王玲玲+熱西代古麗·吾吉艾合買提+林琪+翟翔+劉桂東
收稿日期:20131121
基金項目:國家自然科學基金資助項目(11074069, 61176116)
作者簡介:王玲玲(1955-),女,河北撫寧人,湖南大學教授
通訊聯(lián)系人,Email:llwang@hnu.edu.cn
摘要:應用時域有限差分方法(FDTD)研究了基于金屬介質金屬(MIM)波導缺陷諧振環(huán)結構的傳輸特性. 該結構由一通道波導和位于通道上方的缺陷諧振環(huán)組成,與無缺陷諧振腔結構相比,缺陷諧振環(huán)結構破壞了環(huán)形腔原有的共振模式,從而呈現(xiàn)出新穎的濾波特性. 當缺陷尺寸發(fā)生改變時,諧振環(huán)有效長度發(fā)生變化,通過調(diào)整缺陷的尺寸,可以有效調(diào)節(jié)濾波波長,其數(shù)值計算值與傳輸線理論值基本吻合. 此外,通道波導與諧振環(huán)間的耦合強度在一定程度上依賴于缺陷的位置,因此通過調(diào)節(jié)缺陷的位置可以有效控制濾波強度. 與其他濾波器相比,此結構在不改變結構總尺寸的情況下,可調(diào)節(jié)濾波波長,實現(xiàn)了更寬頻段的濾波,并有效調(diào)節(jié)其透射率.當缺陷尺寸設定為某一特定值時,能實現(xiàn)模式間的簡并,提高濾波性能.
關鍵詞:光學器件;MIM波導;時域有限差分方法;傳輸線理論;濾波器
中圖分類號:O469 文獻標識碼:A
Study of the Transmission Characteristics
of the Structure of Defective Rectangular Ring
Resonator Based on MIM Waveguide
WANG Lingling, REXIDAIGULI.Wujiaihemaiti, LIN Qi, ZHAI Xiang, LIU Guidong
Abstract: The transmission characteristics of the structure of defective rectangular ring resonator based on metalinsulatormetal waveguide were investigated in the finite difference time domain method. This structure consists of a waveguide channel and a defective rectangular ring resonator,which is parallel to the waveguide.Compared with the perfect rectangular ring resonator, the structure with defect destroys the symmetry of the resonant modes in the resonator, which results in a novel filter function of the complex resonator. The effective length of the structure depends on the size of the defect, so filtering wavelength can be tuned by adjusting the dimension of the defect. The numerical simulation results are essentially in agreement with the transmission line theory calculation results. In addition, the coupling strength between the waveguide channel and defective rectangular ring resonator is dependent on the defect location, which is useful in the control of the transmittance at filtering wavelength. Compared with the other filtering structures, our structure can realize more broadband segment filtering, effectively adjust the filtering wavelength and control the transmittance without changing the overall size. When the size of detect is chosen on a certain value, a new double degenerated mode appears, which improves the filtering properties of the structure. It has potential application in integrated optics due to its miniaturization and simple fabrication process.
Key words: optical devices; MetalInsulatorMetal(MIM) waveguide; finite difference time domain method; transmission line theory; filter
表面等離激元(Surface Plasmon Polariton,SPPs)是入射光子與金屬表面自由電子相互作用形成的非輻射電磁模式,是沿著金屬介質表面?zhèn)鞑サ南烹姶挪?,在納米量級上具有顯著的局域增強效應[1-3]. 利用SPPs的這一特殊性質,可以有效實現(xiàn)亞波長量級上的電磁傳輸與調(diào)控. 基于SPPs的納米光子器件是實現(xiàn)納米全光網(wǎng)絡的基礎,那么,怎樣實現(xiàn)在納米尺度上對SPPs有效調(diào)控成為該領域研究者關注的熱點. 例如,基于金屬納米顆粒陣列[4]或金屬納米線[5]的SPPs波導已經(jīng)在理論上提出并在實驗上獲得驗證,但此類結構能量損失大,有效傳播距離小,難以獲得應用. 而基于金屬絕緣體金屬(MetalInsulatorMetal,MIM)的SPPs波導結構可以避免出現(xiàn)輻射模和泄漏模,有效地將電磁波局域在亞波長結構內(nèi),從而實現(xiàn)光在納米尺度內(nèi)的有效傳輸[6]. 近年來,關于MIM結構的功能器件,如光分束器[7],定向耦合器[8],布拉格反射器[9-10],濾波器[11-18]等已有報道. 研究者利用諧振腔的共振特性設計了多種濾波結構,基于MIM結構的環(huán)形濾波器[16-18]具有選頻特性好,結構緊湊等優(yōu)點,通過調(diào)節(jié)其結構參數(shù),例如諧振腔尺寸,諧振腔與MIM波導的耦合距離,有效折射率分布等,實現(xiàn)其濾波特性的調(diào)節(jié).
近年來,基于MIM矩形諧振腔結構的表面等離子體波導濾波器的研究指出,通過調(diào)整諧振腔的長度,可以有效地濾掉特定波長[19],且能量損耗小. 然而,這種結構由于尺寸的限制,無法實現(xiàn)更寬頻段的濾波. 目前,理論上提出一種基于MIM波導填充諧振環(huán)結構, 該結構由一通道波導和與通道耦合的諧振腔組成,SPPs在該諧振腔內(nèi)傳播時發(fā)生共振耦合形成駐波,通過在環(huán)中引入金屬結構改變諧振腔的耦合長度,實現(xiàn)濾波帶寬的調(diào)控,基于該結構的波分復用器也隨之提出[20]. 以上研究中,均通過改變結構尺寸達到調(diào)控濾波波長. 為了使結構更加緊湊、工藝更加簡單,本文提出并在數(shù)值上證實了基于缺陷諧振環(huán)MIM表面等離激元波導結構濾波器,該結構由一通道波導和位于通道上方的缺陷諧振環(huán)組成, 采用時域有限差分(FDTD)方法,通過改變?nèi)毕莸膸缀纬叽?,模擬計算該結構的透射譜及共振模式下的磁場分布,并與傳輸線模型的計算結果進行比較,以明確該濾波器的傳輸特性. 結果表明,缺陷的設置破壞了環(huán)腔結構諧振腔原有的對稱性,影響原有的幾種共振模式,從而出現(xiàn)了新穎的濾波特性. 其濾波特性依賴于缺陷的尺寸,通過改變?nèi)毕莩叽缈梢杂行д{(diào)節(jié)濾波波長,并且當缺陷尺寸設定為某一特定值時,有些模式間發(fā)生簡并,可以提高該結構的濾波性能. 此外,缺陷諧振環(huán)結構的部分諧振模式依賴于缺陷的位置,當缺陷位置不同時,通道波導與缺陷諧振環(huán)之間的耦合強度不同,對不同共振波長下的透射率有一定的影響.
1數(shù)值模擬與結構分析
基于缺陷諧振環(huán)MIM表面等離激元波導結構濾波器的結構如圖1(a)所示.在數(shù)值模擬過程中,設通道波導和諧振環(huán)寬度均為d=50 nm, 通道波導與缺陷諧振環(huán)之間的耦合寬度為t=20 nm,環(huán)長度L=300 nm,諧振環(huán)的缺陷寬度為a,深度為b. 通道波導和缺陷諧振環(huán)中填充介質均為空氣(εd=1). 灰色部分為金屬Ag,其相對介電常數(shù)在可見光到近紅外波段可以采用Drude模型[21-22]進行計算:
式中:εω為入射頻率無限大時對應的介電常數(shù),其值約為3.7; ωp為金屬表面電荷發(fā)生集體振蕩的本征頻率,其值約為1.38×1016rad/s; γ為金屬中電荷發(fā)生集體振蕩的阻尼系數(shù),其值約為2.73×1013rad/s; ω為入射波頻率. 使用FDTD Solution 6.0軟件進行模擬計算,計算步長設定為dx=dy=2 nm,邊界條件均采用完全匹配層(PML). S處放置橫磁波模式波源,Q處放置能量監(jiān)控器.
采用傳輸線理論分析該濾波結構的共振條件時[23],等效電路如圖1(b)所示.缺陷諧振環(huán)的等效阻抗定義為:
Zequ=R+iω(Lm+Le)+1/iωC.(2)
式中:等效電阻R=leff/σ b,leff=4(L-2d)+2b,σ=iω(εm-ε0),leff為缺陷環(huán)有效長度,σ為等效電導率;Lm=μ0(L-2d)2為諧振環(huán)的磁場電感;Le=Leff/ω2εmd為諧振環(huán)的電子自感;C=ε0d/a 為缺陷結構的等效電容. 諧振環(huán)濾波器的等效電路如圖1(b)所示,等效阻抗Zequ作為負載,加載在特征阻抗為Z0=β dε0ω的傳輸線上,則廣義阻抗可表示為:
Z=ZL=ZR=Z0(Zequ/2)-iZ0tan (β leff/2)Z0-i(Zequ/2)tan (β leff/2).(3)
式中:傳播常數(shù)β=neff /ε0ω可以由MIM波導的色散關系εdkm+εmkdtanh(-ikdd/2)=0得出,k0=2π/λ為真空中的波矢,km=(β2-εmk20)1/2,kd=(β2-εd k20)1/2.當復阻抗匹配,即Z*L=ZR時,可以得到共振條件和相應的共振波長λm.
2結果討論與分析
當結構未引進缺陷(即a=b=0)時,由圖2 (a) 的透射譜可以看出,3個波谷對應的共振波長分別為λ=681,747,1 372 nm. 圖2(b) 為λ=681 nm時的磁場分布,磁場強度主要集中在環(huán)形腔四邊中心位置,對應TM2f模式. 圖2(c) 為共振波長λ=747 nm時對應的TM2c模式,磁場強度主要集中在環(huán)形腔4個頂點位置,該模式是由于環(huán)形腔的4個轉角使SPPs發(fā)生反射共振,導致相應的電磁能量有效地局域在環(huán)形腔內(nèi)形成的. 圖2(d) 為共振波長λ=1 372 nm時對應TM1模式. 根據(jù)傳輸線理論可以預測,改變環(huán)形腔的有效長度可以調(diào)控濾波器的頻率特性. 結構中引入缺陷,在不改變結構總尺寸大小的情況下,能改變共振環(huán)的有效長度,從而達到調(diào)節(jié)濾波波長的目的.
為了驗證上述預測理論,設缺陷寬度與深度相等,即a=b,研究缺陷邊長對傳輸特性的影響. 結果顯示,當0 圖4分別給出TM1g,TM2g模式濾波波長與缺陷寬度a及缺陷深度b的關系. 固定缺陷深度b=50 nm,改變?nèi)毕輰挾萢,發(fā)現(xiàn)隨著a的增大,TM2g模式對應的濾波波長沒有明顯變化,而TM1g所對應的共振波長隨寬度a單調(diào)遞增,如圖4(a)所示.固定缺陷寬度a=50 nm,改變?nèi)毕萆疃萣時,透射譜上出現(xiàn)3個波谷,分別對應TM2g,TM2c和TM1g模式,其中TM2g,TM1g模式對應的共振波長隨深度b單調(diào)遞增,如圖4(b)所示.因此,通過改變?nèi)毕莸慕Y構參數(shù)可以調(diào)節(jié)濾波波長.
最后研究缺陷設置在不同位置時該結構的傳輸特性. 在其他參數(shù)不變的情況下,取缺陷尺寸a=b=150 nm. 圖5(a)和(b)分別為正立的凹字形結構與朝右的凹字形結構的透射譜.由圖5可知,波長分別為716,864,1 314,1 830 nm處出現(xiàn)波谷,當共振波長分別為716,864 nm時發(fā)生二級諧振,對應模式分別為TM2c和TM2g;當波長分別為1 314,1 830 nm時發(fā)生一級諧振,分別對應TM1n和TM1g模式. 圖6(a)~圖6(h)為在2種情況下,4種模式對應的磁場分布,由圖6(a)和(e)可知,波長716 nm對應TM2c模式,磁場均局域在諧振腔的4個角并無差異,然而,TM2g,TM1n,TM1g模式的磁場分布不同,其中TM2g,TM1g模式磁場局域在缺陷里,如圖6(d)和圖6(h)所示,這是由缺陷諧振環(huán)表面的環(huán)形電流引起的. 此外,對于2種不同缺陷位置,缺陷環(huán)與通波導間的耦合強度不同.
與正立的凹字形結構相比,朝右的凹字形缺陷在TM1n模式下諧振環(huán)與通道之間的耦合較弱,而TM1g模式下缺陷諧振環(huán)與通道波導間的耦合強度較強,因此調(diào)節(jié)缺陷位置可以有效控制諧振強度.
3結論
本文應用時域有限差分方法研究了基于MIM波導缺陷諧振環(huán)結構的傳輸特性. 結果表明,當設置缺陷時,破壞了環(huán)腔結構諧振腔原有的對稱性,影響原有的幾種共振模式,從而出現(xiàn)了新穎的濾波特性. 當改變?nèi)毕輰挾群蜕疃葧r,可以有效調(diào)節(jié)不同模式所對應的濾波波長. 將缺陷尺寸調(diào)節(jié)到特定值時,產(chǎn)生了新的共振模式,提高了該結構的濾波性能. 最后研究了缺陷位置對共振模式的影響,缺陷位置不同時,通道波導與缺陷諧振環(huán)之間的耦合強度不同,因此通過調(diào)節(jié)缺陷的位置可以有效控制濾波強度. 以上結果將有助于設計復合結構濾波器,在集成光學器件設計方面具有潛在的應用價值.
參考文獻
[1]OZBAY E. Merging photonics and electronics at nanoscale dimensions[J]. Science, 2006, 311 (5758): 189-193.
[2]BARNES W L, DEREUX A, EBBESEN T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424 (6950): 824-830.
[3]RAETHER H. Surface plasmon on smooth and rough surfaces and on gratings[M]. Berling: SpringerVerlag, 1988:124-125.
[4]MAIER S A, KIK E G, ATWATER H A. Local detection of electromagnetic energy transport below the diffraction limit in the metal nanoparticle plasmon waveguides[J]. Nature Mater, 2003, 2(4): 229-232.
[5]TAKAHARA J, YAMAGISHI S, TAKI H. Guiding of a onedimensional optical beam with nanometer diameter [J]. Opt Lett,1997, 22(7): 474-475.
[6]MAIER S A. Plasmonic field enhancement and SERS in the effective mode volume picture[J]. Opt Express, 2006, 14 (5): 1957-1964.
[7]VERONIS G, FAN S. Bends and splitters in metaldielectricmetal subwavelength plasmonic waveguides[J]. Appl Phys Lett, 2005, 87(13): 131102.
[8]ZHAO H, GUANG X, HUANG J. Novel optical directional coupler based on surface plasmon polaritons[J]. Physica E, 2008, 40(10): 3025-3029.
[9]HOSSEINI A, NEJATI H, MASSOUD Y. Modeling and design methodology for metalinsulatormetal plasmonic Bragg reflectors[J]. Opt Express, 2008, 16(3): 1475-1480.
[10]LIU J Q, WANG L L, HE M D,et al.A wide bandgap plasmonic Bragg reflector[J]. Opt Express, 2008, 16(7): 4888-4894.
[11]TAO J, HUANG X, LIN X,et al.A narrowband subwavelength plasmonic waveguide filter with asymmetrical multiple teethshaped structure[J]. Opt Express, 2009, 17(16): 13989-13994.
[12]TAO J, HUANG X, LIN X,et al.Systematical research on characteristics of doubleside teethshaped nanoplasmonic waveguide filters[J]. J Opt Soc Am B, 2010, 27(2): 323-327.
[13]XIAO S, LIU L, QIU M. Resonator channel drop filters in a plasmonpolaritons metal[J]. Opt Express, 2006, 14(7): 2932-2937.
[14]LU H, LIU X, MAO D,et al.Tunable bandpass plasmonic waveguide filters with nanodisk resonators[J]. Opt Express, 2010, 18(17): 17922-17927.
[15]WANG G, LU H, LIU X,et al.Tunable multichannel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime[J]. Opt Express, 2011,19(4): 3513-3518.
[16]HOSSEINI A, MASSOUD Y. Nanoscale surface Plasmon based resonator using rectangular geometry[J]. Appl Phys Lett, 2007, 90(18): 181102.
[17]WANG T, WEN X, YIN C,et al.The transmission characteristics of surface plasmon polaritons in ring resonator[J]. Opt Express, 2009, 17(26): 24096-24101.
[18]PENG X, LI H, WU G,et al.Research on transmission characteristics of aperturecoupled square ring resonator based filter[J]. Opt Commun, 2013, 294: 368-371.
[19]王玲玲, 張振, 王柳,等.基于矩形諧振腔MIM波導結構的表面等離子體帶阻濾波器[J]. 湖南大學學報:自然科學版,2012, 39(5): 65-68.
WANG Lingling, ZHANG Zhen, WANG Liu,et al.Study of the surface plasmon bandstop filter based on the structure of rectangular resonator MIM waveguide[J]. Journal of Hunan University: Natural Sciences,2012, 39(5): 65-68.(In Chinese)
[20]ZAND I, MAHIGIR A, PAKIZEH T,et al.Selectivemode optical nanofilters based on plasmonic complementary splitring resonators[J]. Opt Express, 2012, 20(7): 7516-7525.
[21]LIN X, HUANG X. Toothshaped plasmonic waveguide filters with nanometeric sizes[J]. Opt Lett, 2008, 33(23): 2874-2876.
[22]HAN Z, FORSBERG E, HE S. Surface plasmon Bragg gratings formed in metalinsulatormetal waveguides[J]. IEEE Photon Technol Lett, 2007, 19(2): 91-93.
[23]ZAND I, ABRISHAMIAN M S, BERINI P. Highly tunable nanoscale metalinsulatormetal split ring core ring resonators (SRCRRs)[J]. Opt Express, 2013, 21(1): 79-86.
[24]ECONOMOU E N. Surface plasmons in thin films[J]. Phys Rev,1969, 182: 539-554.
[13]XIAO S, LIU L, QIU M. Resonator channel drop filters in a plasmonpolaritons metal[J]. Opt Express, 2006, 14(7): 2932-2937.
[14]LU H, LIU X, MAO D,et al.Tunable bandpass plasmonic waveguide filters with nanodisk resonators[J]. Opt Express, 2010, 18(17): 17922-17927.
[15]WANG G, LU H, LIU X,et al.Tunable multichannel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime[J]. Opt Express, 2011,19(4): 3513-3518.
[16]HOSSEINI A, MASSOUD Y. Nanoscale surface Plasmon based resonator using rectangular geometry[J]. Appl Phys Lett, 2007, 90(18): 181102.
[17]WANG T, WEN X, YIN C,et al.The transmission characteristics of surface plasmon polaritons in ring resonator[J]. Opt Express, 2009, 17(26): 24096-24101.
[18]PENG X, LI H, WU G,et al.Research on transmission characteristics of aperturecoupled square ring resonator based filter[J]. Opt Commun, 2013, 294: 368-371.
[19]王玲玲, 張振, 王柳,等.基于矩形諧振腔MIM波導結構的表面等離子體帶阻濾波器[J]. 湖南大學學報:自然科學版,2012, 39(5): 65-68.
WANG Lingling, ZHANG Zhen, WANG Liu,et al.Study of the surface plasmon bandstop filter based on the structure of rectangular resonator MIM waveguide[J]. Journal of Hunan University: Natural Sciences,2012, 39(5): 65-68.(In Chinese)
[20]ZAND I, MAHIGIR A, PAKIZEH T,et al.Selectivemode optical nanofilters based on plasmonic complementary splitring resonators[J]. Opt Express, 2012, 20(7): 7516-7525.
[21]LIN X, HUANG X. Toothshaped plasmonic waveguide filters with nanometeric sizes[J]. Opt Lett, 2008, 33(23): 2874-2876.
[22]HAN Z, FORSBERG E, HE S. Surface plasmon Bragg gratings formed in metalinsulatormetal waveguides[J]. IEEE Photon Technol Lett, 2007, 19(2): 91-93.
[23]ZAND I, ABRISHAMIAN M S, BERINI P. Highly tunable nanoscale metalinsulatormetal split ring core ring resonators (SRCRRs)[J]. Opt Express, 2013, 21(1): 79-86.
[24]ECONOMOU E N. Surface plasmons in thin films[J]. Phys Rev,1969, 182: 539-554.
[13]XIAO S, LIU L, QIU M. Resonator channel drop filters in a plasmonpolaritons metal[J]. Opt Express, 2006, 14(7): 2932-2937.
[14]LU H, LIU X, MAO D,et al.Tunable bandpass plasmonic waveguide filters with nanodisk resonators[J]. Opt Express, 2010, 18(17): 17922-17927.
[15]WANG G, LU H, LIU X,et al.Tunable multichannel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime[J]. Opt Express, 2011,19(4): 3513-3518.
[16]HOSSEINI A, MASSOUD Y. Nanoscale surface Plasmon based resonator using rectangular geometry[J]. Appl Phys Lett, 2007, 90(18): 181102.
[17]WANG T, WEN X, YIN C,et al.The transmission characteristics of surface plasmon polaritons in ring resonator[J]. Opt Express, 2009, 17(26): 24096-24101.
[18]PENG X, LI H, WU G,et al.Research on transmission characteristics of aperturecoupled square ring resonator based filter[J]. Opt Commun, 2013, 294: 368-371.
[19]王玲玲, 張振, 王柳,等.基于矩形諧振腔MIM波導結構的表面等離子體帶阻濾波器[J]. 湖南大學學報:自然科學版,2012, 39(5): 65-68.
WANG Lingling, ZHANG Zhen, WANG Liu,et al.Study of the surface plasmon bandstop filter based on the structure of rectangular resonator MIM waveguide[J]. Journal of Hunan University: Natural Sciences,2012, 39(5): 65-68.(In Chinese)
[20]ZAND I, MAHIGIR A, PAKIZEH T,et al.Selectivemode optical nanofilters based on plasmonic complementary splitring resonators[J]. Opt Express, 2012, 20(7): 7516-7525.
[21]LIN X, HUANG X. Toothshaped plasmonic waveguide filters with nanometeric sizes[J]. Opt Lett, 2008, 33(23): 2874-2876.
[22]HAN Z, FORSBERG E, HE S. Surface plasmon Bragg gratings formed in metalinsulatormetal waveguides[J]. IEEE Photon Technol Lett, 2007, 19(2): 91-93.
[23]ZAND I, ABRISHAMIAN M S, BERINI P. Highly tunable nanoscale metalinsulatormetal split ring core ring resonators (SRCRRs)[J]. Opt Express, 2013, 21(1): 79-86.
[24]ECONOMOU E N. Surface plasmons in thin films[J]. Phys Rev,1969, 182: 539-554.