìn)了產(chǎn)酸菌對(duì)于碳水化合物的發(fā)酵.
污泥堿性發(fā)酵;投堿種類;氨吹脫;揮發(fā)性脂肪酸;正磷酸鹽
2010年我國城市污水處理廠污泥產(chǎn)量大約為300萬t,污泥的處理處置任務(wù)艱巨[1].而且目前我國城市污水水質(zhì)大多C/N較低,碳源不足導(dǎo)致污水處理廠的脫氮除磷效率低下,不能滿足日益嚴(yán)格的排放標(biāo)準(zhǔn)[2].為同時(shí)解決這兩大問題,如何將污泥中的內(nèi)碳源溶出并作為脫氮除磷的補(bǔ)充碳源,已成為研究的熱點(diǎn).
污泥堿性發(fā)酵是將污泥堿性預(yù)處理和污泥厭氧消化過程相結(jié)合的污泥資源化處理方式,能有效的將污泥中的內(nèi)碳源溶出并以揮發(fā)性脂肪酸(VFAs)的形式積累.即將污泥厭氧消化過程的pH 值條件控制在堿性范圍內(nèi),一方面可以加大污泥融胞,促進(jìn)細(xì)胞中的有機(jī)物大量溶出,可以為產(chǎn)酸菌提供充足的底物從而產(chǎn)生大量的 VFAs;另一方面能在一定程度上抑制產(chǎn)甲烷菌的活性,最終使VFAs大量的在體系中積累[3-4].調(diào)節(jié)堿性發(fā)酵體系 pH 值的堿試劑的作用可以分為兩部分:堿試劑中的 OH-能影響污泥細(xì)胞周圍胞外聚合物(EPS)的性質(zhì)和污泥細(xì)胞膜的結(jié)構(gòu),進(jìn)而影響 EPS中和細(xì)胞內(nèi)有機(jī)物的溶出[5-6];堿試劑中不同價(jià)態(tài)的金屬陽離子能與污泥中的有機(jī)物結(jié)合起到架橋連接污泥絮體的作用,進(jìn)而影響污泥細(xì)胞的破碎程度和有機(jī)物的可降解性能[7].因此堿試劑的選取很大程度上影響著污泥的水解酸化程度.
在污泥堿性發(fā)酵的過程中,伴隨污泥中的有機(jī)物釋放,大量氨氮和磷酸鹽類物質(zhì)也釋放到了環(huán)境中.其中較高的NH4+濃度會(huì)提高體系的C/N,從而影響蛋白質(zhì)的進(jìn)一步水解,同時(shí)也會(huì)抑制產(chǎn)酸菌的活性[8].此外,含有大量正磷酸鹽的發(fā)酵液若作為脫氮除磷系統(tǒng)的補(bǔ)充碳源,也會(huì)增加后續(xù)生物處理系統(tǒng)的磷負(fù)荷.因此發(fā)酵液碳源在利用之前應(yīng)適當(dāng)考慮氨磷的預(yù)處理.在堿性條件下采用氣體吹脫的方法,可以高效的去除溶液中的高濃度NH4+[9].而磷的去除可以采用化學(xué)沉淀的方法,堿試劑中的金屬陽離子如 Ca2+,Mg2+等能與產(chǎn)生沉淀[10],此外也可以利用磷酸氨鎂沉淀法同時(shí)去除發(fā)酵液中的氨磷[11].
本試驗(yàn)采用2種堿試劑NaOH和Ca(OH)2分別對(duì)污泥的堿性發(fā)酵進(jìn)行pH值調(diào)節(jié),對(duì)比了2種堿試劑作用下污泥溶解及釋放出的有機(jī)物的水解酸化程度,并且利用發(fā)酵的堿性環(huán)境采用了吹脫的方式進(jìn)行的去除,比較了降低前后對(duì)污泥溶解及有機(jī)物水解酸化的影響.
試驗(yàn)所用污泥取自哈爾濱市太平污水處理廠二次沉淀池,經(jīng) 0.5mm×0.5mm 紗網(wǎng)過濾后備用.污泥初始性質(zhì)見表1.
表1 污泥初始性質(zhì)Table 1 Sludge characteristics
本試驗(yàn)為序批試驗(yàn),采用5個(gè)1.5L完全混合式厭氧反應(yīng)器,編號(hào)依次是1#~5#,如圖1所示.反應(yīng)器有效容積1.3L,機(jī)械攪拌100r/min,溫度用加熱棒控制在(20±1)℃,pH 值在整個(gè)發(fā)酵過程中始終維持在 10±0.5,反應(yīng)運(yùn)行初期每個(gè)反應(yīng)器投加1.3L新鮮污泥(TSS為20g/L,VSS為11g/L),分別用 NaOH或 Ca(OH)2將體系 pH 值調(diào)節(jié)到10,對(duì)照體系不調(diào)節(jié),連續(xù)運(yùn)行20d.各反應(yīng)器運(yùn)行條件如表2.
發(fā)酵污泥樣品經(jīng) 10000r/min,離心 3min后,上清液測(cè)定SCOD(溶解性COD),蛋白質(zhì),碳水化合物等.試驗(yàn)中 COD、NH4+-N、PO43--P、TSS (總懸浮固體)、VSS(揮發(fā)性懸浮固體)的分析均采用國家環(huán)境保護(hù)總局發(fā)布的標(biāo)準(zhǔn)方法[12];蛋白質(zhì)采用 Lowry試劑法[13];碳水化合物采用苯酚硫酸法[14],分別以牛血清白蛋白(BSA),葡萄糖為標(biāo)準(zhǔn)物質(zhì);pH值使用Multi340i型(WTW公司)便攜式多功能 DO/pH 值測(cè)定儀測(cè)定;VFAs測(cè)定利用Agilent 7890GC 氣相色譜,操作條件:高純 H2作為載氣;進(jìn)樣口氣化溫度為 250℃,采用分流模式進(jìn)樣,分流比為 1:1;初始爐溫 70℃,維持0min(即不保留),然后以 25℃/min的速度升溫至170℃,停留2min;FID檢測(cè)器:溫度300℃,載氣流量為 45mL/min,空氣流量為 450mL/min.實(shí)驗(yàn)數(shù)據(jù)均為2次平行測(cè)定平均值.氣體吹脫用的N2采用黎明氣體有限公司生產(chǎn)的高純氮?dú)?蛋白質(zhì),碳水化合物轉(zhuǎn)化為 COD的當(dāng)量系數(shù)分別為 1.50,1.07[15].乙酸,丙酸,丁酸和異丁酸,戊酸和異戊酸轉(zhuǎn)化為 COD的當(dāng)量系數(shù)分別為 1.07,1.51,1.82,2.04[16].
圖1 完全混合式厭氧反應(yīng)器示意Fig.1 Completely mixed anaerobic reactor
表2 各反應(yīng)器運(yùn)行條件Table 2 Operational conditions
污泥堿性發(fā)酵能使污泥中的有機(jī)物經(jīng)過水解酸化釋放于溶液中,這些有機(jī)物主要有蛋白質(zhì),碳水化合物,揮發(fā)性有機(jī)酸(VFAs)等.在 pH 10的條件下,不同堿種類的調(diào)節(jié)與氨吹脫作用對(duì)污泥堿性發(fā)酵有機(jī)物溶出的影響如圖 2所示.相對(duì)于對(duì)照,無論是堿的單獨(dú)作用還是堿和氨吹脫的組合作用,SCOD均有明顯的提高.NaOH調(diào)節(jié)的系統(tǒng)相對(duì)Ca(OH)2調(diào)節(jié)的系統(tǒng) SCOD溶出量普遍較高,這與李洋洋等[17]的研究結(jié)果相似,且在氨吹脫的體系更加明顯.NaOH調(diào)節(jié)加氨吹脫體系 1#,SCOD 的最大產(chǎn)量超過了 7000mg/L.Ca(OH)2調(diào)節(jié)加氨吹脫的體系 2#,SCOD的最大產(chǎn)量為4500mg/L.在pH 10的條件下,對(duì)比同種堿試劑調(diào)節(jié)的發(fā)酵體系1#和3#或2#和 4#,發(fā)現(xiàn)在前100h內(nèi),SCOD的產(chǎn)量與氨吹脫與否無關(guān),而只與堿種類有關(guān).但之后有氨吹脫的體系有機(jī)物總量基本保持不變,而無氨吹脫的體系有機(jī)物量逐漸減少.如體系 3# SCOD出現(xiàn)了明顯的下降,而氨吹脫體系1# 中SCOD的含量較未吹脫體系高出 50%.這說明氨吹脫的體系能夠維持發(fā)酵溶出的有機(jī)物不被消耗.
圖2 堿種類與氨吹脫作用對(duì)SCOD溶出的影響Fig.2 The effect of alkali types and ammonia stripping on SCOD production
污泥中的復(fù)雜有機(jī)物如蛋白質(zhì),碳水化合物經(jīng)水解酸化作用,會(huì)轉(zhuǎn)化為 VFAs.在污泥堿性發(fā)酵系統(tǒng)中,VFAs會(huì)大量在系統(tǒng)中積累.由圖 3可見,VFAs的產(chǎn)出規(guī)律與SCOD的規(guī)律相似,NaOH調(diào)節(jié)的體系,VFAs的含量較高,加上氨吹脫,VFAs含量更大,并且在后期保持不變,而未吹脫的體系后期 VFAs明顯下降.如 NaOH+N2的體系1#,VFAs產(chǎn)量達(dá)2700mg COD/L,占總SCOD的近40%,而僅 NaOH調(diào)節(jié)的體系中,VFAs在 150h~500h內(nèi)從 1428mg COD/L下降到了 722mg COD/L,損失量高達(dá)50%.這部分有機(jī)物的損失可能是造成相應(yīng)的SCOD下降的主要原因.從發(fā)酵初期的 0~100h 內(nèi) VFAs 的累計(jì)產(chǎn)量來看,與SCOD不同,同種堿調(diào)節(jié)下氨吹脫體系的產(chǎn)率明顯高于未吹脫體系,這說明氨吹脫作用在一定程度上促進(jìn)了溶解性有機(jī)物的酸化,使得 VFAs量即使有部分損耗也維持了一個(gè)穩(wěn)定的產(chǎn)量.在發(fā)酵后期,未吹脫系統(tǒng)中的 VFAs存在明顯下降,這種現(xiàn)象同樣出現(xiàn)在 Zhang等[3,18]的研究中,原因可能是產(chǎn)生的 VFAs被系統(tǒng)中存在的酸消耗菌如,產(chǎn)氫菌,產(chǎn)甲烷菌等消耗了.
圖3 堿種類和氨吹脫作用對(duì)VFAs產(chǎn)出的影響Fig.3 The effect of alkali types and ammonia stripping on VFAs production
蛋白質(zhì)和碳水化合物是污泥細(xì)胞的主要組成成分,也是發(fā)酵產(chǎn)酸的主要底物.蛋白質(zhì)是較難水解酸化的有機(jī)物,相對(duì)而言碳水化合物能夠較易被產(chǎn)酸菌利用[19].圖4中,蛋白質(zhì)的溶出量明顯高于碳水化合物,分別占總 SCOD的 30%~50%,5%~10%,這與污泥的組成比例相當(dāng),在剩余活性污泥中蛋白質(zhì)占40%,碳水化合物占10%(質(zhì)量分?jǐn)?shù))[20].圖4a中,NaOH調(diào)節(jié)體系中蛋白質(zhì)的溶出量大于Ca(OH)2體系,而氨吹脫作用在前200h內(nèi)的影響不大,后期卻呈現(xiàn)了不同的規(guī)律.在發(fā)酵200h后的NaOH體系中,蛋白質(zhì)在氨吹脫體系的產(chǎn)量高于氨未吹脫體系的產(chǎn)量,這與SCOD 的趨勢(shì)相同,而在Ca(OH)2體系中,氨未吹脫體系的蛋白質(zhì)量高于氨吹脫體系的量.原因可能是由于氨吹脫的體系內(nèi) VFAs生成量較大,致使體系 pH值變化幅度較大,如圖 5所示, Ca(OH)2+N2體系中pH值的變化量明顯高于僅Ca(OH)2體系.為維持 Ca(OH)2+N2的體系的 pH 值穩(wěn)定在 10,需要投加更大量的 Ca(OH)2,因此蛋白質(zhì)和 Ca2+的沉淀量也就加大[21].
圖4 堿種類與氨吹脫作用對(duì)蛋白質(zhì)和碳水化合物溶出的影響Fig.4 The effect of alkali types and ammonia stripping on protein and carbohydrate production
圖5 各體系中pH 值的變化Fig.5 The pH variation in different systems
圖4b中溶解性碳水化合物的含量在NaOH調(diào)節(jié)的體系大于Ca(OH)2調(diào)節(jié)體系,但2種堿試劑調(diào)節(jié)下氨吹脫體系的含量都較對(duì)應(yīng)的未吹脫體系小,這與SCOD的規(guī)律正好相反,對(duì)應(yīng)圖3中VFAs量的增加,這說明氨吹脫體系中的碳水化合物被較大部分的用于發(fā)酵產(chǎn)酸.相對(duì)蛋白質(zhì)和碳水化合物這 2種底物在發(fā)酵產(chǎn)酸過程中的變化,可以得出氨吹脫作用較大程度上強(qiáng)化了產(chǎn)酸微生物對(duì)碳水化合物的利用,而對(duì)于蛋白質(zhì)的利用程度影響不大.
氨氮的溶出主要是由蛋白質(zhì)的水解酸化得到[22],伴隨著蛋白質(zhì)水解酸化程度的加大,氨氮的含量也相應(yīng)增加.在堿性條件下,體系中的/NH3的平衡(如式(1))會(huì)向左移動(dòng),溶解態(tài)的+會(huì)以 NH3的形式釋放出體系,降低溶解性的含量.
圖6 堿種類與氨吹脫作用對(duì)氨氮釋放的影響Fig.6 The effect of alkali types and ammonia stripping on release
在污泥堿性發(fā)酵體系中過高的氨氮含量可能會(huì)對(duì)產(chǎn)酸不利.一方面較高的氨氮含量可能抑制溶解性蛋白質(zhì)的進(jìn)一步水解,產(chǎn)生產(chǎn)物抑制作用;另一方面,據(jù)報(bào)道較高的氨氮含量會(huì)對(duì)產(chǎn)酸菌產(chǎn)生毒性抑制作用[23],阻止產(chǎn)酸菌對(duì)溶解性有機(jī)物的利用,從而減小 VFAs的產(chǎn)量.在氨吹脫體系中,雖然氨氮的含量得到了控制,但蛋白質(zhì)的含量在 NaOH體系中依舊高于未吹脫體系(圖 4a),所以蛋白質(zhì)的水解酸化程度沒有受到大的影響.但是從圖4b碳水化合物酸化程度的明顯加大和圖2中VFAs含量的上升,可以得出氨氮濃度的降低促進(jìn)了 VFAs的積累,并且主要是促進(jìn)了產(chǎn)酸菌對(duì)于溶解性碳水化合物的利用.
圖7 堿種類與氨吹脫作用對(duì)正磷酸鹽釋放的影響Fig.7 The effect of alkali types and ammonia stripping on release
3.1 堿種類直接影響著污泥的水解酸化程度.NaOH較Ca(OH)2更有利于污泥融胞和水解發(fā)酵,各有機(jī)物和VFAs的含量均較大.
3.2 氨的吹脫能顯著降低溶液中 NH4+含量,進(jìn)而解除對(duì)產(chǎn)酸菌的抑制,使得溶出的碳水化合物被產(chǎn)酸菌大量利用,提高了 VFAs的產(chǎn)量.但氨吹脫作用對(duì)溶解性蛋白質(zhì)水解酸化的影響不大.
3.3 NaOH和氨吹脫的組合條件污泥水解酸化程度最好.
[1]Dai X. High-solids anaerobic digestion of sewage sludge in China [C]//Launching ceremony of IWA China anaerobic digestion committee and Sino-Dutch AD workshop, Harbin chapter, 2010.
[2]馬培舜,王海玲,成麗華.昆明城市污水處理現(xiàn)狀及發(fā)展 [J]. 中國給水排水, 2003,19(4):19-22.
[3]Yuan H Y, Chen Y G, Zhang H X, et al. Improved bioproduction of short-chain fatty acids (SCFAs)from excess sludge under alkaline conditions [J]. Environmental Science and Technology,2006,40(6):2025-2029.
[4]肖本益,劉俊新.污水處理系統(tǒng)剩余污泥堿處理融胞效果研究[J]. 環(huán)境科學(xué), 2006,27(2):319–323.
[5]Li H, Jin Y Y, Mahar R B, et al. Effects and model of alkaline waste activated sludge treatment [J]. Bioresource Technology,2008,99(11):5140-5144.
[6]Li H S, Wen Y, Cao A S, et al. The influence of additives (Ca2+,Al3+, and Fe3+)on the interaction energy and loosely bound extracellular polymeric substances (EPS)of activated sludge and their flocculation mechanisms [J]. Bioresource Technology,2012,114:188-194.
[7]Higgins M J, Novak J T. The effect of cations on the settling and dewatering of activated sludge: laboratory results [J]. Water Environment Research, 1997,68(2):215-224.
[8]F L Y, Chen Y G, Zheng X. Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH [J].Environmental Science and Technology, 2009,43(12):4373-4380.
[9]Liao P H, Chen A, Lo K V. Removal of nitrogen from swine manure wastewaters by ammonia stripping [J]. Bioresource Technology, 1995,54(1):17-20.
[10]Barat R, Montoya T, Seco A, et al. Modelling biological and chemically induced precipitation of calcium phosphate in enhanced biological phosphorus removal systems [J]. Water Research, 2011,45(12):3744-3752.
[11]Zhang C, Chen Y G. Simultaneous nitrogen and phosphorus recovery from sludge-fermentation liquid mixture and application of the fermentation liquid to enhance municipal wastewater biological nutrient removal [J]. Environmental Science and Technology, 2009,43(16):6164-6170.
[12]APHA. Standard methods for the examination of water and wastewater [M]. 20th ed. Washington, DC, USA: American Public Health Association, 1998.
[13]Lowry O H, Rosebrough N J, Farr A L, et al. Protein measurement with the Folin phenol reagent [J]. Journal of Biological Chemistry, 1951,193:165-175.
[14]Herbert D, Philipps P J R E Strange [J]. Methods Enzymol,1971,5(B):265-277.
[15]Miron Y, Zeeman G, Jules B, et al. The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR system[J]. Water Research, 2000,34(5):1705-1713.
[16]Yuan Q, Sparling R, Oleszkiewicz J A. Waste activated sludge fermentation: Effect of solids retention time and biomass concentration [J]. Water Research, 2009,43(20):5180-5186.
[17]李洋洋,金宜英,李 歡,等.堿熱聯(lián)合破解污泥效果及動(dòng)力學(xué)研究 [J]. 中國環(huán)境科學(xué), 2010,30(9):1230-1234.
[18]Zhang P, Chen Y G, Zhou Q. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: Effect of pH [J]. Water Research,2009,43(15):3735-3742.
[19]Bougrier C, Delgenes J P, Carrere H. Impacts of thermal pre-treatments on the semi-continuous anaerobic digestion of waste activated sludge [J]. Biochemical Engineering Journal,2007,34(1):20-27.
[20]Tanaka S, Kobayashi T, Kamiyama K, et al. Effects of thermochemical pretreatment on the anaerobic digestion of waste activated sludge [J]. Water Science Technology, 1997,35(8):209-215.
[21]Su G Q, Huo M X, Yuan Z G, et al. Hydrolysis, acidification and dewaterability of waste activated sludge under alkaline conditions:Combined effects of NaOH and Ca(OH)2[J]. Bioresource Technology, 2013,136:237–243.
[22]Kayhanian M. Ammonia inhibition in high-solids biogasif i cation:an overview and practical solutions [J]. Environmental Technology, 1999,20(4):355-365.
[23]Chen Y, Cheng J J, Creamer K S. Inhibition of anaerobic digestion process: A review [J]. Bioresource Technology, 2008,99(10):4044-4064.
The effect of alkali types and ammonia stripping on volatile fatty acids accumulation in sludge alkaline fermentation.
LI Xiao-ling1, PENG Yong-zhen1,2*, CHAI Tong-zhi1, ZHU Jian-ping1, WANG Shu-ying2(1.State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China;2.Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China). China Environmental Science, 2014,34(5):1194~1199
A series of completely mixed anaerobic reactors were operated to investigate different alkalis (NaOH and Ca(OH)2)performance on sludge disintegration and organics hydrolysis and acidification in sludge alkaline fermentation systems. In addition, ammonia stripping was combined with alkali adjustment to observe the effect of NH4+concentration on the hydrolysis and acidification effective of released organics. Results showed that at pH10, sludge disintegration as well as organics release, especially, volatile fatty acids (VFAs)was much higher in NaOH systems than that in Ca(OH)2systems. However, part of soluble protein and PO43-were precipitated with Ca2+in Ca(OH)2systems. The PO43-concentration was less than 40mg/L in Ca(OH)2systems. 43% of NH4+was removed by ammonia stripping. The maximum hydrolysis and acidification performance was achieved in the NaOH adjustment and ammonia stripping system.The SCOD, protein, carbohydrate as well as total VFAs concentrations were 6732, 2029, 374 and 2545mg/L, respectively,and the NH4+concentration was as low as 200mg/L. Analysis results also found that ammonia stripping could increase VFAs production by relieving the inhibition of NH4+on acid-forming bacteria, and enhancing the fermentation of carbohydrate.
sludge alkaline fermentation;alkali types;ammonia stripping;volatile fatty acids (VFAs);orthophosphate
X703.1
A
1000-6923(2014)05-1194-06
2013-09-08
國家自然科學(xué)基金(51178007);國家“863”項(xiàng)目(2012AA063406)
* 責(zé)任作者, 教授, pyz@bjut.edu.cn
李曉玲(1986-),女,青海西寧人,哈爾濱工業(yè)大學(xué)市政環(huán)境工程學(xué)院博士研究生,主要從事污泥厭氧消化及資源化研究.發(fā)表論文3篇.