馬 磊 萬(wàn) 水 蔣正文 李明鴻
(東南大學(xué)交通學(xué)院,南京 210096)
單箱多室波形鋼腹板箱梁荷載橫向分布
馬 磊 萬(wàn) 水 蔣正文 李明鴻
(東南大學(xué)交通學(xué)院,南京 210096)
摘 要:將單箱多室波形鋼腹板箱梁等效為平面板梁模型,用剛接梁法推導(dǎo)了單箱多室波形鋼腹板箱梁荷載橫向分布系數(shù)的計(jì)算公式,并對(duì)1根單箱雙室波形鋼腹板箱梁進(jìn)行了荷載橫向分布試驗(yàn)研究.研究結(jié)果表明,剛接梁法計(jì)算結(jié)果與試驗(yàn)及有限元結(jié)果的誤差均小于7%,與考慮中橫隔板的有限元結(jié)果相比,偏于安全.對(duì)于有、無(wú)中橫隔板的單箱多室波形鋼腹板箱梁,均可采用剛接梁法計(jì)算其荷載橫向分布.根據(jù)試驗(yàn)結(jié)果建議單箱雙室波形鋼腹板箱梁荷載橫向分布系數(shù)沿橋跨的取值為:彎矩可統(tǒng)一采用橫向分布系數(shù)mc(mc為剛接梁法計(jì)算的跨中荷載橫向分布系數(shù));中梁支反力在梁端采用0.6m0(m0為杠桿原理法計(jì)算的梁端荷載橫向分布系數(shù)),L/4~L區(qū)段內(nèi)采用mc,梁端至L/4區(qū)段,呈直線形過(guò)渡;邊梁支反力可統(tǒng)一采用0.9m0.
關(guān)鍵詞:橋梁工程;單箱多室;波形鋼腹板;剛接梁法;荷載橫向分布
單箱多室波形鋼腹板PC組合箱梁橋[1]具有自重輕、結(jié)構(gòu)造型美觀、工期短、抗震性能好等優(yōu)點(diǎn),國(guó)內(nèi)外已建成多座此類橋梁.波形鋼腹板箱梁設(shè)計(jì)一般可通過(guò)有限元軟件建立空間模型,計(jì)算波形鋼腹板箱梁各構(gòu)件的內(nèi)力,但其建模過(guò)程復(fù)雜,效率低下.
國(guó)內(nèi)外學(xué)者針對(duì)箱梁的荷載橫向分布開(kāi)展了大量的研究.文獻(xiàn)[2-3]針對(duì)單箱多室混凝土曲線箱梁橋,提出了剛性截面法及考慮橫截面彈性變形的內(nèi)力橫向分配算法.文獻(xiàn)[4-5]通過(guò)變化橋梁跨度、主梁間距等參數(shù),回歸得到內(nèi)梁的橫向分布系數(shù)計(jì)算公式.文獻(xiàn)[6]采用修正的偏心壓力法,計(jì)算變截面箱形鋼-混凝土連續(xù)組合梁橋的荷載橫向分布系數(shù).文獻(xiàn)[7]在剛接梁法基礎(chǔ)上,考慮了組合梁與原橋主梁剛度、間距差異,建立修正剛接梁法來(lái)計(jì)算舊橋加寬后的橫向分布系數(shù).文獻(xiàn)[8-11]對(duì)波形鋼腹板梁活載作用下的力學(xué)性能進(jìn)行了研究,但均未涉及單箱多室波形鋼腹板箱梁荷載橫向分布系數(shù).
本文采用剛接梁法,推導(dǎo)無(wú)中橫隔板的單箱多室波形鋼腹板箱梁荷載橫向分布系數(shù)的計(jì)算公式,并對(duì)1根單箱雙室波形鋼腹板箱梁進(jìn)行試驗(yàn)研究,以驗(yàn)證剛接梁法的準(zhǔn)確性.
對(duì)單箱多室波形鋼腹板箱梁橫向分布進(jìn)行分析時(shí),根據(jù)其力學(xué)特性引入以下基本假定:
1)鋼腹板與上、下混凝土板共同工作,不發(fā)生相對(duì)滑移.
2)縱向彎矩由混凝土頂板和底板承受,不考慮波形鋼腹板的縱向抗彎慣矩.
圖1 波形鋼腹板的波紋形狀
圖2 波形鋼腹板箱梁截面劃分圖
圖3 平面板梁模型
平面板梁模型切口內(nèi)存在贅余剪力和贅余彎矩(見(jiàn)圖4(a)),取外荷載為單位正弦荷載.根據(jù)力法原理,由剛接梁法推導(dǎo)單箱多室波形鋼腹板箱梁荷載橫向分布的計(jì)算公式,建立如下力法方程:
式中,δij為柔度系數(shù)矩陣;Xi為贅余豎向剪力和彎矩矩陣;Δipj為荷載引起的位移矩陣.
平面板梁模型中贅余力與變形的關(guān)系如圖4所示,根據(jù)圖示可得各柔度系數(shù)矩陣中的系數(shù)為
式中,ωi=l4/[π4(EIi)]為單位正弦荷載作用下各細(xì)梁的跨中撓度;φki=bkil2/[π2(GIti)]為單位正弦荷載作用下各細(xì)梁跨中扭轉(zhuǎn)角;fik=(bik)3/(3EItri)為單位剪力作用下各懸臂板端的撓度;τki=bki/(EItri)為單位力偶作用下各懸臂端的轉(zhuǎn)角;vki=0.5(bki)2/(EItri)為單位剪力作用下各懸臂端的撓度;k=L,R表示梁的左端和右端;EIi為各細(xì)梁的抗彎剛度;GIti為各細(xì)梁的抗扭剛度;EItri為單位寬度混凝土懸臂板的抗彎剛度;G為混凝土的剪切模量;E為混凝土的彈性模量.
圖4 剛接梁法求解示意圖
j為外荷載P的作用位置,則有
將式(2)~(4)代入式(1),解出所有贅余力Xi.根據(jù)解出的贅余剪力和力的平衡方程可得分配至各主梁的豎向荷載峰值,由此可得各主梁荷載橫向分布影響線,進(jìn)而求得各主梁的荷載橫向分布系數(shù).
為驗(yàn)證上述計(jì)算方法的準(zhǔn)確性,設(shè)計(jì)了1根簡(jiǎn)支單箱雙室波形鋼腹板箱梁,如圖5(a)所示,梁計(jì)算跨徑為5 m,梁高0.35 m,兩側(cè)梁端均設(shè)置端橫梁.縱向設(shè)置2根φs15.24 mm鋼絞線,其抗拉標(biāo)準(zhǔn)強(qiáng)度為1 860 MPa,張拉控制應(yīng)力為1 395 MPa.頂、底板采用 C50混凝土,厚0.05 m,頂板寬1.2 m,底板寬0.9 m.腹板為Q235A波形鋼板,波長(zhǎng)144 mm,水平面板寬40 mm,折疊角度為36.9°,波高24 mm,厚3 mm.試驗(yàn)梁橫截面、鋼腹板大樣分別見(jiàn)圖 5(b)、(c).
圖5 試驗(yàn)梁(單位:mm)
將試驗(yàn)梁截面換算為混凝土截面并劃分為如圖6所示的工字型截面梁.劃分后的箱梁等效轉(zhuǎn)化為有3根縱向主梁的平面板梁模型,模型的各主梁截面幾何特性見(jiàn)表1.計(jì)算柔度系數(shù)矩陣及位移矩陣中各系數(shù),并代入式(1),解得各主梁跨中橫向分布系數(shù)如表2所示.
圖6 試驗(yàn)梁截面劃分(單位:mm)
表1 各主梁截面幾何特性 MN·m2
表2 各主梁跨中處橫向分布系數(shù)
采用500 kN油壓千斤頂對(duì)圖5所示的試驗(yàn)梁在端部、L/8、L/4、3L/8和L/2截面處進(jìn)行單點(diǎn)加載,加載分中心加載、偏載2種工況.在L/2,L/4截面處加載時(shí),分別量測(cè)相應(yīng)截面處各測(cè)點(diǎn)的撓度、縱向正應(yīng)變、端部的支反力.端部、L/8、3L/8截面處加載時(shí)量測(cè)端部的支反力.各工況加載位置及測(cè)點(diǎn)布置如圖7所示.
圖7 各工況加載位置及測(cè)點(diǎn)布置(單位:mm)
利用ANSYS建立試驗(yàn)梁三維有限元模型.混凝土采用 SOLID45單元,波形鋼腹板采用SHELL63單元.表3為剛接梁法、試驗(yàn)及有限元的荷載橫向分布系數(shù)結(jié)果對(duì)比表.實(shí)際工程中通常在跨中設(shè)置一道橫隔板,用有限元計(jì)算跨中無(wú)橫隔板及有橫隔板的荷載橫向分布系數(shù).
表3 各主梁跨中處橫向分布系數(shù)
由表3可知,采用剛接梁法計(jì)算無(wú)中橫隔板的單箱多室波形鋼腹板箱梁荷載橫向分布系數(shù),在L/2偏載工況下,邊梁的計(jì)算結(jié)果與試驗(yàn)結(jié)果誤差為6.91%,與有限元計(jì)算結(jié)果誤差為5.91%,與跨中有橫隔板的有限元計(jì)算結(jié)果誤差為13.20%;在L/2中心加載工況下,中梁的計(jì)算結(jié)果與試驗(yàn)及有限元計(jì)算誤差均為4.79%,與跨中有橫隔板的有限元計(jì)算結(jié)果誤差為0.59%.2種工況下,剛接梁法計(jì)算結(jié)果與試驗(yàn)及有限元誤差均小于7%,與有中橫隔板的有限元結(jié)果相比,偏于安全.該方法適用于有、無(wú)中橫隔板的單箱多室波形鋼腹板箱梁的荷載橫向分布系數(shù)計(jì)算.
試驗(yàn)梁底板彎矩的橫向分布曲線如圖8(a)所示,荷載作用的橫向位置對(duì)單箱雙室波形鋼腹板箱梁彎矩的橫向分布影響很大,縱向位置影響不大.故無(wú)中橫隔板的單箱雙室波形鋼腹板箱梁,彎矩橫向分布系數(shù)沿橋跨可統(tǒng)一采用由剛接梁法計(jì)算的L/2處的橫向分布系數(shù)mc.
試驗(yàn)梁梁端支反力的橫向分布曲線如圖8(b)、(c)所示.隨著荷載從L/2向梁端移動(dòng),支反力的分布越來(lái)越不均勻.梁端、L/8中心加載時(shí),荷載作用處主梁承擔(dān)大部分荷載;L/4,3L/8,L/2截面中心加載時(shí),支反力橫向分布與L/2,L/4的彎矩橫向分布相似.橋跨內(nèi)各截面作用偏載時(shí),梁端支反力橫向分布均表現(xiàn)為荷載作用處主梁承擔(dān)大部分荷載,離荷載較遠(yuǎn)處主梁基本不承擔(dān)荷載.
設(shè)梁端處采用杠桿原理法計(jì)算的荷載橫向分布系數(shù)為m0,L/2截面處采用剛接梁法計(jì)算的荷載橫向分布系數(shù)為mc.由圖8(b)、(c)可見(jiàn),中梁支反力橫向分布系數(shù)在梁端采用過(guò)于保守,建議采用0.6m0,L/4~L區(qū)段內(nèi)可采用mc,梁端至L/4區(qū)段,呈直線形過(guò)渡;邊梁支反力橫向分布系數(shù)沿橋跨可采用 0.9m0.
圖8 彎矩及支反力橫向分布
1)本文基于無(wú)中橫隔板的情況,推導(dǎo)出單箱多室波形鋼腹板箱梁荷載橫向分布系數(shù)的計(jì)算公式,考慮了各主梁的抗彎、抗扭剛度及各主梁間距的差別,其力學(xué)概念清晰,應(yīng)用范圍廣泛.
2)剛接梁法計(jì)算結(jié)果與試驗(yàn)及有限元計(jì)算結(jié)果的誤差均小于7%,與考慮中橫隔板的有限元計(jì)算結(jié)果相比,偏于安全.該方法適用于有、無(wú)中橫隔板的單箱多室波形鋼腹板箱梁的荷載橫向分布系數(shù)計(jì)算.
3)單箱雙室波形鋼腹板箱梁的橫向分布系數(shù)沿橋跨分布規(guī)律為:彎矩可統(tǒng)一采用mc;中梁支反力在梁端采用0.6m0,L/4~L區(qū)段內(nèi)采用mc,梁端至L/4區(qū)段,呈直線形過(guò)渡;邊梁支反力可統(tǒng)一采用 0.9m0.
[1]李淑琴,陳建兵,萬(wàn)水,等.我國(guó)幾座波形鋼腹板PC組合箱梁橋的設(shè)計(jì)與建造 [J].工程力學(xué),2009,26(S1):115-118.
Li Shuqin,Chen Jianbing,Wan Shui,et al.Application of the prestressed concrete box girder with corrugated steel webs in bridge engineering in China[J].Engineering Mechanics,2009,26(S1):115-118.(in Chinese)
[2]孫廣華.公路曲線梁橋內(nèi)力橫向分配計(jì)算[J].南京工學(xué)院學(xué)報(bào),1988,18(1):94-104.
Sun Guanghua.Calculation of transverse distribution of internal forces in highway curved girder bridges[J].Journal of Nanjing Institute of Technology,1988,18(1):94-104.(in Chinese)
[3]孫廣華.箱形梁橋內(nèi)力橫向分配計(jì)算方法[J].南京工學(xué)院學(xué)報(bào),1986,16(3):110-120.
Sun Guanghua.Method for determination of the lateral distribution of internal forces in box-girder bridges[J].Journal of Nanjing Institute of Technology,1986,16(3):110-120.(in Chinese)
[4]Tarhini K M,F(xiàn)rederick G R.Lateral load distribution in I-girder bridges[J].Computers and Structures,1995,54(2):351-354.
[5]Tarhini K M,F(xiàn)rederick G R.Wheel load distribution in I-girder highway bridges[J].Journal of Structural Engineering,ASCE,1992,118(5):1285-1294.
[6]聶鑫,樊健生,付裕.箱形截面連續(xù)組合梁橋的荷載橫向分布 [J].清華大學(xué)學(xué)報(bào):自然科學(xué)版,2010,49(12):1930-1933.
Nie Xin,F(xiàn)an Jiansheng,F(xiàn)u Yu.Transverse load distribution on box section continuous composite steel-concrete bridges[J].J Tsinghua Univ:Sci&Tech,2010,49(12):1930-1933.(in Chinese)
[7]聶建國(guó),張曉光,樊健生,等.鋼-混凝土組合梁加寬混凝土梁橋的橫向分布系數(shù)[J].清華大學(xué)學(xué)報(bào):自然科學(xué)版,2010,50(6):805-809.
Nie Jianguo,Zhang Xiaoguang,F(xiàn)an Jiansheng,et al.Transverse distribution coefficient of concrete bridges widened with steel concrete composite beams[J].J Tsinghua Univ:Sci&Tech,2010,50(6):805-809.(in Chinese)
[8]Abbas H H,Sause R,Driver R G.Behavior of corrugated web I-girders under in-plane loads[J].Journal of Engineering Mechanics,ASCE,2006,132(8):806-814.
[9]K?vesdi B,Jáger B,Dunai L.Stress distribution in the flanges of girders with corrugated webs[J].Journal of Constructional Steel Research,2012,79:204-215.
[10]Nguyen N D,Han S-R,Kim J-H,et al.Moment modification factors of I-girder with trapezoidal web corrugations under moment gradient[J].Thin-Walled Structures,2012,57:1-12.
[11]Mo Y L,F(xiàn)an Y.Torsional design of hybrid concrete box girders[J].Journal of Bridge Engineering,ASCE,2006,11(3):329-339.
[12]Elgaaly M,Seshadri A,Hamilton R.W.Bending strength of steel beams with corrugated webs[J].Journal of Structural Engineering,ASCE,1997,123(6):772-782.
Load transverse distribution of single box multi-cell girder with corrugated steel webs
Ma Lei Wan Shui Jiang Zhengwen Li Minghong
(School of Transportation,Southeast University,Nanjing 210096,China)
Abstract:A formula for calculating the load transverse distribution coefficient of single box multicell girder with corrugated steel webs was deduced by the rigid connected beam method on the basis of the equivalent plane plate-girder model.Then,a test on a single box double-cell girder with corrugated steel webs was carried out to research its load transverse distribution.The research results show that the error between the load transverse distribution coefficient calculating with rigid connected beam method and that obtained from test and finite element analysis is less than 7%.Compared with the finite element analysis result of the girder with midspan diaphragm,the load transverse distribution coefficient calculated by the rigid connected beam method is relatively safe.Thus the rigid connected beam method can be used to calculate the load transverse distribution coefficient of the single box double-cell girder with corrugated steel webs where or not there is a diaphragm in the midspan of the girder.The distribution law of the load transverse distribution coefficient along the longitudinal of single box multi-cell girder with corrugated steel webs was suggested according to the experimental results.The moment transverse distribution coefficients aremc,wheremcis the load transverse distribution coefficient at the middle span calculated by the rigid beam method.For the support reaction transverse distribution coefficients of the middle girder,0.6m0is used at the end,wherem0is the load transverse distribution coefficient at the end calculated by the level principle method;mcis applicable fromL/4 toL;and the transition from the end toL/4 is linear.The support reaction transverse distribution coefficients of the side girder are 0.9m0.
Key words:bridge engineering;single box multi-cell;corrugated steel webs;rigid connected beam method;load transverse distribution
中圖分類號(hào):TU375
A
1001-0505(2014)01-0145-05
doi:10.3969/j.issn.1001 -0505.2014.01.026
收稿日期:2013-07-27.
馬磊(1982—),女,博士生;萬(wàn)水(聯(lián)系人),男,博士,教授,博士生導(dǎo)師,lanyu421@163.com.
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(50078014)、河南省交通運(yùn)輸廳科技資助項(xiàng)目(2010P247).
馬磊,萬(wàn)水,蔣正文,等.單箱多室波形鋼腹板箱梁荷載橫向分布[J].東南大學(xué)學(xué)報(bào):自然科學(xué)版,2014,44(1):145-149.[doi:10.3969/j.issn.1001 -0505.2014.01.026]