亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Hom-dimodules and FRT theorem of Hom type

        2014-09-06 10:49:44ChenXiuliLiFangChenJianlong
        關(guān)鍵詞:數(shù)學(xué)系東南大學(xué)浙江大學(xué)

        Chen Xiuli Li Fang Chen Jianlong

        (1Department of Mathematics, Southeast University, Nanjing 211189, China)(2Department of Mathematics, Zhejiang University, Hangzhou 310028, China)

        ?

        Hom-dimodules and FRT theorem of Hom type

        Chen Xiuli1Li Fang2Chen Jianlong1

        (1Department of Mathematics, Southeast University, Nanjing 211189, China)(2Department of Mathematics, Zhejiang University, Hangzhou 310028, China)

        In order to study the deformation of algebras, the notions of Hom-algebras are introduced. The Hom-algebra is a generalization of the classical associative algebra. First, the Hom-type generalization of dimodules, which is called the Hom-dimodule, is introduced, and its properties are discussed Moreover, the category of Hom-dimodules in connection with the Hom D-equationR12R23=R23R12forR∈Endk(M?M)and a Hom-moduleMis investigated. Some solutions of the Hom D-equation from Hom-dimodules over Hom-bialgebras are given, and the FRT-type theorem is constructed in the category of Hom-dimodules. The results generalize and improve the FRT-type theorem in the category of dimodules.

        Hom-bialgebra; Hom-dimodule; Hom D-equation

        Throughout this paper, all the modules are left modules without specification and all the spaces arek-spaces for a fixed fieldk.

        A (long) dimodule over a bialgebraHis a vector spaceMwith a leftH-actionρMand a rightH-coactionρMso that the following compatibility condition holds: (hm)(0)?(hm)(1)=∑hm(0)?m(1)for allh∈Handm∈M. We denote this category withHLH, which is also a special case of the Doi-Hopf module category. This categoryHLHwas first defined by Long[1]for a commutative and cocommutativeHand was studied in connection with the construction of the Brauer group of anH-dimodule algebra. It is interesting to note that for a commutative and cocommutativeH,HYDH(the category of Yetter-Drinfel’d modules) is preciselyHLH[2]. Naturally, for an arbitraryH,HYDHandHLHare fundamentally different.HYDHplays a determinant role in describing the solutions of the quantum Yang-Baxter equation. It is natural to ask which equation will play a key role inHLH. In Ref.[3], considering thatHYDHis deeply involved in solving the quantum Yang-Baxter equation, the author studiedHLHin connection with the D-equation which is described presently. Given a vector spaceM, andR∈Endk(M?M),Ris said to be a solution of the D-equation ifR12R23=R23R12in Endk(M?M?M) whereR12=R?id, andR23=id?R.

        The concept of a Hom-algebra was introduced by Larsson et al[4-5]. It is a special class in the deformation of algebras. Recently, the Hom-algebra has been studied by several authors. The further development of the Hom-algebra theory led Makhlouf et al.[6-8] consequently to Hom-associative algebra, Hom-coassociative coalgebra and Hom-bialgebra, and described many of the extending properties of classical associative algebras, coalgebras, bialgebras and Hopf algebra structures. In fact, the notion of Hom-associative algebras generalize associative algebras to a situation, where associativity law is twisted by a linear map. From Ref.[5], it is clear that the commutator bracket multiplication is defined using the multiplication in Hom-associative algebra and it leads naturally to Hom-Lie algebras. Following the patterns of Hom-Lie and Hom-associative algebras, one can define Hom-bialgebras as nonassociative and non-coassociative[9]. It is a generalization of the bialgebra in which the non(co)associativity is controlled by the twisted map. In this paper, we only investigate the case of Hom-associative algebras. Hom-versions of the Yang-Baxter equation was studied in Refs.[9-12]. Many classes of the solutions for the Hom-Yang-Baxter equation are constructed. Moreover, Hom-type generalizations of FRT quantum groups, including quantum matrices and related quantum groups, are obtained in Ref.[13]. The above motivates us to study the generalization of the D-equation.

        In this paper, we mainly study Hom-versions of (Long) dimodules and D-equations of the Hom type, and investigate the category of Hom-dimodules in connection with the Hom D-equation.

        1 Preliminaries

        In this section, we recall the definition of a Hom-bialgebra and (comodules)modules over an Hom-algebra(coalgebra).

        A Hom-module[14]is a pair (V,α) in whichVis a vector space andα:V→Vis a linear map. A morphism (V,α)→(V′,α′) of Hom-modules is a linear mapf:V→V′ such thatα′°f=f°α. The tensor product of the Hom-modules (V,αv)and (W,αw) consists of the vector spaceV?Wand the linear self-mapαV?αW.

        Definition 1 A Hom-associative algebra[5]is a triple(A,μ,α)in which (A,α)is a Hom-module andμ:A?A→Ais a bilinear map such that 1)α°μ=μ° (α?α)(multiplicativity); and 2)μ° (α?μ)=μ° (μ?α)(Hom-associativity). In the following, we also writeμ(a?b)asab.

        The Hom-associative algebra is said to be unital[7]if a homomorphism exists,η:k→Asatisfyingμ° (η?id)=idandμ° (id?η)=id.

        A Hom-coassociative coalgebra[6-7]is a triple(C,Δ,α)in which (C,α) is a Hom-module andΔ:C→C?Cis a linear map such that 1)α?2°Δ=Δ°α(comultiplicativity); and 2) (α?Δ)°Δ=(Δ?α)°Δ(Hom-coassociativity).

        A Hom-coassociative coalgebra is said to be counital[7]if there is a mapε:C→ksatisfying (ε?id)°Δ=idand (id?ε)°Δ=id.

        Example 1(classical structures) 1) If (A,μ) is an associative algebra andα:A→Ais an algebra morphism, thenAα=(A,μα,α) is a Hom-associative algebra with the twisted multiplicationμα=α°μ. Indeed, the Hom-associativity axiomμα° (α?μα)=μα° (μα?α) is equal toα2when applied to the associativity axiom ofμ. Likewise, both sides of the multiplicativity axiomα°μα=μα?(α?α)are equal toα2°μ.

        2) Dually, if (C,Δ) is a coassociative coalgebra andα:C→Cis a coalgebra morphism, thenCα=(C,Δα,α) is a Hom-coassociative coalgebra with the twisted comultiplicationΔα=Δ°α.

        3) A bialgebra is an exact Hom-bialgebra withα=id. More generally, combining the previous two cases, if (A,μ,Δ) is a bialgebra andα:A→Ais a bialgebra morphism, thenAα=(A,μα,Δα,α) is a Hom-bialgebra.

        Definition 2 1) Let (A,μA,αA) be a Hom-associative algebra, and (M,αM) be a Hom-module. A leftA-module structure onM[12]consists of a morphismρ:A?M→Mof Hom-modules such thatρ° (αA?ρ)=ρ° (μA?αM) andαM°ρM=ρM° (αH?αM) (*). We also writeρ(a?m) asamfora∈Aandm∈M. In this notation, (*) can be written asαA(a)(bm)=(ab)αM(M) andαM(ax)=αA(a)αM(x).

        2) Dually, let (C,Δ,αC) be a Hom-coassociative coalgebra,AleftC-comodule structure onM[14]consists of a Hom-module (M,αM) together with a linear mapρM:M→C?Msuch that (Δ?αM)°ρM=(αC?ρM)°ρMand (αC?αM)°ρM=ρM°αM. Similarly, we can define a rightC-comodule.

        IfMandNareA-modules, then a morphism ofA-modulesf:M→Nis a morphism of the Hom-modules such thatf°ρM=ρN° (idA?f). Similarly, morphisms ofC-comodule are defined in a clear way.

        2 Hom-Dimodules

        Definition 3 Let (H,μH,ΔH,αH) be a Hom-bialgebra, and (M,αM)be a Hom-module. A Hom-dimodule is a triple (M,ρM,ρM) such that 1) (M,ρM) is a leftH-module; 2) (M,ρM) is a rightH-comodule; 3)ρM°ρM=(ρM?αM)° (αH?ρM).

        We may also write 3) as (hm)(0)?(hm)(1)=∑αH(h)m(0)?αH(m(1)).

        The category of Hom-dimodules over a Hom-bialgebraHwithH-module morphisms andH-comodule morphisms are denoted byHHLH.

        IfHis a bialgebra, i.e.,αH=idHandαM=idM, then the above definition of the Hom-dimodule coincides with the usual definition of the dimodule. The following result proves that dimodules deform into Hom-dimodules by endomorphisms.

        Proposition 1 Let (H,μH,ΔH) be a bialgebra, and (M,ρM,ρM) be anH-dimodule. Assume thatαH:H→His a bialgebra morphism, andαM:M→Mis ak-linear map such that

        αM°ρM=ρM° (αH?αM)

        (1)

        ρM°αM=(αH?αM)°ρM

        (2)

        1) (H,μα,Δα,αH) is a Hom-bialgebra, whereμα=αH°μHandΔα=ΔH°αH;

        2) (M,ρα,M,ρα,M) is a Hom-dimodule over a Hom-bialgebraH, whereHis a Hom-bialgebra as 1).

        Proof 1) It follows from 1) of Example 1.

        2) First, by Definition 1 and Eq.(2), it is easy to prove thatρα,Mgives (M,αM) the structure of a leftH-module, i.e.,ρα,M° (αH?ρα,M)=ρα,M° (μH?αM).

        Similarly, by Definition 2, we can prove thatρα,Mgives (M,αM) the structure of a rightH-comodule if and only if (ρα,M?αH)°ρα,M=(αM?ΔH)°ρα,M.

        Finally, it is only needed to check thatρα,M°ρα,M=(ρα,M?αH)° (αH?ρα,M). In fact, we have

        ρα,M°ρα,M=(ρM°αM)° (αM°ρM)=

        (αM?αH)°ρM°ρM° (αH?αM)=

        (αM?αH)° (ρM?idH)° (idH?ρM)° (αH?αM)=

        (ρα,M?αH)° (αH?ρα,M)

        where the second equality holds by Eqs.(1) and (2). BecauseMis aH-dimodule, the third equality holds.

        Proposition 2 Let (H,μH,ΔH,αH)be a Hom-bialgebra, (M,αM) and (N,αN) be Hom-dimodules. ThenM?Nis a Hom-dimodule with the action and coaction, for allm∈M,n∈N,h∈H,

        ρM?N(h?m?n)=αH(h(1))·m?αH(h(2))·n

        ρM?N(m?n)=m(0)?n(0)?αH(m(1)n(1))

        Proof We check thatρM?NandρM?Nis well defined. For anyh,l∈H,m∈Mandn∈N,

        ρM?N° (αH?ρM?N)(h?l?m?n)=

        ρM?N(αH(h)?αH(l(1))·m?αH(l(2))·n)=

        αH((αH(h)(1))αH(l(1))·m)?αH(αH(h))(2))(αH(l(2))·n)=

        (αH(h(1))αH(l(1))·αM(m)?(αH(h(2))αH(l(2)))αN(n)=

        aH((hl)(1))αM(m)?αH((hl)(2))αN(n)=

        ρM?N(hl?αM(m)?αN(n))=

        pM?N° (μH?αM?N)(h?l?m?n)

        ρM?N°ρM?N(h?m?n)=ρM?N(αH(h(1))·m?αH(h(2))·n)=

        (αH(h(1))·m)(0)?(αH(h(2))·n)(0))?αH((αH(h(1))·m)(1)

        αH(αH(m(1))αH(n(1)))=(ρM?N?αH)(αH(h)?m(0)?

        n(0)?αH(m(1))αH(n(1)))=(ρM?N?αH)°

        (αH?ρM?N)(h?m?n)

        3 Solutions of Hom D-Equation

        First we introduce the definition of the Hom D-equation. Moreover, we construct many solutions to the Hom D-equation by Hom-dimodules over the Hom-bialgebra.

        The D-equation[3]is a special case of the Hom D-equation whenα=id.

        Proposition 3 LetBbe a solution of the Hom D-equation for the Hom-module (M,αM).

        1) Ifλ∈k, thenλBis also a solution of the Hom D-equation for (M,αM).

        Proof 1) First,λB° (αM?αM)=λ(B° (αM?αM))=λ((αM?αM)°B)=(αM?αM)°λB, andλB?α=λ(B?α),α?λB=λ(α?B), so we have (λB)12(λB)23=(λB)23(λB)12.

        Next, we will show that a Hom-bialgebra gives rise to many solutions of the Hom D-equation by its Hom-dimodules. The following shows thatHHLHplays a role in solving the Hom D-equation.

        Proposition 4 Let (H,μH,ΔH,αH) be a Hom-bialgebra, and (M,αM) be a Hom-module. Assume that (M,ρα,M,ρα,M) is Hom-dimodule andαMis anH-module morphism. Then the map

        B′:M?M→M?M,m?n|→αH(n(1))·m?αM(n(0))

        (3)

        is a solution of the Hom D-equation.

        Proof First, it is easy to check thatB′° (αM?αM)(m?n)=(αM?αM)°B′(m?n).

        Forl,m,n∈M, we have

        B′12B′23(l?m?n)=(B′?αM)(αM?B′)(l?m?n)=

        (B′?αM)(αM(l)?αH(n(1))·m?αM(n(0)))=

        αH((αH(n(1))·m)(1))·αM(l)?αM((αH(n(1))·m)(0))?

        B′23B′12(l?m?n)

        The fourth equality holds because (M,αM) is a Hom-dimodule. SinceαMisH-module morphism, the fifth equality is true. By 2) of Definition 2, we haveαM(m(0))?αH(m(1))=(αM(m))(0)?(αM(m))(1), so the sixth equality holds by (3). Therefore,B′12B′23=B′23B′12, i.e.,B′ is a solution of the Hom D-equation.

        Corollary 1 Let (H,μH,ΔH) be a bialgebra, andαH:H→Hbe a bialgebra morphism. Assume that (M,ρM,ρM) is a dimodule andαM:M→Mak-linear map such thatαM°ρM=ρM° (αH?αM), andρM°αM=(αM?αH)°ρM. IfαMisH-module morphism. Then the map (3) is a solution of the Hom D-equation.

        In Corollary 1, ifαH=id:H→H, then the conditionsαM°ρM=ρM° (id?αM) andρM°αM=(αM?idH)°ρMmean thatαMisH-module morphism andH-comodule a morphism. So we have the following corollary.

        Corollary 2 Let (H,μH,ΔH) be a bialgebra. Assume that (M,ρM,ρM) is a dimodule andαM:M→MisH-module morphism andH-comodule morphism. Then the map (3) is a solution of the Hom D-equation.

        4 FRT Theorem of Hom Type

        In Ref.[7], the authors give a FRT type theorem: ifMis finite dimensional, then any solutionRof the D-equation has the formR=R(M,ρM,ρM), where (M,ρM,ρM) is aD(R)-dimodule over a bialgebraD(R) andR(M,ρM,ρM)is the special mapR(M,ρM,ρM)(m?n):=∑n(1)m?n(0).

        Next, we recall the details of the FRT type construction from Theorem 3.6 in Ref.[3].

        (4)

        for allu,v=1,2,…,n.

        LetT(C)be an algebra generated by (Cij). Define the bialgebra

        (5)

        Lemma 1 LetD(R) be the bialgebra withR:M?M→M?Ma solution of theD-equation, and assume that (M,ρM,ρM) has the structure of the object inD(R)LD(R), whereR=R(M,ρM,ρM). Letλi∈kbe invertible scalars such that

        (6)

        In fact,

        The third equality is right by (6), the fourth equality follows from (5), and the fifth equality also follows from (6).

        Lemma 2 The linear mapαM:M→Mcan be defined asαM(mi)=λimifor alli. Then we have

        αM°ρM=ρM° (α?αM)

        (αM?α)°ρM=ρM°αM

        (αM?αM)°R=R° (αM?αM)

        whereρM:D(R)?M→Mis the leftD(R)-module structure map andρM:M→M?D(R) is the rightD(R)-comdule structure map.

        Proof First, sinceΔis an algebra morphism, we have

        This shows thatαis a bialgebra morphism. Next,

        αM°ρM(Cju?mv)=αM(Cju·mv)=

        and

        ρM° (α?αM)(Cju?mv)=α(Cju)·αM(mv)=

        soαM°ρM=ρM° (α?αM).

        Since

        (αM?α)°ρM=ρM°αMholds.

        Finally,

        So (αM?αM)°R=R° (αM?αM) is true.

        Proof It follows with Proposition 1, Lemma 1 and Lemma 2.

        Therefore, by Theorem 1, we obtain the Hom-bialgebraD(R)α=(D(R),μα=α°μ,Δα=Δ°α) such that (M,ρα,M=αM°ρM,ρα,M=αM°ρM) is a HomD(R)-dimodule.

        Remark 2 Example 2 also gives an example of Hom-dimodules.

        [1]Long F W. The Brauer group of dimodule algebras [J].JournalofAlgebra, 1974, 31(1/2/3): 559-601.

        [2]Caenepeel C, Militaru G, Zhu S L. Crossed modules and Doi-Hopf modules [J].IsraelJournalofMathematics, 1997, 100(4): 221-247.

        [3]Militaru G. The long dimodules category and nonlinear equations [J].AlgebrasandRepresentationTheory, 1999, 2(2): 177-200.

        [4]Larsson D, Silvestrov S D. Quasi-Hom-Lie algebras, central extensions and 2-cocycle-like identities [J].JournalofAlgebra, 2005, 288(2): 321-344.

        [5]Makhlouf A, Silvestrov S. Hom-algebra structures [J].JournalofGeneralizedLieTheoryandApplications, 2008, 2(2): 51-64.

        [6]Makhlouf A, Silvestrov S. Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras [M]//GeneralizedLietheoryinmathematics,physicsandbeyond. Berlin: Springer, 2009:189-206.

        [7]Makhlouf A, Silvestrov S. Hom-algebras and Hom-coalgebras [J].JournalofAlgebraandItsApplications, 2010, 9(4): 1-37.

        [8]Yau D. Hom-bialgebras and comodule Hom-algebras [J].InternationalElectronicJournalofAlgebra, 2010, 8: 45-64.

        [9]Yau D. The classical Hom-Yang-Baxter equation and Hom-Lie bialgebras [EB/OL]. (2009-05-12)[2013-02-27]. http://arxiv.org/abs/0905.1890.

        [10]Yau D. The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras [J].JournalofPhysicsA, 2009, 42(16):165202-1-165202-12.

        [11]Yau D. The Hom-Yang-Baxter equation and Hom-Lie algebras [J].JournalofMathematicalPhysics, 2011, 52(5): 053502-1-053502-19.

        [12]Yau D. Hom-quantum groups Ⅰ: quasi-triangular Hom-bialgebras [J].JournalofPhysicsA, 2012, 45(6): 065203-1-065203-23.

        [13]Yau D. Hom-quantum groups Ⅱ: cobraided Hom-bialgebras and Hom-quantum geometry [EB/OL]. (2009-07-10)[2013-02-27]. http://arxiv.org/abs/0907.1880.

        [14]Yau D. Enveloping algebras of Hom-Lie algebras [J].JournalofGeneralizedLieTheoryandApplications, 2008, 2(2): 95-108.

        Hom-dimodules與Hom型的FRT定理

        陳秀麗1李 方2陳建龍1

        (1東南大學(xué)數(shù)學(xué)系, 南京 211189)(2浙江大學(xué)數(shù)學(xué)系, 杭州 310028)

        為了研究代數(shù)形變理論,引入了Hom-代數(shù)的概念.事實上Hom-代數(shù)是經(jīng)典結(jié)合代數(shù)的推廣.首先介紹了dimodule的Hom型推廣,即Hom-dimodule,并對其相關(guān)性質(zhì)進(jìn)行討論.進(jìn)一步研究了Hom-dimodule范疇與Hom D-方程R12R23=R23R12的關(guān)系,其中R∈Endk(M?M)且M為Hom模.針對Hom雙代數(shù)上的Hom-dimodule給出了Hom D-方程的一些解,并在Hom-dimodules范疇中構(gòu)造FRT-型定理.這些結(jié)果推廣并改進(jìn)了dimodule范疇中的FRT-型定理.

        Hom雙代數(shù); Hom-dimodule; Hom D-方程

        O153

        s:The National Natural Science Foundation of China (No.11371089), the Specialized Research Fund for the Doctoral Program of Higher Education (No.20120092110020), the Postdoctoral Innovation Funds of Southeast University (No.3207013601).

        :Chen Xiuli, Li Fang, Chen Jianlong.Hom-dimodules and FRT theorem of Hom type[J].Journal of Southeast University (English Edition),2014,30(3):391-395.

        10.3969/j.issn.1003-7985.2014.03.025

        10.3969/j.issn.1003-7985.2014.03.025

        Received 2013-03-28.

        Biographies:Chen Xiuli (1980—), female, doctor; Chen Jianlong (corresponding author), male, doctor, professor, jlchen@seu.edu.cn.

        猜你喜歡
        數(shù)學(xué)系東南大學(xué)浙江大學(xué)
        一個人就是一個數(shù)學(xué)系
        ——丘成桐
        《東南大學(xué)學(xué)報(醫(yī)學(xué)版)》稿約
        《東南大學(xué)學(xué)報(醫(yī)學(xué)版)》稿約
        《東南大學(xué)學(xué)報(醫(yī)學(xué)版)》稿約
        《東南大學(xué)學(xué)報(醫(yī)學(xué)版)》稿約
        北京師范大學(xué)數(shù)學(xué)系教授葛建全
        浙江大學(xué)農(nóng)業(yè)試驗站簡介
        浙江大學(xué)作物科學(xué)研究所簡介
        歡迎訂閱《浙江大學(xué)學(xué)報(農(nóng)業(yè)與生命科學(xué)版)》
        La jeunesse chinoise d'aujourd'hui
        精品国产亚洲av高清日韩专区| 内射中出无码护士在线| 性夜夜春夜夜爽aa片a| 制服丝袜人妻中出第一页| 久草视频在线播放免费| 国语淫秽一区二区三区四区| 亚洲av无码码潮喷在线观看| 国产精品综合一区二区三区| 91精品国产91久久久无码95 | 国产综合无码一区二区辣椒| 国产香蕉97碰碰视频va碰碰看| 午夜亚洲国产精品福利| 亚洲专区一区二区三区四区五区| 国产一区二区精品亚洲| 无码国产色欲xxxx视频| 国产成人麻豆精品午夜福利在线| 亚洲av成人在线网站| 亚洲国产天堂av成人在线播放| 白浆国产精品一区二区| 国产农村熟妇videos| 免费无码成人av在线播放不卡| japanese色国产在线看视频| 小黄片免费在线播放观看| 草草影院ccyy国产日本欧美| 欧美一区二区三区久久综| 99这里只有精品| 午夜精品一区二区久久做老熟女| 野花视频在线观看免费| 超碰97人人射妻| 日本精品人妻无码77777| 精品亚洲一区二区99| 中文字幕人妻一区二区二区| 18禁免费无码无遮挡不卡网站| 国产精品v欧美精品v日韩精品| 国产女人91精品嗷嗷嗷嗷| 蜜桃一区二区三区在线视频| 色呦呦九九七七国产精品| 在线看片免费人成视频久网下载| 亚洲区日韩精品中文字幕| 精品日韩av专区一区二区| 亚洲乱码中文字幕在线播放 |