亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        譜負(fù)MAP波動(dòng)理論的一個(gè)注記

        2014-10-22 12:30:02張超權(quán)唐勝達(dá)秦永松
        關(guān)鍵詞:極值時(shí)刻波動(dòng)

        張超權(quán) 唐勝達(dá) 秦永松

        摘要譜負(fù)MAP是應(yīng)用概率論領(lǐng)域的重要內(nèi)容之一.利用Asmussen-kella鞅推廣了譜負(fù)MAP(X,J)的波動(dòng)理論,給出譜負(fù)MAP在與之獨(dú)立且服從Erlang分布的隨機(jī)時(shí)刻點(diǎn)上水平與極值的聯(lián)合變換所滿足的等式,進(jìn)而由Erlangization方法,給出譜負(fù)MAP(X,J)的水平與極值的聯(lián)合變換的瞬時(shí)趨近算法.

        關(guān)鍵詞譜負(fù)MAP;波動(dòng)理論;Erlangization方法;趨近計(jì)算式

        中圖分類號(hào)O211.5文獻(xiàn)標(biāo)識(shí)碼A文章編號(hào)1000-2537(2014)02-0078-06

        Levy過程是應(yīng)用概率領(lǐng)域內(nèi)的重要隨機(jī)過程之一,但是Levy過程的平穩(wěn)性使其在實(shí)際應(yīng)用中受到一定的局限性.在實(shí)際建模中,過程會(huì)因長(zhǎng)時(shí)間的演變、外界隨機(jī)因素的干擾等原因而不再具有平穩(wěn)性,如價(jià)格的季節(jié)性,行為的模式化等.由此,可將Levy過程推廣為機(jī)制轉(zhuǎn)換模型(regime-switching model):連續(xù)時(shí)間的Markov加過程(Markov additive process),簡(jiǎn)稱MAP,這是Levy過程的一個(gè)自然推廣,MAP已成為隨機(jī)復(fù)雜系統(tǒng)的重要建模工具之一,它已被廣泛應(yīng)用于網(wǎng)絡(luò)通訊、存儲(chǔ)論、交通管理、風(fēng)險(xiǎn)過程、金融工程等領(lǐng)域[1-2].

        許多學(xué)者對(duì)MAP的相關(guān)性質(zhì)作了深入的研究,Cinlar,Ney,Asmussen [3-5]給出了MAP的基本結(jié)構(gòu)及性質(zhì),Ivanovs[6]給出了MAP的指數(shù)矩陣特征值的性質(zhì),DAuria等[7]給出了MAP首達(dá)時(shí)過程的轉(zhuǎn)移率矩陣的結(jié)構(gòu),并將其應(yīng)用于單邊反射MAP及雙邊MMBM[8],Breuer[9]給出了首達(dá)時(shí)過程的轉(zhuǎn)移率矩陣的迭代計(jì)算方法,Ivanovs[10]給出了MAP的scale 矩陣,Kypianou等[11]對(duì)MAP波動(dòng)理論進(jìn)行了研究.

        Avram[12]在研究風(fēng)險(xiǎn)過程中得出破產(chǎn)時(shí)刻的Laplace變換等價(jià)于指數(shù)隨機(jī)時(shí)間內(nèi)的破產(chǎn)概率,Asmussen等[13]采用fluid embedding方法將這一結(jié)果推廣并得出服從Erlang(n,q)分布的隨機(jī)時(shí)刻內(nèi)的破產(chǎn)概率,當(dāng)給定分布期望不變時(shí),隨著分布的階數(shù)趨于無窮,這一隨機(jī)時(shí)刻趨于它的期望定值,利用這一方法,Asmussen等得到了在有限時(shí)刻內(nèi)破產(chǎn)的趨近算法,且這一算法具有良好的穩(wěn)定性且收斂速度快,這一方法稱為Erlangization方法;Stanford[14]將這一方法推廣為PH分布情形;Ramaswami等[15]將這一方法應(yīng)用于隨機(jī)流體理論,用于各種有限時(shí)刻內(nèi)的各種首達(dá)時(shí)的研究,Woolford等[16]將這一方法用于分析山火的控制研究.

        本文基于上述研究,主要給出譜負(fù)MAP(X,J)的水平與極值的聯(lián)合變換的瞬時(shí)趨近算法.這一結(jié)果在實(shí)際數(shù)值計(jì)算中具有十分重要的意義,本文利用Asmussen-kella鞅,推廣了MAP的波動(dòng)理論,將MAP在指數(shù)時(shí)刻的相關(guān)量推廣至Erlang分布的隨機(jī)時(shí)刻上,繼而由Erlangization方法,給定任意時(shí)刻時(shí)的MAP相應(yīng)量的趨近計(jì)算式.從而解決了譜負(fù)MAP(X,J)瞬時(shí)波動(dòng)理論的瞬時(shí)時(shí)間點(diǎn)上的計(jì)算問題.

        參考文獻(xiàn):

        [1]ASMUSSEN S. Applied probability and queues[M]. 2nd Ed. Berlin:Springer, 2003.

        [2]PRABHU N. Stochastic storage processes—queues, insurance risk, dams, and data communication[M].New York:Springer-Verlag, 1998.

        [3]INLAR E. Markov additive processes Ⅰ[J]. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 1972,24(2):85-93.

        [4]INLAR E. Markov additive processes Ⅱ[J]. Probability Theory Related Fields,1972,24(2):95-121.

        [5]NEY P, NUMMELIN E. Markov additive processes Ⅰ. Eigenvalue properties and limit theorems[J]. Ann Probab, 1987,15(2):561-592.

        [6]IVANOVS J, BOXMA O, MANDJES M. Singularities of the matrix exponent of a Markov additive process with one-sided jumps[J]. Stochastic Pro Appl, 2010,120(9):1776-1794.

        [7]DAURIA B, IVANOVS J, KELLA O, et al. First passage of a Markov additive process and generalized Jordan chains[J]. J Appl Probab, 2010,47(4):1048-1057.

        [8]DAURIA B, IVANOVS J, KELLA O, et al. Two-sided reflection of Markovmodulated Brownian motion[J]. Stochastic Models, 2012, 28(1):316-332.

        [9]BREUER L. First passage times for Markov additive processes with positive jumps of phase type[J]. J Appl Probability, 2008,45(3):779-799.

        [10]IVANOVS J. PALMOWSKI Z. Occupation densities in solving exit problems for Markov additive processes and their reflections[J]. Stochastic Processes Appl, 2012,122(9):3342-3360.

        [11]KYPRIANOU A, PALMOWSKI Z. Fluctuations of spectrally negative Markov additive processes[C]//Séminaire de Probabilités XL[M]. Springer: Berlin, 2008,121-135.

        [12]AVRAM F, USABEL M. Finite time ruin probabilities of processes with phase type jumps[J]. Insurance, Math Economics, 2003, 32(3):371-377.

        [13]ASMUSSEN S, AVRAM F, USABEL M. Erlangian approximations for finite horizon ruin probabilities[J].Astin Bull, 2002,32(2):267-281.

        [14]STANFORD D A, AVRAM F, BADESCU A B, et al. Phase-type approximations to finite-time ruin probabilities in the Sparre Andersen and stationary renewal risk models[J]. Astin Bull, 2005,35(1):131-144.

        [15]RAMASWAMI V, DOUGLAS G, WOOLFORD D, et al. The erlangization method for Markovian fluid flows [J]. Ann Oper Res, 2008,160(1):215-225.

        [16]STANFORD D L, ATOUCHE G, WOOLFORD D, et al. Erlangized fluid queues with application to uncontrolled fire perimeter[J]. Stochastic Models, 2005,21(23):631-642.

        [17]JAGERMAN D L. An inversion technique for the Laplace transform with application to approximation[J]. Bell Syst Tech J, 1978,57(3):669-710.

        [18]JAGERMAN D L. An inversion technique for the Laplace transform[J]. Bell Syst Tech J, 1982,61(8):1995-2002.

        [19]ASMUSSEN S, KELLA O. A multi-dimensional martingale for Markov additive processes and its applications[J]. Adv Appl Probab, 2000,32(2):376-393.

        (編輯沈小玲)

        [10]IVANOVS J. PALMOWSKI Z. Occupation densities in solving exit problems for Markov additive processes and their reflections[J]. Stochastic Processes Appl, 2012,122(9):3342-3360.

        [11]KYPRIANOU A, PALMOWSKI Z. Fluctuations of spectrally negative Markov additive processes[C]//Séminaire de Probabilités XL[M]. Springer: Berlin, 2008,121-135.

        [12]AVRAM F, USABEL M. Finite time ruin probabilities of processes with phase type jumps[J]. Insurance, Math Economics, 2003, 32(3):371-377.

        [13]ASMUSSEN S, AVRAM F, USABEL M. Erlangian approximations for finite horizon ruin probabilities[J].Astin Bull, 2002,32(2):267-281.

        [14]STANFORD D A, AVRAM F, BADESCU A B, et al. Phase-type approximations to finite-time ruin probabilities in the Sparre Andersen and stationary renewal risk models[J]. Astin Bull, 2005,35(1):131-144.

        [15]RAMASWAMI V, DOUGLAS G, WOOLFORD D, et al. The erlangization method for Markovian fluid flows [J]. Ann Oper Res, 2008,160(1):215-225.

        [16]STANFORD D L, ATOUCHE G, WOOLFORD D, et al. Erlangized fluid queues with application to uncontrolled fire perimeter[J]. Stochastic Models, 2005,21(23):631-642.

        [17]JAGERMAN D L. An inversion technique for the Laplace transform with application to approximation[J]. Bell Syst Tech J, 1978,57(3):669-710.

        [18]JAGERMAN D L. An inversion technique for the Laplace transform[J]. Bell Syst Tech J, 1982,61(8):1995-2002.

        [19]ASMUSSEN S, KELLA O. A multi-dimensional martingale for Markov additive processes and its applications[J]. Adv Appl Probab, 2000,32(2):376-393.

        (編輯沈小玲)

        [10]IVANOVS J. PALMOWSKI Z. Occupation densities in solving exit problems for Markov additive processes and their reflections[J]. Stochastic Processes Appl, 2012,122(9):3342-3360.

        [11]KYPRIANOU A, PALMOWSKI Z. Fluctuations of spectrally negative Markov additive processes[C]//Séminaire de Probabilités XL[M]. Springer: Berlin, 2008,121-135.

        [12]AVRAM F, USABEL M. Finite time ruin probabilities of processes with phase type jumps[J]. Insurance, Math Economics, 2003, 32(3):371-377.

        [13]ASMUSSEN S, AVRAM F, USABEL M. Erlangian approximations for finite horizon ruin probabilities[J].Astin Bull, 2002,32(2):267-281.

        [14]STANFORD D A, AVRAM F, BADESCU A B, et al. Phase-type approximations to finite-time ruin probabilities in the Sparre Andersen and stationary renewal risk models[J]. Astin Bull, 2005,35(1):131-144.

        [15]RAMASWAMI V, DOUGLAS G, WOOLFORD D, et al. The erlangization method for Markovian fluid flows [J]. Ann Oper Res, 2008,160(1):215-225.

        [16]STANFORD D L, ATOUCHE G, WOOLFORD D, et al. Erlangized fluid queues with application to uncontrolled fire perimeter[J]. Stochastic Models, 2005,21(23):631-642.

        [17]JAGERMAN D L. An inversion technique for the Laplace transform with application to approximation[J]. Bell Syst Tech J, 1978,57(3):669-710.

        [18]JAGERMAN D L. An inversion technique for the Laplace transform[J]. Bell Syst Tech J, 1982,61(8):1995-2002.

        [19]ASMUSSEN S, KELLA O. A multi-dimensional martingale for Markov additive processes and its applications[J]. Adv Appl Probab, 2000,32(2):376-393.

        (編輯沈小玲)

        猜你喜歡
        極值時(shí)刻波動(dòng)
        冬“傲”時(shí)刻
        極值點(diǎn)帶你去“漂移”
        捕獵時(shí)刻
        極值點(diǎn)偏移攔路,三法可取
        羊肉價(jià)回穩(wěn) 后期不會(huì)大幅波動(dòng)
        微風(fēng)里優(yōu)美地波動(dòng)
        2019年國(guó)內(nèi)外油價(jià)或?qū)⒉▌?dòng)加劇
        一類“極值點(diǎn)偏移”問題的解法與反思
        干濕法SO2排放波動(dòng)對(duì)比及分析
        街拍的歡樂時(shí)刻到來了
        久久在一区二区三区视频免费观看| 色偷偷久久一区二区三区| 日本aⅴ大伊香蕉精品视频| 欧美理论在线| 日本av一区二区播放| 日韩性感av一区二区三区| 全国一区二区三区女厕偷拍| 国产亚洲精品国产精品| 少妇夜夜春夜夜爽试看视频 | 免费一区二区三区久久| 亚洲VA中文字幕欧美VA丝袜| 亚洲人成网站18男男| 熟女免费观看一区二区| 久久理论片午夜琪琪电影网| 亚洲精品人成无码中文毛片| 久久久精品3d动漫一区二区三区| 亚洲a人片在线观看网址| 亚洲天堂av高清在线| 久久精品国产亚洲av麻豆瑜伽| 无码熟妇人妻av影音先锋| 欧美精品人人做人人爱视频| 一本久道久久综合五月丁香| 亚洲中文字幕国产剧情| 在线精品亚洲一区二区动态图| 窝窝午夜看片| 亚洲色偷偷综合亚洲av伊人| 国产极品美女到高潮视频| 风间由美中文字幕在线| 精品人妻一区二区三区在线观看| 性无码免费一区二区三区在线| 麻豆国产成人av高清在线观看| 人妻爽综合网| 蜜桃一区二区三区视频| 极品成人影院| 国产精品久久久久国产精品| 国产三级精品美女三级| 日本韩国亚洲三级在线| 一本大道av伊人久久综合| 嗯啊哦快使劲呻吟高潮视频| 日本一区二区啪啪视频| 国产内射视频在线观看|