王文強(qiáng)
(湘潭大學(xué)數(shù)學(xué)與計(jì)算科學(xué)學(xué)院,湖南 湘潭 411105)
中立型隨機(jī)延遲微分方程θ-方法的均方穩(wěn)定性*
王文強(qiáng)
(湘潭大學(xué)數(shù)學(xué)與計(jì)算科學(xué)學(xué)院,湖南 湘潭 411105)
討論θ-方法用于求解非線性中立型隨機(jī)延遲微分方程初值問題時(shí)數(shù)值解的穩(wěn)定性,給出了θ-方法均方穩(wěn)定的一個(gè)充分條件.
中立型隨機(jī)延遲微分方程;θ-方法;均方穩(wěn)定
隨機(jī)延遲微分方程數(shù)值方法的穩(wěn)定性研究是一件很有意義的工作,近年來已經(jīng)開始受到越來越多的學(xué)者關(guān)注,相關(guān)的研究成果逐漸多起來.文獻(xiàn)[1]提出了隨機(jī)延遲微分方程Milstein方法.文獻(xiàn)[2]建立了數(shù)值方法的均方穩(wěn)定性(MS-穩(wěn)定性)概念,證明了當(dāng)線性標(biāo)量系統(tǒng)的真解是均方穩(wěn)定時(shí),Euler-Maruyama方法的數(shù)值解是MS-穩(wěn)定的.文獻(xiàn)[3]研究了帶有延遲項(xiàng)的隨機(jī)微分方程半隱式Milstein數(shù)值方法的穩(wěn)定性,通過對數(shù)值方法應(yīng)用到線性試驗(yàn)方程上得到的差分方程進(jìn)行討論,給出了半隱式Milstein方法MS-穩(wěn)定與GMS-穩(wěn)定的條件.文獻(xiàn)[4]運(yùn)用Halanay-type理論,對常系數(shù)線性隨機(jī)延遲微分方程給出了Euler-Maruyama方法均方穩(wěn)定的判別準(zhǔn)則.文獻(xiàn)[5]研究了一類帶有延遲項(xiàng)的線性隨機(jī)延遲微分方程Milstein數(shù)值方法的穩(wěn)定性,通過對數(shù)值方法應(yīng)用到線性試驗(yàn)方程上得到的差分方程進(jìn)行討論,給出了Milstein方法MS-穩(wěn)定的條件.文獻(xiàn)[6]研究了改進(jìn)的Milstein方法在有限區(qū)間上對隨機(jī)延遲微分方程的分片近似的相關(guān)結(jié)論.文獻(xiàn)[7-12]研究了隨機(jī)延遲微分方程不同數(shù)值方法的均方穩(wěn)定性與收斂性.文獻(xiàn)[13]研究了中立型非線性隨機(jī)延遲微分方程單步方法的均方收斂性.文獻(xiàn)[14]進(jìn)一步研究了中立型非線性隨機(jī)延遲微分方程半隱式Euler方法的均方穩(wěn)定性.
筆者主要討論非線性中立型隨機(jī)延遲微分方程初值問題,給出了θ-方法均方穩(wěn)定的一個(gè)充分條件.
設(shè)(Ω,F,{Ft}t≥0,P)是完備的概率空間,濾子{Ft}t≥0滿足通常條件,即它們是右連續(xù)的且每一個(gè)Ft都包含所有的零概率集.考慮下列中立型隨機(jī)延遲微分方程初值問題:
其中:實(shí)常數(shù)τ>0;W(t)是一維標(biāo)準(zhǔn)Wiener過程;初始函數(shù)φ是H?lder連續(xù)的,即存在常數(shù)γ>0,L>0,使當(dāng)t,s∈[-τ,0]時(shí),有E(|φ(t)-φ(s)|p)≤L|t-s|pγ,p=1,2;映射f:[0,+∞)×R×R→R和g:[0,+∞)×R×R→R充分光滑且滿足
和
(2)
其中L,K1,K2均為常數(shù),x∨y=max(x,y),且存在常數(shù)λ∈(0,1),對任意x,y1,y2∈R,有|N(y1)-N(y2)|≤λ|y1-y2|,
|N(x)|≤λ|x|.
(3)
此時(shí)方程(1)存在唯一強(qiáng)解X(t).
將θ-方法用于數(shù)值求解初值問題(1),得到
Xk+1-N(Xk+1-m)=Xk-N(Xk-m)+(θf(tk+1,Xk+1,Xk+1-m)+(1-θ)f(tk,Xk,Xk-m))h+
g(tk,Xk,Xk-m)ΔWk2∈k=0,1,2,....
(4)
引理1 用θ-方法求解初值問題(1)所得的數(shù)值解{Xk}滿足下列不等式:
證明由Yk=Xk-N(Xk-m)和(3)式,可得
|Xk|=|Yk+N(Xk-m)|≤|Yk|+|N(Xk-m)|≤|Yk|+λ|Xk-m|.
(5)
同理可得
(6)
將(6)式代入(5)式,有
|Xk|≤|Yk|+λ|Yk-m|+λ2|Yk-2m|+...+λc(k)|Yk-c(k)m|+λc(k)+1|Xk-c(k)m-m|.
(7)
(7)式兩邊平方,利用Cauchy不等式得
(8)
(8)式兩邊取數(shù)學(xué)期望,并注意到當(dāng)l≤0時(shí),有Xl=φ(lh),則引理1的結(jié)論得證.
作為一種特殊情形,根據(jù)文獻(xiàn)[15]中推論6.8容易得到下面的結(jié)論:
定理1 如果方程(1a)滿足下列條件:
(ⅰ) 存在2個(gè)正數(shù)λ1,λ2,使得對任意的x,y∈R,有
2(x-N(y))f(t,x,y)+g2(t,x,y)≤-λ1|x-N(y)|2+λ2y2;
那么方程(1)的零解是均方漸近穩(wěn)定的.
將定理1稍加修改,可以得到下面的結(jié)論:
引理2 如果方程(1a)滿足下列條件:
(ⅰ) 存在2個(gè)常數(shù)μ1>0,μ2≥0,使得對任意的x,y∈R,有
2(x-N(y))f(t,x,y)≤-μ1|x-N(y)|2+μ2y2;
(9)
(ⅱ)
(10)
那么方程(1)的零解是均方漸近穩(wěn)定的.
證明根據(jù)三角不等式知|x|2=|x-N(y)+N(y)|2≤(|x-N(y)|+|N(y)|)2≤(|x-N(y)|+λ|y|)2.根據(jù)Cauchy不等式知
|x|2≤(|x-N(y)|+λ|y|)2≤(1+λ2)(|x-N(y)|2+|y|2).
(11)
因此聯(lián)立(2),(9),(11)式可得
2(x-N(y))f(t,x,y)+g2(t,x,y)≤ -(μ1-(1+λ2)K2)|x-N(y)|2+
(μ2+(1+λ2)K2)y2.
(12)
根據(jù)定理1聯(lián)立(10)和(12)式即知結(jié)論成立.
(13)
(14)
-7x2(1+x)+4x4(2x-1)<0,
(15)
下面給出關(guān)于數(shù)值方法穩(wěn)定性分析的結(jié)論.首先記
證明由格式(4)得
Yk+1-θf(tk+1,Xk+1,Xk+1-m)h=Yk+(1-θ)f(tk,Xk,Xk-m)h+g(tk,Xk,Xk-m)ΔWk,
(16)
(16)式兩邊同時(shí)平方,移項(xiàng)整理得
(1-θ)2f2(tk,Xk,Xk-m)h2+g2(tk,Xk,Xk-m)(ΔWk)2+
2(1-θ)Ykf(tk,Xk,Xk-m)h+2Ykg(tk,Xk,Xk-m)ΔWk+
2(1-θ)hf(tk,Xk,Xk-m)g(tk,Xk,Xk-m)ΔWk.
因此
2(1-θ)hf(tk,Xk,Xk-m)g(tk,Xk,Xk-m)ΔWk.
(17)
注意到E(ΔWk)=0,E[(ΔWk)2]=h,而且Xk,Xk-m都是Ftk可測的,因此容易得到
(18)
又根據(jù)已知條件(9)得
(19)
根據(jù)數(shù)學(xué)期望的性質(zhì)和(2)式知
(20)
將(18),(19)和(20)式代入(15)式取數(shù)學(xué)期望得
或
(21)
根據(jù)引理1的結(jié)論整理(21)式可得
+(1+λ2)μ2θhλ2c(k+1-m)S,
(22)
(23)
其中σ1(h;θ,λ,μ2,K1,K2,S)=(1+λ2)S(2(1-θ)2K1h+μ2+2K2).
(24)
記M=max(ρ,λ)<1,則由(24)式進(jìn)一步可得
定理3 當(dāng)步長h 證明由Xk=Yk+N(Xk-m)和Cauchy不等式,可得 (25) (25)式兩邊取數(shù)學(xué)期望有 (26) 又根據(jù)定理2的結(jié)論,對(26)式兩邊同時(shí)取極限得 [1] HU Yaozhong,SALAH-ELDIN A MOHAMMED,YAN Feng.Discrete-Time Approximations of Stochastic Delay Equations:The Milstein Scheme[J].The Annals of Probability,2004,32(1A):265-314. [2] CAO Wanrong,LIU Mingzhu,FAN Zhencheng.MS-Stability of the Euler-Maruyama Method for Stochastic Differential Delay Equations[J].Applied Mathematics and Computation,2004,159:127-135. [3] CAO Wanrong.The Convergence and Stability of Some Numerical Methods for Stochastic Differential Delay Equation[D].Harbin:Harbin Institute of Technology,2004. [4] CHRISTOPHER T H BAKER,EVELYN BUCKWAR.Exponential Stability inp-th Mean of Solutions,and of Convergent Euler-Type Solutions,of Stochastic Delay Differential Equations[J].Journal of Computational and Applied Mathematics,2005,184:404-427. [5] WANG Zhiyong,ZHANG Chengjian.An Analysis of Stability of Milstein Method for Stochastic Differential Equations with Delay[J].Computers and Mathematics with Applications,2006,51:1 445-1 452. [6] NORBERT HOFMANN,THOMAS MüLLER-GRONBACH.A Modified Milstein Scheme for Approximation of Stochastic Delay Differential Equations with Constant Time Lag[J].Journal of Computational and Applied Mathematics,2006,197:89-121. [7] WANG Wenqiang,HUANG Shan,LI Shoufu.Mean-Square Stability of Euler-Maruyama Methods for Nonlinear Stochastic Delay Differential Equations[J].Mathematica Numerica SINICA,2007,29(2):217-224. [8] WANG Wenqiang,LI Shoufu,HUANG Shan.Convergence of Semi-Implicit Euler Methods for Nonlinear Stochastic Delay Differential Equations[J].Journal of Yunnan University:Natural Sciences Edition,2008,30(1):11-15. [9] WANG Wenqiang.Convergence and Stability of Several Numerical Methods for Nonlinear Stochastic Delay Differential Equations[D].Xiangtan:Xiangtan University,2007. [10] LUO Jiaowan.A Note on Exponential Stability inp-th Mean of Solutions of Stochastic Delay Differential Equations[J].Journal of Computational and Applied Mathematics,2007,198(1):143-148. [11] RATHINASAMY A,BALACHANDRAN K.Mean-Square Stability of Milstein Method for Linear Hybrid Stochastic Delay Integro-Differential Equations[J].Nonlinear Analysis:Hybrid Systems,2008,2(4):1 256-1 263. [12] ZHANG Haomin,GAN Siqing.Mean Square Convergence of One-Step Methods for Neutral Stochastic Differential Delay Equations[J].Applied Mathematics and Computation,2008,204(2):884-890. [13] ZHANG Haomin,GAN Siqing,HU Lin.The Split-Step Backward Euler Method for Linear Stochastic Delay Differential Equations[J].Journal of Computational and Applied Mathematics,2009,225(2):558-568. [14] WANG Wenqiang,CHEN Yanping.Mean-Square Stability of Semi-Implicit Euler Method for Nonlinear Neutral Stochastic Delay Differential Equations[J].Applied Numerical Mathematics,2011(61):696-701. [15] MAO Xuerong.Stochastic Differential Equations and their Applications[M].Horwood:Chichester,1997. (責(zé)任編輯 向陽潔) Mean-SquareStabilityofθ-MethodsforNeutralNonlinearStochasticDelayDifferentialEquations WANG Wenqiang (School of Mathematics and Computational Science,Xiangtan University,Xiangtan 411105,Hunan China) The mean-square stability of Euler method is investigated for nonlinear neutral stochastic delay differential equations.It is proved that the numerical method is mean-square stable(MS-stable) under a sufficient condition. neutral stochastic delay differential equations;θ-methods;mean-square stable 1007-2985(2014)02-0010-05 2013-11-20 國家自然科學(xué)基金資助項(xiàng)目(11271311,11171352) 王文強(qiáng)(1971-),男(苗族),湖南邵陽人,湘潭大學(xué)數(shù)學(xué)與計(jì)算科學(xué)學(xué)院教授,博士后,主要從事常微分方程數(shù)值解研究. O175.13 A 10.3969/j.issn.1007-2985.2014.02.004