王 振,金小偉,王子健
1. 香港大學(xué)太古海洋科學(xué)研究所與生物科學(xué)學(xué)院,香港2. 中國(guó)環(huán)境監(jiān)測(cè)總站,北京1000123. 中國(guó)科學(xué)院生態(tài)環(huán)境研究中心,北京100085
銅對(duì)水生生物的毒性:類群特異性敏感度分析
王 振1,金小偉2,*,王子健3
1. 香港大學(xué)太古海洋科學(xué)研究所與生物科學(xué)學(xué)院,香港2. 中國(guó)環(huán)境監(jiān)測(cè)總站,北京1000123. 中國(guó)科學(xué)院生態(tài)環(huán)境研究中心,北京100085
銅的毒性因受多種環(huán)境因素(如溫度、pH等)的影響,其水質(zhì)基準(zhǔn)和標(biāo)準(zhǔn)經(jīng)歷過(guò)多次修改。由于不同區(qū)系生物受生活環(huán)境等因素的影響,不同物種對(duì)銅的耐受性和敏感度上存在很大的差異。本文通過(guò)構(gòu)建類群特異性敏感度分布,以及對(duì)10%安全濃度值(10% hazardous concentration,HC10)及其95%置信區(qū)間(95% confidence interval,95%CI)的比較,分析了銅對(duì)淡水和海水各類群的敏感度差異,以期為我國(guó)在制定相關(guān)水質(zhì)基準(zhǔn)的物種選擇上提供參考。結(jié)果顯示,淡水系統(tǒng)中藻類為對(duì)銅毒性最敏感類群,其次為甲殼類,軟體動(dòng)物類,魚(yú)類,寡毛類,而昆蟲(chóng)類為對(duì)銅的最耐受類群。海水各類群對(duì)銅的敏感度順序與淡水類似,只是在寡毛類和魚(yú)類順序上有所不同。相對(duì)于海洋物種,淡水水體生物總體上比海水中各相應(yīng)類群生物對(duì)銅更為敏感。
銅;淡水生物;海水生物;類群特異性;物種敏感度分布
銅是維持生命所必需的微量營(yíng)養(yǎng)元素,尤其在機(jī)體細(xì)胞代謝中起到重要的作用[1]。低劑量的銅對(duì)生物生長(zhǎng)發(fā)育等生命過(guò)程中可起到保護(hù)、促進(jìn)作用。同時(shí),銅對(duì)藻類和菌類具有高毒性,低劑量的硫酸銅 (CuSO4) 在魚(yú)類養(yǎng)殖中常被用來(lái)作為一種殺藻劑和防蟲(chóng)劑,以防止由藻,輪蟲(chóng),枝角類和橈足類生物所引起的疾病、毒害等[2-3]。當(dāng)水環(huán)境中銅的濃度超過(guò)生物所需濃度的10至50倍時(shí),會(huì)在水生生物體內(nèi)產(chǎn)生過(guò)量的自由基,并對(duì)蛋白質(zhì)、氨基酸和脂肪等產(chǎn)生氧化損傷,或者通過(guò)影響生物對(duì)二價(jià)元素,如鈣、鎂的吸收影響水生生物的生長(zhǎng)、發(fā)育、繁殖和行為,甚至產(chǎn)生致死等毒性效應(yīng)[4-7]。由此可見(jiàn),即使銅可作為水生生物生命活動(dòng)的必需元素,一旦達(dá)到一定的濃度即可成為環(huán)境污染物。因此在自然環(huán)境中銅的暴露濃度以及生物可利用度非常重要。銅在天然海水和淡水環(huán)境中的濃度分別為0.03~0.23 μg·L-1(海水)、0.20~30 μg·L-1(淡水)[8],而人為輸入水體中的銅可能高達(dá)100 μg·L-1[9],在一些礦區(qū)甚至可達(dá)到200 000 μg·L-1[10]。為了保護(hù)淡水和海水水生生物安全,不同國(guó)家、地區(qū)相繼頒布了一系列銅的水質(zhì)基準(zhǔn)和水質(zhì)標(biāo)準(zhǔn)文件[11-13]。
生物區(qū)系是水質(zhì)基準(zhǔn)研究的重要內(nèi)容,也是水質(zhì)基準(zhǔn)需要保護(hù)的對(duì)象。習(xí)慣上通常采用全部生物類群作為受體,通過(guò)保護(hù)大部分生物的方式來(lái)確定水質(zhì)基準(zhǔn)的數(shù)值。這種做法并不考慮不同物種的生態(tài)地位和經(jīng)濟(jì)價(jià)值,基準(zhǔn)制定中對(duì)所有生物的權(quán)重是等同的。在實(shí)踐中,一方面希望利用銅的毒性來(lái)控制藻華的大量爆發(fā);另一方面又在基準(zhǔn)制定中考慮銅對(duì)藻類的毒性,顯然存在矛盾。因此從中國(guó)的國(guó)情出發(fā),制定水質(zhì)基準(zhǔn)和標(biāo)準(zhǔn)必須考慮水生生物的不同類群的生態(tài)地位和當(dāng)前的重點(diǎn)保護(hù)對(duì)象[14-16]。Maltby等研究了16種殺蟲(chóng)劑,指出物種的種類對(duì)于構(gòu)建物種敏感度分布曲線(用于推導(dǎo)水質(zhì)基準(zhǔn))具有顯著的影響[17]。吳豐昌等研究物種對(duì)鋅的敏感度分布中發(fā)現(xiàn),甲殼類對(duì)鋅最為敏感,而魚(yú)類次之[18]。因此不同類群的生物對(duì)同一污染物的敏感性差異亦是水質(zhì)基準(zhǔn)制定時(shí)所需考慮的重要因素之一。關(guān)于銅對(duì)水生生物毒性的報(bào)道很多[8, 19],王振等對(duì)溫帶和熱帶不同地理區(qū)域生物敏感度差異性作了探討分析,同時(shí)也發(fā)現(xiàn)不同類群生物對(duì)不同的化學(xué)物存在很大的差異性[20]。
為了進(jìn)一步分析不同類群對(duì)銅的敏感度差異,本研究搜索數(shù)據(jù)庫(kù)中所有銅對(duì)淡水、海水物種急性毒理數(shù)據(jù) (1970-2014年),建立類群特異性SSD并通過(guò)比較推導(dǎo)出的10%危險(xiǎn)濃度 (hazardous concentration,HC10) 及其95% 置信區(qū)間 (confidence interval,95%CI)而分析各類群對(duì)銅的敏感度情況。另外,同一生物類群在不同生態(tài)系統(tǒng) (淡水和海水) 的敏感度情況也進(jìn)行了比較。本文亦嘗試通過(guò)對(duì)各物種對(duì)銅的不同生理、生化等反應(yīng),分析討論引起類群敏感度差異的可能機(jī)制。本研究以期為銅的水質(zhì)基準(zhǔn)建立時(shí)的類群選取上提供研究基礎(chǔ)和理論依據(jù),同時(shí)也為其他毒物的類群敏感度分析提供方法支持。
1.1 數(shù)據(jù)收集及處理
數(shù)據(jù)主要來(lái)源于ECOTOX毒性數(shù)據(jù)庫(kù) (http://www.epa.gov/ecotox/) 和已發(fā)表的文獻(xiàn),數(shù)據(jù)收集截止到2014年。本研究只收集4 d內(nèi)藻類半抑制濃度 (median effective concentration,EC50) 和水生動(dòng)物半致死濃度 (median lethal concentration,LC50) 數(shù)據(jù)。對(duì)于搜集的毒性數(shù)據(jù),依據(jù)“可靠性”和“相關(guān)性”的原則進(jìn)行嚴(yán)格篩選[21-23]:1) 剔除不滿足水質(zhì)基準(zhǔn)技術(shù)要求的數(shù)據(jù),如無(wú)對(duì)照試驗(yàn)、暴露時(shí)間不規(guī)范、無(wú)相關(guān)水質(zhì)因子數(shù)據(jù)、稀釋水不合格、試驗(yàn)設(shè)計(jì)不規(guī)范等;2) 對(duì)受試物種試驗(yàn)地點(diǎn)與物種來(lái)源不符的數(shù)據(jù) (如溫帶的急性數(shù)據(jù)的受試物種來(lái)源于熱帶,或熱帶急性數(shù)據(jù)的受試物種來(lái)源于溫帶) 也均予剔除[24]。如果某一物種的特定測(cè)試終點(diǎn)存在多個(gè)數(shù)據(jù)時(shí),用幾何平均的方法進(jìn)行數(shù)據(jù)整理。篩選后的數(shù)據(jù),按照物種所屬類群劃分類群特異性數(shù)據(jù)庫(kù),如藻類 (algae),甲殼類 (crustaceans),兩棲類 (amphibians),魚(yú)類 (fish),軟體動(dòng)物類(molluscs),寡毛類 (worms) 和昆蟲(chóng)類(insects)。對(duì)于各類群中可能存在的異常值 (極大或極小值),通過(guò)Grubb’s檢驗(yàn)或Tietjen-Moore檢驗(yàn)[25-26]進(jìn)行分析,所檢測(cè)到的異常值均予剔除。
1.2 類群特異性SSD的建立及比較
SSD的建立采用序列百分?jǐn)?shù)法,對(duì)所有數(shù)據(jù)從小到大排列,按公式R/(N+ 1) 計(jì)算序列百分?jǐn)?shù),其中:R是毒性數(shù)據(jù)在序列中的位置,N是所獲得的毒性數(shù)據(jù)量[22]。對(duì)于得到的淡水、海水類群SSD,利用以下兩種方法對(duì)各種群SSD曲線進(jìn)行比較[20, 27]:(1) 直接觀察法:對(duì)SSD低端10%處的比較 (越靠近y軸,物種越敏感); (2) 協(xié)方差分析法 (analysis of covariance, ANCOVA; SPSS, Chicago, IL, USA):各相應(yīng)曲線進(jìn)行線性擬合(y=ax+b) 后對(duì)斜率a和y軸截距b的比較 (α= 0.05)。
1.3HC10(95%CI) 的推導(dǎo)及類群敏感度差異性分析
本研究采用5種國(guó)際常用模型對(duì)各SSD進(jìn)行擬合,包括:log-normal 模型、log-logistic模型、Gompertz模型、Fisher-Tippett模型、Weibull模型。由于不同的擬合模型對(duì)HC10值的推導(dǎo)具有差異性[20, 28],因此,通過(guò)對(duì)以上5種擬合模型的參量對(duì)比,選擇出各SSD的“最佳”擬合模型:即同時(shí)通過(guò)Shapiro-Francia (SF)檢驗(yàn)[29]和Anderson-Darling (AD) 檢驗(yàn)[30]且具有最小均方根值 (Root Mean Square, RMS)[31]。由“最佳”擬合模型得到的各類群的HC10及其95%CI,通過(guò)Graph Pad PrismTM(Version 5.00, San Diego, CA) 中的單因素方差分析 (one-way analysis of variance, ANOVA) 比較各HC10值是否存在顯著性差異 (α= 0.05),即類群敏感度差異。
2.1 淡水生物類群敏感度差異分析
依據(jù)毒性數(shù)據(jù)的篩選原則,共整理151個(gè)銅對(duì)淡水水生生物的急性毒性數(shù)據(jù),其中包括11個(gè)藻類數(shù)據(jù),38個(gè)甲殼類數(shù)據(jù),7個(gè)兩棲類數(shù)據(jù),27個(gè)軟體動(dòng)物數(shù)據(jù),51個(gè)魚(yú)類數(shù)據(jù),7個(gè)寡毛類數(shù)據(jù)和10個(gè)昆蟲(chóng)類數(shù)據(jù)。銅對(duì)淡水水生生物不同類群敏感度分布如圖1所示,結(jié)果顯示淡水藻類SSD在最左側(cè),即為最敏感類群;水生昆蟲(chóng)類SSD曲線在最右側(cè),即為最不敏感類群?;贏NCOVA分析和構(gòu)建SSD推導(dǎo)HC10值(表1)比較結(jié)果顯示:1)藻類HC10(95%CI; μg·L-1) 為6.1 (2.8, 13),明顯小于昆蟲(chóng)類HC10值 (p<0.05;表1) ;2)魚(yú)類和昆蟲(chóng)類具有相同斜率a(p>0.05),但具不同y-截距b(p<0.05)。而其余各類群SSD曲線存在相互交叉現(xiàn)象(低端、中端或高端;見(jiàn)圖1),這也可通過(guò)各SSD曲線的ANCOA分析可知,即各曲線線性擬合后的斜率存在顯著性差異(p<0.05)。通過(guò)對(duì)物種敏感度分布以及HC10值的比較 (ANOVA) 發(fā)現(xiàn),淡水類群對(duì)銅的敏感度趨勢(shì)為:藻類>甲殼類>軟體動(dòng)物類 = 魚(yú)類>昆蟲(chóng)類 (p<0.05;表1)。其中藻類對(duì)銅最為敏感,兩棲類對(duì)銅的敏感度與甲殼類相似;寡毛類對(duì)銅的敏感度與魚(yú)類相似,卻與軟體動(dòng)物類明顯不同 (p<0.05)。
表1 淡水類群特異性10% 危險(xiǎn)濃度 (HC10) 及其95%置信區(qū)間 (95%CI)Table 1 Freshwater taxon-specific 10% hazardous concentration (HC10) and its 95% confidence interval (95% CI)
注:*單因素方差分析,α=0.05;各類群HC10(95%CI) 值由“最佳”擬合模型推導(dǎo)得出:即同時(shí)通過(guò)Shapiro-Francia檢驗(yàn)和Anderson-Darling檢驗(yàn),且具有最小均方根值 (Root Mean Square,RMS)。N為各類群中物種數(shù)目。下表同。
Note: *One-way analysis of variance (ANOVA),α=0.05;95% Cofidence interval (95%CI) was from the best fit model which must pass both Shapiro-Francia and Anderson-Darling tests, and have the minimum root mean square (Min-RMS).Nindicates sample size. The Same as follows.
圖1 淡水類群特異性物種敏感度分布 SSD中不同符號(hào)代表不同類群(見(jiàn)圖注)Fig. 1 Freshwater taxon-specific species sensitivity distribution (SSD). Symbols for taxonomic groups are given in the right key.
2.2 海水生物類群敏感度差異分析
依據(jù)毒性數(shù)據(jù)的篩選原則,共整理232個(gè)銅對(duì)海水水生生物的急性毒性數(shù)據(jù),其中包括35個(gè)藻類數(shù)據(jù),84個(gè)甲殼類數(shù)據(jù),51個(gè)軟體動(dòng)物數(shù)據(jù),49個(gè)魚(yú)類數(shù)據(jù),14個(gè)寡毛類數(shù)據(jù)。銅對(duì)海水水生生物不同類群敏感度分布,如圖2所示,海水藻類對(duì)銅最為敏感(SSD曲線在最左側(cè)),魚(yú)類相對(duì)較不敏感(SSD曲線在最右側(cè))。這一點(diǎn)亦可通過(guò)ANCOVA分析可得:具有相同斜率a(p>0.05),但具不同y-截距b(p<0.05)。而甲殼類SSD曲線在軟體動(dòng)物類SSD曲線左側(cè),表明甲殼類比軟體動(dòng)物類對(duì)銅更敏感。通過(guò)對(duì)物種敏感度分布以及HC10值的比較 (ANOVA) 發(fā)現(xiàn),海水類群對(duì)銅的敏感度趨勢(shì)為:藻類>甲殼類>軟體動(dòng)物類>寡毛類>魚(yú)類(p<0.05;表2)。海水藻類最為敏感,無(wú)脊椎動(dòng)物動(dòng)物的敏感度相似,而海水魚(yú)類對(duì)銅最不敏感。
2.3 銅對(duì)水生生物的制毒機(jī)制
在環(huán)境因素中銅對(duì)水生生物的毒性以及生物利用度取決于銅的總濃度及其形態(tài)[32]。在重度或者中度污染的水體中,43%~88%的銅被吸附在懸浮顆粒而不能對(duì)生物所利用[33]。水中的生物有效態(tài)銅主要是溶解性銅離子(Cu2+)和可能的一些羥基絡(luò)合物[7, 32]???cè)芙庑糟~中通常包括與碳酸酯,氨基酸,或腐殖物質(zhì)相結(jié)合的銅,其中毒性最強(qiáng)的Cu2+占0.1~0.2%[33]。而絡(luò)合態(tài)或者吸附形式的銅的毒性均小于自由態(tài)銅的毒性[32]。對(duì)于淡水生物,游離銅通過(guò)物理傳輸進(jìn)入細(xì)胞最先與質(zhì)膜結(jié)合,增加了質(zhì)膜的滲透性,造成鉀以及其他離子的流失[34]。銅離子對(duì)藻類可能的制毒機(jī)理大體總結(jié)為:1)破壞細(xì)胞膜;2)進(jìn)入細(xì)胞內(nèi)后破壞蛋白質(zhì)、酶等。當(dāng)銅離子一旦進(jìn)入藻細(xì)胞后,立刻進(jìn)攻細(xì)胞蛋白質(zhì)內(nèi)含硫的氨基酸,使得光合作用不能正常進(jìn)行,藻細(xì)胞由此死亡。銅離子可以迅速被細(xì)胞表面吸附,緩慢滲入細(xì)胞內(nèi)部,與有機(jī)物形成的絡(luò)合物或鹽可以加速這種滲入,而進(jìn)入細(xì)胞內(nèi)部的金屬離子可以干擾各種酶的作用,使其失去應(yīng)有的生物功能,從而導(dǎo)致細(xì)胞的死亡[8, 35]。對(duì)于水生脊椎動(dòng)物,高濃度的銅容易造成腮的損傷[36]。如蟹的腮部是銅中毒的重要部位,水溶性銅降低了血藍(lán)蛋白的氧的親和力[37]。高濃度銅暴露下蟹致死效應(yīng)與糖酵解酶的活性有關(guān),但并不像魚(yú)涉及到細(xì)胞能量的損失[38]。日本曾進(jìn)化了水生蜉蝣的銅耐受菌株,其耐受性是由于誘導(dǎo)銅與蛋白螯合的能力遠(yuǎn)超過(guò)鎘和鋅等其他金屬[39]。對(duì)于魚(yú)類,腮表面對(duì)金屬的低親和力允許更多的金屬進(jìn)入細(xì)胞內(nèi)腔,并形成更復(fù)雜的結(jié)合位點(diǎn),可能形成的制毒機(jī)制包括:1)與生物體內(nèi)的巰基結(jié)合,阻斷生物分子的基本生物官能團(tuán);2)抑制生命必須元素如鈣、鎂的攝入;3)修飾生物分子的活性構(gòu)象。這些機(jī)制可以解釋離子銅(Cu2+)暴露后傳輸抑制的特異性[40]。Reid等[40]通過(guò)對(duì)虹鱒魚(yú)的研究表明其外部鰓上皮表面對(duì)銅具有較低的親和性,使銅容易滲入細(xì)胞內(nèi)的隔間。銅通過(guò)損害跨上皮的離子交換(如通過(guò)抑制主動(dòng)吸收或刺激被動(dòng)損失妨礙或擾亂電解質(zhì)平衡)破壞虹鱒魚(yú)鰓的功能。銅在魚(yú)組織累積且長(zhǎng)期保留的特點(diǎn)是其較高的持久性以及可能與非交換性或者緩慢可交換性的蛋白相結(jié)合[41]。在魚(yú)體內(nèi)銅解毒機(jī)制包括金屬硫蛋白的誘導(dǎo)等[41-43]。個(gè)別魚(yú)類肝臟的金屬硫蛋白含量通常反映銅在該器官的積累狀況,這也證明可以使用金屬硫蛋白作為銅脅迫的生物指示物[42]。從銅對(duì)不同營(yíng)養(yǎng)層生物的毒理機(jī)制研究發(fā)現(xiàn),銅對(duì)不同類群生物的致毒機(jī)制不盡相同,這種差異影響了銅生態(tài)毒性的物種敏感度分布。
圖2 海水類群特異性物種敏感度分布 SSD中不同符號(hào)代表不同類群(見(jiàn)圖注)Fig. 2 Marine taxon-specific species sensitivity distribution (SSD). Symbols for taxonomic groups are given in the right key.
表2 海水類群特異性10% 危險(xiǎn)濃度 (HC10) 及其95%置信區(qū)間 (95%CI)Table 2 Marine taxon-specific 10% hazardous concentration (HC10) and its 95% confidence interval (95% CI)
注:*單因素方差分析,α=0.05。
Note: * One-way analysis of variance (ANOVA),α=0.05.
2.4 淡水和海水各類群敏感度差異分析
通過(guò)對(duì)比各類群在淡水和海水中的HC10值 (表1和2) 發(fā)現(xiàn),淡水各類群均比相應(yīng)各類群在海水系統(tǒng)中對(duì)銅更敏感。如海水藻類HC10值為淡水藻類的4.1倍 (最大差距),海水寡毛類HC10值為淡水的1.6倍 (最小差距)。該結(jié)果與Wheeler[44]中結(jié)果相似,即淡水物種比海水物種對(duì)銅更敏感。這有可能由以下3方面原因:1) 海水和淡水各類群本身差異性;另外,海水生物具有比淡水生物更強(qiáng)的銅代謝能力而使其對(duì)銅更耐受[45]。2) 銅在海水和淡水中的游離態(tài)形式的差異而導(dǎo)致物種對(duì)其吸收和累積效應(yīng)的不同:如淡水體系更易使銅呈現(xiàn)出游離態(tài)而增加物種的吸收和累積[46, 47]。3) 不同的試驗(yàn)體系 (海水或淡水) 而導(dǎo)致的毒性差異性:如海水的高鹽度可致使銅在其試驗(yàn)系統(tǒng)中因具有較低的溶解度 (即較低的游離態(tài)) 而降低其對(duì)海水生物的毒性[27, 44]。
綜上所述,可以得出以下結(jié)論:
(1)通過(guò)對(duì)物種敏感度分布以及HC10值的比較 (ANOVA) 發(fā)現(xiàn),淡水類群對(duì)銅的敏感度趨勢(shì)為:藻類>甲殼類>軟體動(dòng)物類 = 魚(yú)類>水生昆蟲(chóng)類,海水類群對(duì)銅的敏感度趨勢(shì)為:藻類>甲殼類>軟體動(dòng)物類>寡毛類>魚(yú)類;藻類對(duì)銅最為敏感,魚(yú)對(duì)銅最不敏感;通過(guò)對(duì)比各類群在淡水和海水中的HC10值 (表1和2) 發(fā)現(xiàn),淡水各類群均比相應(yīng)海水各類群對(duì)銅更敏感。
(2)從銅對(duì)不同營(yíng)養(yǎng)層生物的毒理機(jī)制研究發(fā)現(xiàn),銅對(duì)不同類群生物的致毒機(jī)制不盡相同,這種差異影響了銅生態(tài)毒性的物種敏感度分布。考慮到中國(guó)水體較為嚴(yán)重的富營(yíng)養(yǎng)化現(xiàn)象,水中的銅對(duì)藻類生長(zhǎng)有一定抑制作用。
[1] Festa R A, Thiele D J. Copper: An essential metal in biology [J]. Current Biology, 2011, 21(21): 877-883
[2] Tucker C S, Robinson E H. Channel Catfish Farming Handbook [M]. Van-Nostrand-Reinhold, New York, USA, 1990
[3] Boyd C E. Water Quality in Ponds for Aquaculture [M]. Birmingham Publishing Co., Birmingham, Alabama, USA, 1990
[4] Wurts W A, Perscbacher P W. Effects of bicarbonate alkalinity and calcium on the acute toxicity of copper to juvenile channel catfish (Ictaluruspunctatus) [J]. Aquaculture, 1994, 125: 73-79
[5] Abdel-Tawwab M, Mousa M A A, Abbass F E. Growth performance and physiological response of African catfish,Clariasgariepinus(B.) fed organic selenium prior to the exposure to environmental copper toxicity [J]. Aquaculture, 2007, 272(1-4): 335-345
[6] Burba A. The effect of copper on behavioural reactions of Noble crayfishAstacusastacusL. [J]. Acta Zoologica Lituanica, 1999, 9(2): 30-36
[7] Hall L W, Scott M C, Killen W D. Ecological risk assessment of copper and cadmium in surface waters of Chesapeake Bay watershed [J]. Environmental Toxicology and Chemistry, 1998, 17(6): 1172-1189
[8] Flemming C, Trevors J. Copper toxicity and chemistry in the environment: A review [J]. Water, Air, and Soil Pollution, 1989, 44(1-2): 143-158
[9] Nriagu J O. Copper in the Environment. Part I: Ecological Cycling [M]. John Wiley & Sons, 1979
[10] Davis A, Ashenberg D. The aqueous geochemistry of the Berkeley pit, Butte, Montana, USA [J]. Applied Geochemistry, 1989, 4(1): 23-36
[11] US EPA. Aquatic Life Ambient Water Quality Criteria: Copper. EPA-822-R-07-001 [R], National Technichal Information Service, Springfield, VA., 2007
[12] ANZECC & ARMCANZ. Australian and New Zealand Guidelines for Fresh and Marine Water Quality [R]. Canberra, Australia; Australian and New Zealand Environmentent and Conservation Council and Agriculture and Resource management Council of Australia and New Zealand. 2000
[13] CCME. A Protocol for the Derivation of Water Quality Guidelines for the Protection of Aquatic Life [R]. Canadian Council of Ministers of the Environment, Winnipeg, 2007
[14] Jin X, Wang Y, Giesy, J P, et al. Development of aquatic life criteria in China: Viewpoint on the challenge [J]. Environmental Science and Pollution Research, 2013, 21(1): 61-66
[15] 金小偉, 王業(yè)耀, 王子健. 淡水水生態(tài)基準(zhǔn)方法學(xué)研究: 數(shù)據(jù)篩選與模型計(jì)算[J]. 生態(tài)毒理學(xué)報(bào), 2014, 9(1): 1-13
Jin X W, Wang Y Y, Wang Z J. Methodologies for derivingaquatic life criteria (ALC): Data screeningand model calculating[J]. Asian Journal of Ecotoxicology, 2014, 9(1): 1-13
[16] 蘇海磊, 吳豐昌, 李會(huì)仙, 等. 太湖生物區(qū)系研究及與北美五大湖的比較[J]. 環(huán)境科學(xué)研究, 2012, 24(12): 1346-1354
Su H L, Wu F C, Li H X, et al. Aquatic biota of Taihu Lake and comparison with those of the North America Great Lakes [J]. Research of Environmental Sciences. 2012, 24(12): 1346-1354
[17] Maltby L, Blake N, Brock T C M, et al. Insecticide species sensitivity distributions: Importance of test species selection and relevance to aquatic ecosystems [J]. Environmental Toxicology and Chemistry, 2005, 24(2): 379-388
[18] 吳豐昌, 馮承蓮, 曹宇靜, 等. 鋅對(duì)淡水生物的毒性特征與水質(zhì)基準(zhǔn)的研究[J]. 生態(tài)毒理學(xué)報(bào), 2011, 6(4): 367-382
Wu F C, Feng C L, Cao Y J, et al. Toxicity characteristic of zinc to freshwater biota and its water quality criteria [J]. Asian Journal of Ecotoxicology, 2011, 6(4): 367-382
[19] Eisler R, Copper hazards to fish, wildlife, and invertebrates: A synoptic review [J]. DTIC Document, 1998
[20] Wang Z, Kwok K W, Lui G, et al. The difference between temperate and tropical saltwater species' acute sensitivity to chemicals is relatively small [J]. Chemosphere, 2013, 105: 31-43
[21] Klimisch H J, Andreae M, Tillmann U. A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data [J]. Regulatory Toxicology and Pharmacology, 1997, 25(1): 1-5
[22] Wheeler J R, Grist E P M, Leung K M Y, et al. Species sensitivity distributions: Data and model choice [J]. Marine Pollution Bulletin, 2002, 45: 192-202
[23] Jin X W, Zha J M, Xu Y P, et al. Derivation of predicted no effect concentrations (PNEC) for 2,4,6-trichlorophenol based on Chinese resident species [J]. Chemosphere, 2012, 86(1): 17-23
[24] Chapman P M, Mcdonald B G, Kickham P E, et al. Global geographic differences in marine metals toxicity [J]. Marine Pollution Bulletin, 2006, 52: 1081-1084
[25] Grubbs F E. Procedures for detecting outlying observations in samples [J]. Technometrics, 1969, 11(1): 1-21
[26] Tietjen G L, Moore R H. Some grubbs-type statistics for the detection of several outliers [J]. Technometrics, 1972, 14(3): 583-597
[27] Leung K M Y, Morritt D, Wheeler J R, et al. Can saltwater toxicity be predicted from freshwater data? [J]. Marine Pollution Bulletin, 2001, 42(11): 1007-1013
[28] Xing L Q, Liu H L, Zhang X W, et al. A comparison of statistical methods for deriving freshwater quality criteria for the protection of aquatic organisms [J]. Environmental Science and Pollution Research, 2014, 21(1): 159-167
[29] Shapiro S S, Francia R S. An approximate analysis of variance test for normality [J]. Journal of the American Statistical Association, 1972, 67(337): 215-216
[30] Anderson T W, Darling D A. A test of goodness of fit [J]. Journal of the American Statistical Association, 1954, 49(268): 765-769
[31] Kwok K W H, Leung K M Y, Lui G S G, et al. Comparison of tropical and temperate freshwater animal species' acute sensitivities to chemicals: Implications for deriving safe extrapolation factors [J]. Integrated Environmental Assessment and Management, 2007, 3(1): 49-67
[32] Hung T C, Chuang A, Wu S J, et al. Relationships among the species and forms of copper and biomass along the Erhjin Chi coastal water [J]. Acta Oceanographica Taiwanica, 1990, 25: 65-76
[33] Shaw T, Brown V. The toxicity of some forms of copper to rainbow trout [J]. Water Research, 1974, 8(6): 377-382
[34] Stokes P M. Copper accumulations in freshwater biota [J]. Copper in the environment, Part I, 1979, 1: 357-381
[35] Stauber J, Florence T. Mechanism of toxicity of ionic copper and copper complexes to algae [J]. Marine Biology, 1987, 94(4): 511-519
[36] Hodson P V, Borgmann U, Shear H. Toxicity of copper to aquatic biota [J]. Copper in the Environment, Part I, 1979, 2: 307-372
[37] Truchot J. Factors controlling the in vitro and in vivo oxygen affinity of the hemocyanin in the crabCarcinusmaenas(L.) [J]. Respiration Physiology, 1975, 24(2): 173-189
[38] Hansen J I, Mustafa T, Depledge M. Mechanisms of copper toxicity in the shore crab,Carcinusmaenas[J]. Marine Biology, 1992, 114(2): 259-264
[39] Suzuki K T, Hiroyuki S, Shigehisa H, et al. Differential binding of cadmium and copper to the same protein in a heavy metal tolerant species of mayfly (Baetisthermicus) larvae [J]. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1989, 94(1): 99-103
[40] Reid S D, Mcdonald D. Metal binding activity of the gills of rainbow trout (Oncorhynchusmykiss) [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1991, 48(6): 1061-1068
[41] Carbonell G, Tarazona J. Toxicokinetics of copper in rainbow trout (Oncorhynchusmykiss) [J]. Aquatic Toxicology, 1994, 29(3): 213-221
[42] Hogstrand C, Lithner G, Haux C. The importance of metallothionein for the accumulation of copper, zinc and cadmium in environmentally exposed perch,Percafluviatilis[J]. Pharmacology & Toxicology, 1991, 68(6): 492-501
[43] Hylland K, Haux C, Hogstrand C. Hepatic metallothionein and heavy metals in dabLimandalimandafrom the German Bight [J]. Marine Ecology Progress Series, 1992, 91(1-3): 89-96
[44] Wheeler J R, Leung K M Y, Morritt D, et al. Freshwater to saltwater toxicity extrapolation using species sensitivity distributions [J]. Environmental Toxicology and Chemistry, 2002, 21(11): 2459-2467
[45] Phillips D J H, Rainbow P S. Biomonitoring of Trace Aquatic Contaminants [M]. Elsevier, London, UK, 1993
[46] Rainbow P S. Ecophysiology of trace metal uptake in crustaceans [J]. Estuarine, Coastal and Shelf Science, 1997, 44: 169-175
[47] Rainbow P S. Trace metal accumulation in marine invertebrates: Marine biology or marine chemistry [J]. Journal of the Marine Biological Association of the United Kingdom, 1997, 77: 195-210
◆
Taxon-specificSensitivityDifferencesofCoppertoAquaticOrganisms
Wang Zhen1, Jin Xiaowei2,*, Wang Zijian3
1. The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, China2. China National Environmental Monitoring Center, Beijing 100012, China3. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
31 May 2014accepted18 June 2014
The toxicity of copper is affected by many environmental factors, e.g. temperature, pH, etc. To better control copper's discharge and protect aquatic organisms from the toxicity of copper, the water quality criteria (WQC) of copper have been updated several times so as to reflect the latest scientific knowledge. To date, the differences of species' tolerance and sensitivities to copper might exist partly due to the effects of environmental factor on different taxon living in different geographical regions. Using all available fresh water and marine toxicity data in the literature, taxon-specific species sensitivities were compared by using species sensitivity distributions (SSDs) approach. The results obtained in the present study can provide a reference for species selection of WQC development in China. Through a comprehensive meta-analysis of taxon-specific 10% hazardous concentrations (HC10) and their 95% confidence interval (95%CI), our results suggest that algae is the most sensitive taxa to copper in fresh water ecosystems, followed by crustaceans, molluscs, fishes and worms, while insects is the least sensitive one. Comparatively, there is almost a similar decline in copper sensitivity from algae to crustaceans, molluscs, worms and then fishes for marine organism. Whereas, fresh water taxa is more sensitive against copper than their marine counterparts.
copper; freshwater species; marine species; taxon-specific species sensitivity distribution
2014-05-31錄用日期:2014-06-18
1673-5897(2014)4-640-07
: X171.5
: A
金小偉(1985―),男,甘肅蘭州人,博士,中國(guó)環(huán)境監(jiān)測(cè)總站工程師,主要從事生態(tài)毒理以及生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)的研究,已發(fā)表論文20余篇。
國(guó)家自然科學(xué)青年基金(21307165);國(guó)家水體污染控制與治理科技重大專項(xiàng)(2013ZX07502001);環(huán)境模擬與污染控制國(guó)家重點(diǎn)聯(lián)合實(shí)驗(yàn)室(中國(guó)科學(xué)院生態(tài)環(huán)境研究中心)開(kāi)放基金(14K02ESPCR)
王振(1984-),男,博士,主要從事生態(tài)毒理與水質(zhì)基準(zhǔn)研究,E-mail: wangzhen.dln@hotmail.com
*通訊作者(Corresponding author),E-mail: jxw85@126.com
10.7524/AJE.1673-5897.20140531001
王 振,金小偉,王子健. 銅對(duì)水生生物的毒性:類群特異性敏感度分析[J]. 生態(tài)毒理學(xué)報(bào), 2014, 9(4): 640-646
Wang Z, Jin X W, Wang Z J. Taxon-specific sensitivity differences of copper to aquatic organisms [J]. Asian Journal of Ecotoxicology, 2014, 9(4): 640-646 (in Chinese)