亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        城市景觀格局演變的水環(huán)境效應(yīng)研究綜述

        2014-10-11 10:34:12郭青海
        生態(tài)學(xué)報(bào) 2014年12期
        關(guān)鍵詞:環(huán)境效應(yīng)水生格局

        黃 碩, 郭青海

        (1.中國(guó)科學(xué)院城市環(huán)境研究所,城市環(huán)境與健康重點(diǎn)實(shí)驗(yàn)室, 廈門(mén) 361021; 2.中國(guó)科學(xué)院大學(xué), 北京 100049)

        城市景觀格局演變的水環(huán)境效應(yīng)研究綜述

        黃 碩1,2, 郭青海1,*

        (1.中國(guó)科學(xué)院城市環(huán)境研究所,城市環(huán)境與健康重點(diǎn)實(shí)驗(yàn)室, 廈門(mén) 361021; 2.中國(guó)科學(xué)院大學(xué), 北京 100049)

        人類(lèi)活動(dòng)導(dǎo)致的城市土地利用覆被變化在景觀生態(tài)學(xué)上表現(xiàn)為城市景觀類(lèi)型的更替和城市景觀格局的演變。我國(guó)城市景觀格局中自然植被景觀基質(zhì)大幅被人工硬化地面所取代,自然景觀斑塊破碎化,城市道路和排水管網(wǎng)等人工廊道大量增加,造成“源”“匯”景觀的比例失衡和格局失調(diào),從而產(chǎn)生城市景觀格局演變的水環(huán)境負(fù)效應(yīng),如非點(diǎn)源污染、水生生態(tài)系統(tǒng)失衡和城市內(nèi)澇等,且水環(huán)境負(fù)效應(yīng)存在時(shí)間尺度差異和空間尺度響應(yīng)多樣性。對(duì)城市景觀類(lèi)型及其格局演變產(chǎn)生的城市水環(huán)境效應(yīng)相關(guān)研究進(jìn)行總結(jié),針對(duì)現(xiàn)有研究中存在的城市景觀格局演變帶來(lái)的生態(tài)過(guò)程變化研究較少、影響城市水環(huán)境的景觀格局變化閾值不明確、研究結(jié)果推廣難和重復(fù)性較差、人工廊道與城市水環(huán)境效應(yīng)關(guān)系關(guān)注度較低和水環(huán)境負(fù)效應(yīng)綜合度研究欠缺等不足之處,提出未來(lái)研究的著力點(diǎn),對(duì)實(shí)現(xiàn)可持續(xù)城市具有一定意義。

        景觀格局;水環(huán)境效應(yīng);城市規(guī)劃

        城市水環(huán)境以城市自然和人工水體為中心,包括流域尺度內(nèi)與水體密切相關(guān)的自然要素和城市景觀,是城市生態(tài)系統(tǒng)的重要組成部分[1]。據(jù)統(tǒng)計(jì),1991年七大水系流經(jīng)城市的支流污染較重,2011年部分城市河段為重度污染,且城市內(nèi)湖水質(zhì)都低于Ⅲ類(lèi)水質(zhì)標(biāo)準(zhǔn),我國(guó)城市水環(huán)境存在嚴(yán)重污染問(wèn)題[2- 3]。城市水體質(zhì)量下降與城市化帶來(lái)的城市景觀格局演變具有一定的關(guān)聯(lián)性[4]。近年來(lái)我國(guó)城市發(fā)展勢(shì)頭迅猛,城市自然生態(tài)系統(tǒng)轉(zhuǎn)為人工生態(tài)系統(tǒng),自然景觀斑塊趨于破碎化,城市景觀格局演變主要表現(xiàn)為城市建成區(qū)等大面積不透水面對(duì)自然植被景觀基質(zhì)的侵蝕[5]、城市排水管網(wǎng)和城市道路等人工廊道的大量增長(zhǎng)[6- 7]和景觀類(lèi)型的演替[6]。自然景觀與人工景觀此消彼長(zhǎng)的景觀格局對(duì)水環(huán)境產(chǎn)生城市內(nèi)澇、非點(diǎn)源污染和水生生態(tài)系統(tǒng)失衡等生態(tài)負(fù)效應(yīng)[8- 10]。開(kāi)展城市景觀格局演變的水環(huán)境效應(yīng)研究,總結(jié)不同城市景觀類(lèi)型及其格局對(duì)城市水環(huán)境的影響和城市水環(huán)境對(duì)景觀格局演變的響應(yīng)機(jī)制,可以為城市景觀格局規(guī)劃提供參考依據(jù),避免城市水環(huán)境對(duì)城市規(guī)劃滯后響應(yīng)的負(fù)面生態(tài)效果,從城市生態(tài)規(guī)劃入手保護(hù)城市水環(huán)境,對(duì)城市可持續(xù)發(fā)展具有重大意義。

        1 研究現(xiàn)狀

        健康的城市水環(huán)境在保水蓄水、污染凈化、物質(zhì)輸送、能量流動(dòng)、保持生物多樣性等方面可以產(chǎn)生生態(tài)正效應(yīng)[11- 12]。而城市水環(huán)境負(fù)效應(yīng)體現(xiàn)在城市水體形態(tài)改變或面積縮減對(duì)生態(tài)廊道效應(yīng)的削弱、城市水體污染對(duì)居民飲用水安全的威脅、水體富營(yíng)養(yǎng)化對(duì)水生生態(tài)系統(tǒng)平衡的破壞和水體環(huán)境容量減小對(duì)城市內(nèi)澇發(fā)生率的增加等方面[13- 14]。近年來(lái)城市水環(huán)境負(fù)效應(yīng)嚴(yán)重性和并發(fā)性特征顯著,國(guó)外學(xué)者將城市水環(huán)境負(fù)效應(yīng)總結(jié)為“城市水體綜合癥(urban stream syndrome)”并展開(kāi)相關(guān)研究[15]。

        城市水體作為一種景觀類(lèi)型,是城市景觀整體的重要組成部分,城市景觀格局演變對(duì)城市水體有一定影響,從而產(chǎn)生城市水環(huán)境負(fù)效應(yīng)。國(guó)際上對(duì)城市景觀格局演變的水環(huán)境效應(yīng)研究集中于非點(diǎn)源污染和水生生物多樣性,從城市景觀格局、城市水質(zhì)和水生生物量三者關(guān)系入手,通過(guò)土地利用轉(zhuǎn)移矩陣[16]、移動(dòng)窗口法[17]和元胞自動(dòng)機(jī)模型[18]和景觀圖論[19]等方法量化城市景觀組分及格局變化,采用單一指標(biāo)評(píng)價(jià)法、灰色關(guān)聯(lián)評(píng)價(jià)、BP神經(jīng)網(wǎng)絡(luò)評(píng)價(jià)、模糊數(shù)學(xué)評(píng)價(jià)等方法[20- 22]評(píng)價(jià)水體質(zhì)量,以表層沉積物組分分析、水體棲息地質(zhì)量、生物多樣性等指標(biāo)衡量水生生態(tài)系統(tǒng)健康程度[23- 24],然后采用因子分析FA、判別分析DA、回歸分析RA、聚類(lèi)分析CA、主成分分析PCA、普通多元線性回歸模型OLS和地理加權(quán)回歸模型GWR(Geographical Weighted Regression)等方法[25- 26],得出各個(gè)研究區(qū)內(nèi)水質(zhì)指標(biāo)、水生生物指標(biāo)與景觀類(lèi)型特征及其格局演變的相關(guān)關(guān)系,并對(duì)相關(guān)性進(jìn)行檢驗(yàn),確定對(duì)城市水環(huán)境具有顯著影響的景觀類(lèi)型。相關(guān)研究一般流程總結(jié)如圖1。

        圖1 城市景觀格局與水環(huán)境效應(yīng)研究一般流程Fig.1 The general process of urban landscape pattern and water environment effects researchFA: 因子分析Factor Analysis;DA: 判別分析Discriminant Analysis;RA: 回歸分析Regression Analysis;CA: 聚類(lèi)分析Cluster Analysis; PCA: 主成分分析Principal Component Analysis;OLS: 普通多元線性回歸模型Ordinary Least Square;GWR: 地理加權(quán)回歸模型Geographical Weighted Regression

        國(guó)外學(xué)者開(kāi)發(fā)出多個(gè)非點(diǎn)源污染模型[27],如HSPF(Hydrologic Simulation Program Fortran)、SWAT(Soil and Water Assessment Tool)、L-THIA(the Long-Term Hydrologic Impact Assessment)等模型適合模擬長(zhǎng)時(shí)間序列的非點(diǎn)源污染量,可用于研究城市景觀格局時(shí)空變化產(chǎn)生的非點(diǎn)源污染效應(yīng),而SWMM(Storm Water Management Model)、MOUSE(Model of Urban Sewers)、P8-UCM(P8-Urban Catchment Model)、GWLF(Generalized Watershed Loading Function)等模型適合模擬單次暴雨事件,可用于研究城市景觀格局與城市內(nèi)澇的關(guān)系。針對(duì)外國(guó)模型所需數(shù)據(jù)精度較高和國(guó)內(nèi)外城市水文過(guò)程特征差異等問(wèn)題,我國(guó)學(xué)者建立出一系列符合單個(gè)城市實(shí)際的非點(diǎn)源污染模型[28],但存在模型結(jié)構(gòu)較為簡(jiǎn)單、模型適用性不高的問(wèn)題。

        2 研究熱點(diǎn)

        2.1 城市景觀格局與“源-匯”理論

        陳利頂?shù)仍诰坝^格局與生態(tài)過(guò)程的研究中提出“源-匯”理論[29],即同個(gè)特定的生態(tài)過(guò)程中,對(duì)該生態(tài)過(guò)程發(fā)展有促進(jìn)作用的景觀類(lèi)型為“源”景觀,而起阻止或延緩作用的景觀類(lèi)型則為“匯”景觀。根據(jù)“源-匯”理論,國(guó)內(nèi)外學(xué)者對(duì)非點(diǎn)源污染過(guò)程的相關(guān)研究在“源-匯”景觀類(lèi)型劃分方面共識(shí)較多,一般認(rèn)為城鎮(zhèn)建設(shè)用地、耕地等景觀類(lèi)型為“源”景觀,而林地、草地、園地和綠地等透水性好的自然植被或人工植被斑塊為“匯”景觀[29- 31]。城鎮(zhèn)建設(shè)用地是城市水環(huán)境非點(diǎn)源污染過(guò)程中最主要的“源”景觀,其景觀類(lèi)型包括居住用地、交通用地、工業(yè)用地等生活污染、生產(chǎn)污染較為嚴(yán)重的景觀斑塊類(lèi)型。城市建筑屋頂產(chǎn)生的腐蝕剝落物經(jīng)由屋面徑流匯入地表徑流[27];交通尾氣和工業(yè)排放氣體中所含的大量不完全燃燒產(chǎn)物,懸浮于大氣中或沉降于城市道路表面,雨水沖刷后成為地表徑流污染物的主要來(lái)源[32]。耕地在城市景觀格局中所占面積比例不大,但耕地中大量應(yīng)用化肥、農(nóng)藥,產(chǎn)生的有機(jī)物污染經(jīng)雨水沖刷和灌溉淋溶之后通過(guò)地表徑流和地下水進(jìn)入城市水體,造成水體富營(yíng)養(yǎng)化[33]。林地和高覆蓋度草地透水性好,可以減少降水對(duì)土壤的侵蝕沖刷作用,且對(duì)地表徑流有一定的截流作用,可減少城市徑流污染物遷移過(guò)程,或通過(guò)植物、土壤和微生物等中介在一定程度上吸收地表徑流污染物,如氨氮等,在減少非點(diǎn)源污染物總量、減輕城市水體富營(yíng)養(yǎng)化方面功不可沒(méi)[34- 35],甚至有學(xué)者認(rèn)為提高自然植被斑塊的生產(chǎn)力比重塑城市景觀格局更能凈化城市水環(huán)境[36]。而關(guān)于裸地的“源-匯”劃分,則存在不同看法,有學(xué)者認(rèn)為裸地由于自然植被退化和土壤侵蝕產(chǎn)生大量固體懸浮顆粒物等城市浮塵,為“源”景觀[37];也有相反的觀點(diǎn)認(rèn)為裸地與城市水體水質(zhì)指標(biāo)相關(guān)性不明顯[38]。

        “源”景觀類(lèi)型的斑塊面積、數(shù)量、聚集度和優(yōu)勢(shì)度等格局特征與城市水體質(zhì)量呈現(xiàn)正相關(guān)關(guān)系,“匯”景觀則相反[39]。如果“源”“匯”景觀斑塊形狀破碎化,則對(duì)城市水環(huán)境的影響“源”景觀大于“匯”景觀,例如城市存在的小面積耕地斑塊產(chǎn)生的農(nóng)業(yè)非點(diǎn)源污染對(duì)城市水體的污染貢獻(xiàn)不可忽視,而城市綠地呈現(xiàn)零散分布,則對(duì)減輕非點(diǎn)源污染作用不大[40]。此外,景觀多樣性與城市水環(huán)境質(zhì)量一般呈正相關(guān)關(guān)系[38]。

        2.2 城市景觀格局與水生生態(tài)系統(tǒng)

        國(guó)外在城市景觀格局對(duì)水生生態(tài)系統(tǒng)影響方面的研究起步較早,認(rèn)為城市土地利用強(qiáng)度、城市景觀類(lèi)型及其格局、不透水面比例與城市水生生態(tài)系統(tǒng)退化有關(guān)[41]。國(guó)內(nèi)涉及城市景觀格局對(duì)水生生態(tài)系統(tǒng)影響的文獻(xiàn)相對(duì)較少,主要關(guān)注魚(yú)類(lèi)、底棲無(wú)脊椎動(dòng)物等水生生物對(duì)流域景觀格局產(chǎn)污量的敏感性[42]。

        城市水生生態(tài)系統(tǒng)包括底棲動(dòng)物、魚(yú)類(lèi)和浮游藻類(lèi)等水生生物群落。季節(jié)變化和水環(huán)境質(zhì)量變化是影響水生生態(tài)系統(tǒng)的兩個(gè)主要因素,其中季節(jié)變化又會(huì)影響非點(diǎn)源污染入水量,間接影響水環(huán)境質(zhì)量[43]。城市景觀格局演變通常存在地表硬化趨勢(shì),通過(guò)改變地表覆被的蒸散發(fā)與下滲等水文過(guò)程,間接影響城市水文循環(huán),減少了大氣降水和地下水對(duì)城市水體的補(bǔ)給[44],進(jìn)一步縮減城市水環(huán)境容量。城市景觀格局演變帶來(lái)的非點(diǎn)源污染增強(qiáng)和水體環(huán)境容量減小促使城市水體自凈能力下降,進(jìn)而惡化水生生物棲息環(huán)境。有研究表明,底棲動(dòng)物生物量與森林景觀面積呈現(xiàn)正相關(guān)關(guān)系,而對(duì)城市建設(shè)用地和牧場(chǎng)等景觀類(lèi)型面積存在負(fù)響應(yīng)[42];水生浮游藻類(lèi)是水生生態(tài)系統(tǒng)的基礎(chǔ),是水生生物食物鏈中的重要一環(huán),藻類(lèi)對(duì)水體營(yíng)養(yǎng)負(fù)荷的敏感性最高,城市景觀格局造成的水體富營(yíng)養(yǎng)化效應(yīng)引起有毒藻類(lèi)生物量的大幅增長(zhǎng),改變?cè)孱?lèi)群落的多樣性和優(yōu)勢(shì)種群,促使浮游藻類(lèi)的群落結(jié)構(gòu)和功能受損,危害水生生態(tài)系統(tǒng)和人類(lèi)健康[45- 46];水體內(nèi)溶氧下降更導(dǎo)致魚(yú)類(lèi)等水生生物的死亡,降低水生生物多樣性,進(jìn)而對(duì)水生態(tài)系統(tǒng)平衡產(chǎn)生負(fù)面影響[47]。

        2.3 水環(huán)境效應(yīng)的時(shí)空尺度性

        城市景觀格局的水環(huán)境效應(yīng)存在時(shí)間尺度性,即夏季豐水期、春秋季平水期和冬季枯水期的水體污染程度存在差異。豐水期時(shí)總氮(TN)、總磷(TP)、化學(xué)需氧量(COD)、葉綠素在珠江、太湖和南京28處濕地等水體中濃度最高,水環(huán)境污染程度最高[48- 50]。九龍江枯水期城市水體的污染物濃度最高、水質(zhì)最差,平水期水質(zhì)最好[51]。漢水枯水期水質(zhì)最好[37]。個(gè)別水體的水質(zhì)狀況甚至發(fā)生巨大轉(zhuǎn)變,由枯水期最好轉(zhuǎn)變?yōu)榭菟谧畈頪52]。盡管未有一致的結(jié)論,但城市水環(huán)境變化的季節(jié)差異是客觀存在的,其原因在于城市水體污染是受點(diǎn)源污染和非點(diǎn)源污染共同作用[53]??菟诔鞘械乇韽搅髁孔钚?、水體自凈能力最差,受工業(yè)污水和生活污水等點(diǎn)源污染影響較多,水體中TN、TP、重金屬濃度比豐水期、平水期高[51]。豐水期時(shí),水體可以最大程度發(fā)揮過(guò)濾、沉降功能,但地表徑流沖刷會(huì)使大量的固體懸浮物、氮磷等營(yíng)養(yǎng)物質(zhì)和重金屬進(jìn)入水體,水體收納污染物量超過(guò)水體自凈能力,造成豐水期水體水質(zhì)下降[52];平水期水體水量與地表徑流量都較為適中,水環(huán)境污染程度居于中下,存在部分水質(zhì)指標(biāo)超標(biāo)可能性[49,51]。

        城市景觀格局的水環(huán)境效應(yīng)還存在空間尺度性,即城市水體對(duì)不同空間尺度內(nèi)的城市景觀格局演變的敏感性存在差異。一些研究認(rèn)為城市水體流域尺度上的城市景觀格局決定了非點(diǎn)源污染總量,從源頭影響水環(huán)境,其景觀指數(shù)能更好地解釋城市水體水質(zhì)變化[54]。而另有研究指出水質(zhì)指標(biāo)對(duì)水體岸邊帶尺度上景觀類(lèi)型的敏感性更大[37,55],若岸邊帶區(qū)域分布大量綠地等“匯”景觀,則自然植被和土壤的過(guò)濾與吸附作用可以減少非點(diǎn)源污染物進(jìn)入水體[56]。眾多文獻(xiàn)中對(duì)水體緩沖區(qū)研究尺度的劃分也不盡相同,部分水質(zhì)指標(biāo)對(duì)相同尺度內(nèi)的景觀格局存在截然相反的響應(yīng),造成景觀格局水環(huán)境效應(yīng)空間尺度的多樣性,例如我國(guó)漢水流域上游水體水質(zhì)與100 m河岸帶內(nèi)土地利用類(lèi)型的相關(guān)性比流域范圍內(nèi)的景觀格局更好[37],紐約州29條河流周邊200 m緩沖區(qū)內(nèi)的城市用地格局對(duì)水質(zhì)有明顯負(fù)面影響[55],香港主要飲用水源東江的氨氮(NH3-N)和硝氮(NO3-N)與500 m匯水單元內(nèi)的城市景觀面積比例呈現(xiàn)正相關(guān),但溶氧(DO)卻與之呈現(xiàn)負(fù)相關(guān)[57]。

        3 研究不足

        3.1 城市景觀格局與城市內(nèi)澇

        發(fā)生城市洪澇現(xiàn)象的主因在于城市排水系統(tǒng)的不健全[30]、景觀類(lèi)型格局設(shè)置不合理[8]和城市水體容量的減小[14],城市排水管網(wǎng)可視為人工廊道,目前研究排水管網(wǎng)“雨污分流”設(shè)計(jì)及設(shè)計(jì)合理性與城市洪澇關(guān)系的研究較多[58],但針對(duì)城市景觀格局與城市洪澇的關(guān)系研究較少。

        在人為規(guī)劃的城市景觀格局中,自然景觀斑塊逐漸被人工景觀斑塊取代,各類(lèi)建設(shè)用地斑塊形狀相對(duì)規(guī)則,城市道路直線化、網(wǎng)格化[59],城市表面硬化降低了地表下滲率[44],自然植被的破碎化、天然水體的面積縮減對(duì)城市自有的保水蓄水功能的削弱,這些因素共同改變了城市地表水文過(guò)程,為地表徑流的流速加快、匯水量增大、匯水時(shí)間縮短和瞬時(shí)峰值上升提供了可能,地表沖刷量加大[60],進(jìn)而造成城市水體水質(zhì)下降和城市內(nèi)澇等問(wèn)題。為增加城市用地面積和滿足城市規(guī)劃美觀需求,城市水體的面積和形狀常被人為改變,例如河流被截彎取直、湖泊濕地被填埋造地等,直接降低了城市水環(huán)境容量[61- 63]。城市人工管網(wǎng)為城市中常見(jiàn)的人工廊道,其布局往往根據(jù)居住用地、工業(yè)用地等產(chǎn)污排廢較多的城市用地斑塊和城市道路格局而設(shè)置[7]。在城市暴雨事件中地表徑流量短時(shí)間內(nèi)大量增大,城市水環(huán)境容量有限,而城市人工管網(wǎng)蓄雨能力有限、排水能力不足時(shí),極易產(chǎn)生城市洪澇現(xiàn)象,例如2012年北京“7.21”特大城市暴雨事件導(dǎo)致城區(qū)內(nèi)大面積洪澇災(zāi)害。而由于有護(hù)城河和北海調(diào)蓄雨水,歷年來(lái)故宮周邊未發(fā)生內(nèi)澇現(xiàn)象[64]。我國(guó)早在古代就認(rèn)識(shí)到天然水體在調(diào)蓄洪水方面的重大作用,但多次嚴(yán)重的城市洪澇災(zāi)害表明,我國(guó)現(xiàn)代的城市規(guī)劃對(duì)天然水體的水環(huán)境正效應(yīng)的重視程度不夠,而現(xiàn)有的城市景觀格局演變所產(chǎn)生的水環(huán)境負(fù)效應(yīng)也被城市規(guī)劃者所忽視。

        研究表明城市景觀基質(zhì)由自然植被向不透水面的轉(zhuǎn)變對(duì)城市地表徑流增加存在正相關(guān)關(guān)系[8,44]。城市排水管網(wǎng)和城市道路作為城市中常見(jiàn)的人工廊道,在地表徑流集中產(chǎn)生時(shí)所發(fā)揮的匯集、輸送、疏浚作用不足,也是城市內(nèi)澇發(fā)生的重要因素之一[64],但鮮見(jiàn)城市人工廊道格局、生態(tài)作用與城市水環(huán)境效應(yīng)的相關(guān)性研究,且城市景觀基質(zhì)、人工廊道和水體景觀斑塊三者變化對(duì)城市水環(huán)境的綜合作用機(jī)理尚不明確。

        3.2 水環(huán)境響應(yīng)機(jī)制

        國(guó)內(nèi)外學(xué)者在城市景觀格局演變方面已經(jīng)開(kāi)展了大量的景觀指數(shù)分析工作,但對(duì)城市景觀格局演變背后折射出的生態(tài)過(guò)程變化及其對(duì)人類(lèi)生活的反作用等方面的研究偏少,城市景觀格局演變研究急需能夠反映一定生態(tài)意義的新型生態(tài)過(guò)程景觀指數(shù)。

        近年來(lái)我國(guó)城市景觀格局對(duì)水環(huán)境的負(fù)效應(yīng)逐漸成為研究關(guān)注的重點(diǎn),但還處初步研究階段,關(guān)注點(diǎn)集中于單個(gè)城市的景觀格局的水環(huán)境效應(yīng),而各個(gè)城市在流域環(huán)境、水文特點(diǎn)、氣象條件等方面存在較大差異,造成城市水環(huán)境對(duì)景觀格局演變的響應(yīng)機(jī)制不同,研究結(jié)果推廣度不高、重復(fù)性不好。國(guó)外學(xué)者研究發(fā)現(xiàn)城市景觀格局中不透水面對(duì)水環(huán)境的水質(zhì)、水生生態(tài)系統(tǒng)產(chǎn)生明顯負(fù)面影響的面積比例閾值較小,Stuart認(rèn)為不透水面比例高于22%—30%時(shí)赫爾辛基的水環(huán)境惡化明顯[65],Lee等人認(rèn)為不透水面比例不超過(guò)12%時(shí)水環(huán)境不受城市景觀格局演變影響[66],國(guó)際上通常認(rèn)可的閾值為30%—50%[67]。而趙軍等學(xué)者研究發(fā)現(xiàn)該閾值對(duì)我國(guó)城市可能不適用,上海城區(qū)不透水面面積比例大于60%時(shí),城市水環(huán)境質(zhì)量開(kāi)始顯著下降[67]。不同城市的景觀類(lèi)型及其格局演變?cè)斐傻某鞘兴h(huán)境負(fù)效應(yīng)的影響區(qū)間存在較大差異,目前還尚未有被認(rèn)可的系統(tǒng)性結(jié)論。此外,流域內(nèi)土地利用類(lèi)型、城市水環(huán)境質(zhì)量和水生生物群落三者的相關(guān)研究中,并未深入分析水生生物群落對(duì)景觀類(lèi)型及其格局演變的響應(yīng)機(jī)制,也未提出如何調(diào)整城市景觀格局以利于維持水生生態(tài)系統(tǒng)的生態(tài)平衡[68- 69]。

        4 研究展望

        未來(lái)研究可以立足于以下五個(gè)方面:一是城市水環(huán)境效應(yīng)對(duì)城市景觀格局演變存在的滯后響應(yīng)研究,可以嘗試將不同的城市景觀格局演變類(lèi)型視為自變量、水環(huán)境效應(yīng)視為因變量,分別研究城市水體與城市人工景觀相間混合分布、相鄰分布和包圍分布等不同格局特征下的城市景觀格局演變過(guò)程與城市水環(huán)境效應(yīng)關(guān)系,建立水環(huán)境效應(yīng)對(duì)不同類(lèi)型城市景觀演變過(guò)程的響應(yīng)機(jī)制;二是水環(huán)境效應(yīng)的空間差異性研究,包括景觀格局演變對(duì)河流、水庫(kù)、湖泊等不同類(lèi)型水體產(chǎn)生的水環(huán)境效應(yīng)差異性分析,以及因水體分布空間差異所產(chǎn)生的水環(huán)境效應(yīng)差異、上下游間的水環(huán)境效應(yīng)累積現(xiàn)象;三是景觀格局變化對(duì)水環(huán)境效應(yīng)影響過(guò)程的綜合作用機(jī)理,深入挖掘城市景觀格局中因基質(zhì)、廊道和斑塊的變化所造成的水環(huán)境效應(yīng)差異及綜合作用機(jī)理,將城市內(nèi)澇與城市景觀格局演變相聯(lián)系,將人工廊道(排水管網(wǎng)和城市道路)格局納入城市景觀格局的水環(huán)境效應(yīng)研究中;四是開(kāi)發(fā)結(jié)構(gòu)完整的水環(huán)境效應(yīng)模型,綜合考慮城市景觀類(lèi)型及其格局、城市氣象氣候條件和水文條件,為城市規(guī)劃提供模擬預(yù)測(cè);五是“城市水體綜合癥”的對(duì)癥之藥研究,即城市景觀格局水環(huán)境負(fù)效應(yīng)的綜合對(duì)策,景觀生態(tài)學(xué)者可以與城市規(guī)劃人員、城市管理部門(mén)進(jìn)行跨學(xué)科合作,共同提出一個(gè)指標(biāo)體系,包括不透水面的面積比例閾值、“源”“匯”斑塊比例閾值、城市水體水質(zhì)閾值、城市水體環(huán)境容量閾值和水生生態(tài)系統(tǒng)健康度等指標(biāo),合理設(shè)置“源”“匯”景觀斑塊布局,在城市規(guī)劃階段就預(yù)先考慮城市景觀格局演變對(duì)水環(huán)境造成的生態(tài)后果,為城市生態(tài)規(guī)劃提供科學(xué)依據(jù),進(jìn)而達(dá)到保護(hù)城市水環(huán)境的目的。

        致謝: 感謝中國(guó)科學(xué)院城市環(huán)境研究所吝濤副研究員對(duì)本文寫(xiě)作的幫助。

        [1] Faggi A, Breuste J, Madanes N, Gropper C, Perelman P.Water as an appreciated feature in the landscape: a comparison of residents′ and visitors′ preferences in Buenos Aires.Journal of Cleaner Production, 2013, 60: 182- 187.

        [2] Chinese Department of Environment Monitoring.Chinese environment bulletin 1991, 2002- 11- 15[2013- 5- 31].http://jcs.mep.gov.cn/hjzl/zkgb/1996/200211/t20021115_83141.htm.

        [3] Chinese Department of Environment Monitoring.Chinese environment bulletin 2011, 2012- 6- 06[2013- 5- 31].http://jcs.mep.gov.cn/hjzl/zkgb/2011zkgb/201206/t20120606_231040.htm.

        [4] Strohsch?n R, Wiethoff K, Baier K, Lu L, Bercht A L, Wehrhahn R, Azzam R.Land use and water quality in Guangzhou, China: A survey of ecological and social vulnerability in Four Urban Units of the rapidly developing megacity.International Journal of Environmental Research, 2013, 7(2): 343- 358.

        [5] Huang J L, Pontius R G Jr, Li Q S, Zhang Y J.Use of intensity analysis to link patterns with processes of land change from 1986 to 2007 in a coastal watershed of southeast China.Applied Geography, 2012, 34: 371- 384.

        [6] Kaza N.The changing urban landscape of the continental United States.Landscape and Urban Planning, 2013, 110: 74- 86.

        [7] Cheng Y Q, Zhang Y, Song Q W, Dai J K, Zhao X Q.Application of fractal dimension in urban drainage pipe network planning.Research of Environmental Sciences, 2012, 25(1): 89- 94.

        [8] Cammerer H, Thieken A H, Verburg P H.Spatio-temporal dynamics in the flood exposure due to land use changes in the Alpine Lech Valley in Tyrol (Austria).Natural Hazards, 2013, 68(3): 1243- 1270.

        [9] Yan X F, Qiu Z M, Wang J L, Liu F, Liu D N.Spatial and temporal change of land use and its impact on water quality of Poyang Lake region.Advanced Materials Research, 2012, 599: 753- 756.

        [10] Johnson L B, Host G E.Recent developments in landscape approaches for the study of aquatic ecosystems.Journal of the North American Benthological Society, 2010, 29(1): 41- 66.

        [11] Miserendino M L, Casaux R, Archangelsky M, Di Prinzio C Y, Brand C, Kutschker A M.Assessing land-use effects on water quality, in-stream habitat, riparian ecosystems and biodiversity in Patagonian northwest streams.Science of the Total Environment, 2011, 409(3): 612- 624.

        [12] Zhang J, Dong Z R, Sun D Y, Wang J N.Complete river health assessment index system based on eco-regional method according to dominant ecological functions.Journal of Hydraulic Engineering, 2010, 41(8): 883- 892.

        [13] Zhang J Y, Ni W M, Luo Y, Stevenson R J, Qi J G.Response of freshwater algae to water quality in Qinshan Lake within Taihu Watershed, China.Physics and Chemistry of the Earth, 2011, 36(9/11): 360- 365.

        [14] Wu Y J, Zhang G L, Zhao Y G, Yang J L.Impact of land use changes on regional flooding control capacity under urbanization---A case study in Hexi area, Nanjing.Scientia Geographica Sinica, 2008, 28(1): 29- 33.

        [15] Wallace A M, Croft-White M V, Moryk J.Are Toronto′s streams sick? A look at the fish and benthic invertebrate communities in the Toronto region in relation to the urban stream syndrome.Environmental Monitoring and Assessment, 2013, 185(9): 7857- 7875.

        [16] Gao L B, Yun L, Ren Y, Cui Z W, Bi H X.Spatial and temporal change of landscape pattern in the Hilly-gully region of Loess Plateau.Procedia Environmental Sciences, 2011, 8: 103- 111.

        [17] Liu X, Guo Q X.Landscape pattern in Northeast China based on moving window method.Chinese Journal of Applied Ecology, 2009, 20(6): 1415- 1422.

        [18] Zhang Q, Ban Y F, Liu J Y, Hu Y F.Simulation and analysis of urban growth scenarios for the Greater Shanghai Area, China.Computers, Environment and Urban Systems, 2011, 35(2): 126- 139.

        [19] Er?s T, Olden J D, Schick R S, Schmera D, Fortin M J.Characterizing connectivity relationships in freshwaters using patch-based graphs.Landscape Ecology, 2012, 27(2): 303- 317.

        [20] Liu X B, Li G B, Liu Z G, Guo W H, Gao N Y.Water pollution characteristics and assessment of lower reaches in Haihe River Basin.Procedia Environmental Sciences, 2010, 2: 199- 206.

        [21] Xu L Q, Liu S Y.Study of short-term water quality prediction model based on wavelet neural network.Mathematical and Computer Modelling, 2013, 58(3/4): 807- 813.

        [22] Zhou L F, Zhao Z, Sun J Z, Xing X G.Assessment on water quality of Hun River based on fuzzy pattern recognition.Research of Soil and Water Conservation, 2012, 19(5): 163- 166.

        [23] Brooks R, McKenney-Easterling M, Brinson M, Rheinhardt R, Havens K, O′Brien D, Bishop J, Rubbo J, Armstrong B, Hite J.A Stream-Wetland-Riparian (SWR) index for assessing condition of aquatic ecosystems in small watersheds along the Atlantic slope of the eastern U S.Environmental Monitoring and Assessment, 2009, 150(1/4): 101- 117.

        [24] Ruaro R, Gubiani é A.A scientometric assessment of 30 years of the index of biotic integrity in aquatic ecosystems: Applications and main flaws.Ecological Indicators, 2013, 29: 105- 110.

        [25] Pratt B, Chang H J.Effects of land cover, topography, and built structure on seasonal water quality at multiple spatial scales.Journal of Hazardous Materials, 2012, 209- 210: 48- 58.

        [26] Wang X Z, Cai Q H, Ye L, Qu X D.Evaluation of spatial and temporal variation in stream water quality by multivariate statistical techniques: A case study of the Xiangxi river basin, China.Quaternary International, 2012, 282: 137- 144.

        [27] Li C L, Hu Y M, Liu M, Xu Y Y, Sun F Y.Urban non-point source pollution: Research progress.Chinese Journal of Ecology, 2013, 32(2): 492- 500.

        [28] Wang L, Huang Y F, Wang G Q.Review of urban nonpoint source pollution models.Chinese Journal of Environmental Science, 2010, 31(10): 2532- 2540.

        [29] Chen L D, Fu B J, Xu J Y, Gong J.Location-weighted landscape contrast index: a scale independent approach for landscape pattern evaluation based on “Source-Sink” ecological processes.Acta Ecologica Sinica, 2003, 23(11): 2406- 2413.

        [30] Tu J.Spatial variations in the relationships between land use and water quality across an urbanization gradient in the watersheds of Northern Georgia, USA.Environmental Management, 2013, 51(1): 1- 17.

        [31] Haidary A, Amiri B J, Adamowski J, Fohrer N, Nakane K.Assessing the impacts of four land use types on the water quality of wetlands in Japan.Water Resources Management, 2013, 27(7): 2217- 2229.

        [32] Norihide T, Takeyoshi M, Takashi S.Potential of road surface for a non-point source of pollutants---result of nationwide survey in Japan.Highway and Urban Environment, 2010, 17: 255- 265.

        [33] Tang X Y, Zhu B, Katou H.A review of rapid transport of pesticides from sloping farmland to surface waters: Processes and mitigation strategies.Journal of Environmental Sciences, 2012, 24(3): 351- 361.

        [34] Griffith J A, Martinko E A, Whistler J L, Price K P.Interrelationships among landscapes, NDVI, and stream water quality in the U S central plains.Ecological Applications, 2002, 12(6): 1702- 1718.

        [35] Ryan R J, Welty C, Larson P C.Variation in surface water-groundwater exchange with land use in an urban stream.Journal of Hydrology, 2010, 392(1/2): 1- 11.

        [36] Yu D Y, Shi P J, Liu Y P, Xun B.Detecting land use-water quality relationships from the viewpoint of ecological restoration in an urban area.Ecological Engineering, 2013, 53: 205- 216.

        [37] Li S Y, Gu S, Tan X, Zhang Q F.Water quality in the upper Han River basin, China: The impacts of land use/land cover in riparian buffer zone.Journal of Hazardous Materials, 2009, 165(1/3): 317- 324.

        [38] Huang J L, Li Q S, Hong H S, Lin J, Qu M C.Preliminary study on linking land use & landscape pattern and water quality in the Jiulong river watershed.Chinese Journal of Environment Science, 2011, 32(1): 64- 72.

        [39] Wang Y, Zhang J F, Chen G C, Xu Y H, Chen Y, Liu Y Q.Spatiotemporal characteristics of water quality in Taihu Lake watershed based on “source-link” landscape change.Chinese Journal of Ecology, 2012, 31(2): 399- 405.

        [40] Tian Y H, Jim C Y, Tao Y, Shi T.Landscape ecological assessment of green space fragmentation in Hong Kong.Urban Forestry and Urban Greening, 2011, 10(2): 79- 86.

        [41] Alberti M, Booth D, Hill K, Coburn B, Avolio C, Coe S, Spirandelli D.The impact of urban patterns on aquatic ecosystems: An empirical analysis in Puget lowland sub-basins.Landscape and Urban Planning, 2007, 80(4): 345- 361.

        [42] Zhao Y W, Wang S H, Yu L, Li M, Zhang Y.Responses of river organisms to watershed landscape pattern change: A review.Chinese Journal of Ecology, 2010, 29(6): 1228- 1234.

        [43] Fierer N, Morse J L, Berthrong S T, Bernhardt E S, Jackson R B.Environmental controls on the landscape-scale biogeography of stream bacterial communities.Ecology, 2007, 88(9): 2162- 2173.

        [44] Liu Z H, Li Y, Peng J.Progress and perspective of the research on hydrological effects of urban impervious surface on water environment.Progress in Geography, 2011, 30(3): 275- 281.

        [45] Elliott J A, Jones I D, Thackeray S J.Testing the sensitivity of phytoplankton communities to changes in water temperature and nutrient load, in a temperate lake.Hydrobiologia, 2006, 559(1): 401- 411.

        [46] VanLandeghem M M, Meyer M D, Cox S B, Sharma B, Patio R.Spatial and temporal patterns of surface water quality and ichthyotoxicity in urban and rural river basins in Texas.Water Research, 2012, 46(20): 6638- 6651.

        [47] Utz R M, Hilderbrand R H, Raesly R L.Regional differences in patterns of fish species loss with changing land use.Biological Conservation, 2010, 143(3): 688- 699.

        [48] Zhou N Q, Westrich B, Jiang S M, Wang Y.A coupling simulation based on a hydrodynamics and water quality model of the Pearl River Delta, China.Journal of Hydrology, 2011, 396(3/4): 267- 276.

        [49] Yang X Y, Luo X Z, Zheng Z, Fang S B.Explore the spatial and temporal patterns of water pollution in the Yincungang Canal of the Lake Taihu Basin, China.Chinese Journal of Environment Science, 2012, 33(9): 3051- 3056.

        [50] Hao J F, Liu H Y, Hu H B, An J, Zhang X H.Responses of wetland water quality to influence the strengthness of urbanization in Nanjing, China.Chinese Journal of Environment Science, 2012, 33(7): 2259- 2264.

        [51] Huang J L, Huang Y L, Li Q S, Zhou Z R, Feng Y, Zhang Z Y.Preliminary analysis of spatiotemporal variation of water quality and its influencing factors in the Jiulong river watershed.Chinese Journal of Environment Science, 2012, 33(4): 1098- 1107.

        [52] Lai Y C, Tu C P, Yang C P, Surampalli R Y, Kao C M.Development of a water quality modeling system for river pollution index and suspended solid loading evaluation.Journal of Hydrology, 2013, 478: 89- 101.

        [53] Schaffner M, Bader H P, Scheidegger R.Modeling the contribution of point sources and non-point sources to Thachin River water pollution.Science of the Total Environment, 2009, 407(17): 4902- 4915.

        [54] Yin Z Y, Walcott S, Kaplan B, Cao J, Lin W Q, Chen M J, Liu D S, Ning Y M.An analysis of the relationship between spatial patterns of water quality and urban development in Shanghai, China.Computers, Environment and Urban Systems, 2005, 29(2): 197- 221.

        [55] Tran C P, Bode R W, Smith A J, Kleppel G S.Land-use proximity as a basis for assessing stream water quality in New York State (USA).Ecological Indicators, 2010, 10(3): 727- 733.

        [56] Zhao P, Xia B C, Qin J Q, Zhao H R.Multivariate correlation analysis between landscape pattern and water quality.Acta Ecologica Sinica, 2012, 32(8): 2331- 2341.

        [57] Zhou T, Wu J G, Peng S L.Assessing the effects of landscape pattern on river water quality at multiple scales: A case study of the Dongjiang river watershed, China.Ecological Indicators, 2012, 23: 166- 175.

        [58] Qin Y H, Wu X, Yin Z G, Xiao J X.Planning of small town water system by the “pollution treatment, increase income and decrease expenditure” strategy: A case study on Liu-Yang city.Applied Mechanics and Materials, 2012, 209- 211: 1888- 1891.

        [59] Chan S H Y, Donner R V, L?mmer S.Urban road networks——spatial networks with universal geometric features? The European Physical Journal B, 2011, 84(4): 563- 577.

        [60] Chen L D, Sun R H, Liu H L.Eco-environmental effects of urban landscape pattern changes: progresses, problems, and perspectives.Acta Ecologica Sinica, 2013, 33(4): 1042- 1050.

        [61] Liu L M, Peng M C, Wang C Y, Yuan R J, Yang S H, Dong Y X.Analysis of landscape characteristics and changes of urban rivers in Kunming.Environmental Science and Technology, 2011, 34(3): 121- 125.

        [62] Nielsen A, Trolle D, S?ndergaard M, Lauridsen T L, Bjerring R, Olesen J E, Jeppesen E.Watershed land use effects on lake water quality in Denmark.Ecological Applications, 2012, 22(4): 1187- 1200.

        [63] Xu K, Kong C F, Liu G, Wu C L, Deng H B, Zhang Y, Zhuang Q L.Changes of urban wetlands in Wuhan, China, from 1987 to 2005.Progress in Physical Geography, 2010, 34(2): 207- 220.

        [64] Jiang F R, Jiang B.Impact of super thunderstorm on 21 July in Beijing and countermeasures.China Water Resources, 2012, (15): 19- 22.

        [65] Stuart E.Water Quality, Catchment Imperviousness and Water Sensitive Urban Design in A Small Urban Stream in Helsinki, Finland [D].Finland: University of Helsinki, 2012.

        [66] Lee B Y, Park S J, Paule M C, Jun W, Lee C H.Effects of impervious cover on the surface water quality and aquatic ecosystem of the Kyeongan stream in South Korea.Water Environment Research, 2012, 84(8): 635- 645.

        [67] Zhao J, Yang K, Tai J, Qian G R.Threshold and scaling effect of impervious surface impact on stream water quality in city with river networks.Journal of Hydraulic Engineering, 2012, 43(2): 136- 142.

        [68] Panigrahi S, Acharya B C, Panigrahy R C, Nayak B K, Banarjee K, Sarkar S K.Anthropogenic impact on water quality of Chilika lagoon RAMSAR site: a statistical approach.Wetlands Ecology and Management, 2007, 15(2): 113- 126.

        [69] Dodson S I, Lillie R A, Will-Wolf S.Land use, water chemistry, aquatic vegetation, and zooplankton community structure of shallow lakes.Ecological Applications, 2005, 15(4): 1191- 1198.

        參考文獻(xiàn):

        [2] 中國(guó)環(huán)境保護(hù)部環(huán)境監(jiān)測(cè)司.1991年中國(guó)環(huán)境狀況公報(bào), 2002- 11- 15[2013- 5- 31].http://jcs.mep.gov.cn/hjzl/zkgb/1996/200211/t20021115_83141.htm.

        [3] 中國(guó)環(huán)境保護(hù)部環(huán)境監(jiān)測(cè)司.2011年中國(guó)環(huán)境狀況公報(bào), 2012- 6- 06[2013- 5- 31].http://jcs.mep.gov.cn/hjzl/zkgb/2011zkgb/201206/t20120606_231040.htm.

        [7] 程永前, 張玥, 宋乾武, 戴建坤, 趙秀芹.分形維數(shù)在城市排水管網(wǎng)規(guī)劃中的應(yīng)用.環(huán)境科學(xué)研究, 2012, 25(1): 89- 94.

        [12] 張晶, 董哲仁, 孫東亞, 王俊娜.基于主導(dǎo)生態(tài)功能分區(qū)的河流健康評(píng)價(jià)全指標(biāo)體系.水利學(xué)報(bào), 2010, 41(8): 883- 892.

        [14] 吳運(yùn)金, 張甘霖, 趙玉國(guó), 楊金玲.城市化過(guò)程中土地利用變化對(duì)區(qū)域滯洪庫(kù)容量的影響研究——以南京市河西地區(qū)為例.地理科學(xué), 2008, 28(1): 29- 33.

        [17] 劉昕, 國(guó)慶喜.基于移動(dòng)窗口法的中國(guó)東北地區(qū)景觀格局.應(yīng)用生態(tài)學(xué)報(bào), 2009, 20(6): 1415- 1422.

        [22] 周林飛, 趙嶄, 孫佳竹, 邢旭光.基于模糊模式識(shí)別的渾河水質(zhì)評(píng)價(jià)研究.水土保持研究, 2012, 19(5): 163- 166.

        [27] 李春林, 胡遠(yuǎn)滿, 劉淼, 徐巖巖, 孫鳳云.城市非點(diǎn)源污染研究進(jìn)展.生態(tài)學(xué)雜志, 2013, 32(2): 492- 500.

        [28] 王龍, 黃躍飛, 王光謙.城市非點(diǎn)源污染模型研究進(jìn)展.環(huán)境科學(xué), 2010, 31(10): 2532- 2540.

        [29] 陳利頂, 傅伯杰, 徐建英, 鞏杰.基于“源- 匯”生態(tài)過(guò)程的景觀格局識(shí)別方法——景觀空間負(fù)荷對(duì)比指數(shù).生態(tài)學(xué)報(bào), 2003, 23(11): 2406- 2413.

        [38] 黃金良, 李青生, 洪華生, 林杰, 曲盟超.九龍江流域土地利用/景觀格局- 水質(zhì)的初步關(guān)聯(lián)分析.環(huán)境科學(xué), 2011, 32(1): 64- 72.

        [42] 趙彥偉, 汪思慧, 于磊, 李敏, 張遠(yuǎn).流域景觀格局變化的河流生物響應(yīng)研究進(jìn)展.生態(tài)學(xué)雜志, 2010, 29(6): 1228- 1234.

        [44] 劉珍環(huán), 李猷, 彭建.城市不透水表面的水環(huán)境效應(yīng)研究進(jìn)展.地理科學(xué)進(jìn)展, 2011, 30(3): 275- 281.

        [56] 趙鵬, 夏北成, 秦建橋, 趙華榮.流域景觀格局與河流水質(zhì)的多變量相關(guān)分析.生態(tài)學(xué)報(bào), 2012, 32(8): 2331- 2341.

        [67] 趙軍, 楊凱, 邰俊, 錢(qián)光人.河網(wǎng)城市不透水面的河流水質(zhì)響應(yīng)閾值與尺度效應(yīng)研究.水利學(xué)報(bào), 2012, 43(2): 136- 142.

        Researchreviewoneffectsofurbanlandscapepatternchangesonwaterenvironment

        HUANG Shuo1,2,GUO Qinghai1,*

        1KeyLaboratoryofUrbanEnvironmentandHealth,InstituteofUrbanEnvironment,ChineseAcademyofSciences,Xiamen361021,China2UniversityofChineseAcademyofSciences,Beijing100049,China

        Urban water environment is an important part of urban ecosystem including natural and man-made water, and the natural elements and urban landscape which are closely related to water at catchment scale.Healthy urban water environment could product positive ecological effects such as water retention and impoundment, environmental decontamination, material transportation, making energy flow smoothly and conserving biodiversity.However, the change of urban land cover induces the deterioration of urban water environment and leads to negative water environment effects, such as non-point pollution, imbalance of aquatic ecosystem and urban flooding.The replacement of urban landscape types and evolution of urban landscape pattern caused by human activities display at following aspects: widespread vegetation matrix is largely replaced by artificial hardened ground while natural landscape patches are fragmentized and manual corridors including urban roads and drainage network increase sharply, resulting in the disproportion of water pollution “source” and “sink” landscape types and landscape pattern.Through statistical analysis and model simulation, researchers at home and abroad find that: the cultivated land and urban construction land are the main sources of non-point pollution while natural vegetation landscape types contribute to the reduction of non-point source pollution.Urban surface hardening reduces the environmental capacity of urban water environment by influencing urban hydrological cycle, for instance, surface runoff, evaporation and infiltration and so on.Together with environmental capacity reduction, the eutrophication of urban water environment makes negative effects on the balance of aquatic ecosystem.Negative water environment effects responding to urban landscape pattern will change with spatial and temporal scales.This paper summarizes current researches about the effects of urban landscape types and pattern evolution on water environment and points out the deficiencies of recent researches, such as the lack of specific research coupling landscape pattern change and ecological process, the indeterminacy of the landscape pattern threshold influencing urban water environment, the difficulty in popularizing and repeating research results, neglecting the relationship between urban artificial corridor and water environment effects, and the lack of comprehensive research about negative water environment effects.At last, we put forward five key points of future researches: the lagging response of urban water environment to the change of urban landscape pattern; the differences of water environment effects with different types and distributions; the combined influences from the urban landscape pattern, including matrix, corridor and patch; development of new model which concentrates on urban water environmental effects; a set of related index for urban planning and urban water environmental effects.Our study will contribute to better understanding of urban sustainability.

        landscape pattern; water environment effects; urban planning

        國(guó)家自然科學(xué)基金項(xiàng)目(30800148);廈門(mén)市科技計(jì)劃項(xiàng)目(3502Z20122001)

        2013- 06- 07;

        2013- 10- 15

        10.5846/stxb201306071391

        *通訊作者Corresponding author.E-mail: qhguo@iue.ac.cn

        黃碩, 郭青海.城市景觀格局演變的水環(huán)境效應(yīng)研究綜述.生態(tài)學(xué)報(bào),2014,34(12):3142- 3150.

        Huang S,Guo Q H.Research review on effects of urban landscape pattern changes on water environment.Acta Ecologica Sinica,2014,34(12):3142- 3150.

        猜你喜歡
        環(huán)境效應(yīng)水生格局
        格局
        聯(lián)手共建 努力打造大調(diào)解工作格局
        三氯生對(duì)4種水生生物的急性毒性研究
        河流廊道景觀的熱環(huán)境效應(yīng)分析
        小人物的大格局
        水利工程生態(tài)環(huán)境效應(yīng)研究綜述
        依托科技創(chuàng)新 打造現(xiàn)代水生蔬菜產(chǎn)業(yè)
        礦山環(huán)境效應(yīng)遙感研究
        河南科技(2014年8期)2014-02-27 14:08:06
        跟我進(jìn)城的兄弟
        椰城(2013年4期)2013-11-16 06:31:11
        親密的陌生人
        青春(2012年10期)2012-04-29 00:44:03
        99精品国产一区二区三区a片| 蜜臀av一区二区三区精品 | 久久久国产精品五月天伊人 | 亚洲一区二区三区四区精品| 精品人妻日韩中文字幕| 美女被内射很爽的视频网站| 邻居美少妇张开腿让我爽了一夜| 美女张开腿黄网站免费| 国产人妻久久精品二区三区| 精品国产高清a毛片无毒不卡| 国产精品露脸张开双腿| 久久婷婷国产精品香蕉| 极品少妇被后入内射视| 精品熟女av中文字幕| 亚洲无码在线播放| 欧美老妇与zozoz0交| 久久综合给合久久狠狠狠97色69 | 日韩精品乱码中文字幕| 日本艳妓bbw高潮一19| 精品午夜福利无人区乱码一区| 香蕉视频一级片| 久久久国产精品五月天伊人| 少妇被猛烈进入到喷白浆| 特级做a爰片毛片免费看| 午夜视频在线在免费| 永久免费观看国产裸体美女| 日韩一欧美内射在线观看| 波多野结衣一区二区三区视频| 亚州五十路伊人网| 中文字幕日本一区二区在线观看| 日韩色久悠悠婷婷综合| 一区二区精品国产亚洲| 人妻体内射精一区二区三区| 亚洲人精品亚洲人成在线| 亚洲综合无码一区二区三区| 人妻av午夜综合福利视频| 日本久久大片中文字幕| 男人和女人做爽爽视频| 成人免费看吃奶视频网站| 免费在线视频一区| 日本av在线精品视频|