亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Unifor a Predator-Prey Model with Beddington-DeAngelis Functional Response*

        2014-09-05 03:29:32XUChangjinYAOLingyun
        關(guān)鍵詞:充分條件財(cái)經(jīng)大學(xué)凌云

        XU Changjin,YAO Lingyun

        (1.Guizhou Key Laboratory of Economics System Simulation,Guizhou University of Finance and Economics,Guiyang 550004,China;2.Library,Guizhou University of Finance and Economics,Guiyang 550004,China)

        UniforaPredator-PreyModelwithBeddington-DeAngelisFunctionalResponse*

        XU Changjin1,YAO Lingyun2

        (1.Guizhou Key Laboratory of Economics System Simulation,Guizhou University of Finance and Economics,Guiyang 550004,China;2.Library,Guizhou University of Finance and Economics,Guiyang 550004,China)

        An asymptotically periodic predator-prey model with Beddington-DeAngelis functional response is investigated.Some sufficient conditions for the uniformly strong persistence of the system are obtained.

        predator-prey model;uniform persistence;asymptotically periodic;Beddington-DeAngelis functional responseCLCnumberO175.13DocumentcodeA

        10.3969/j.issn.1007-2985.2014.01.003

        1 Introduction

        The qualitative properties such as boundedness,stability,permanence and existence of periodic solutions have attracted a lot of attention and many good results have already been reported.For example,GYLLENBERG M et al[1]studied limit cycles of a competitor-competitor-mutualist Lotka-Volterra model.SONG X Y et al[2]made a discussion on the linear stability of trivial periodic solution and semi-trivial periodic solutions and the permanence of the periodic predator-prey model with modified Leslie-Gower Holling-type II schemes and impulsive effect.AGGELIS G et al[3]considered the coexistence of both prey and predator populations of a prey-predator model.AGIZA H N et al[4]investigated the chaotic phenomena of a discrete prey-predator model with Holling type II.SEN M et al[5]analyzed the bifurcation behavior of a ratio-dependent prey-predator model with the Allee effect.ZHANG Z Q et al[6]gave a theoretical study on the existence of multiple positive periodic solutions for a delayed predator-prey system with stage structure for the predator.ZHANG Z Q et al[7]focused on the existence of at least four positive periodic solutions for a ratio-dependent predator-prey system with multiple exploited (or harvesting) terms.KO W et al[8]discussed the coexistence states of a nonlinear Lotka-Volterra type predator-prey model with cross-diffusion.FAZLY M et al[9]dealt with periodic solutions of a predator-prey system with monotone functional responses.One can see ref.[10-19] etc.for more related studies.However,the research work on asymptotically periodic predator-prey model is very few at present.

        In2011,HAQUEM[20]investigatedthestability(localandglobal)andbifurcation(saddle-node,transcritical,Hopf-Andronov,Bogdanov-Takens)ofthefollowingBeddington-DeAngelispredator-preymodel

        (1)

        wherex(t)andy(t)denotethedensitiesofpreyandpredator,respectively,attimet;r,k,m,a,b,c,e,d,harepositiveconstantsthatstandforpreyintrinsicgrowthrate,carryingcapacityoftheenvironment,consumptionrate,preysaturationconstant,predatorinterference,anothersaturationconstant,conversionrate,predatordeathrate,predatorinterspeciescompetition,respectively.Indetails,onecanseeref. [20].

        (2)

        withinitialconditionsx(0)=φ1(0)≥0,y(0)=φ2(0)≥0.

        Theprincipleobjectofthisarticleistoexploretheuniformlystrongpersistenceofsystem(2).Thereareveryfewpaperswhichdealwiththistopic,seeref. [10,21].

        Inordertoobtainourresults,weassumethatsystem(2)alwayssatisfies:

        2 Uniformly Strong Persistence

        fl-ε≤f(t)≤fu+εfort≥T.

        (3)

        Lemma1 Both the positive and nonnegative cones ofR2are invariant with respect to system (2).

        It follows from lemma 1 that any solution of system (2) with a nonnegative initial condition remains nonnegative.

        In what follows,we will establish our result.

        Theorem2 LetA1,A2andB1be defined by (5),(7) and (9),respectively.Assume that conditions (H) andblrl>mu,elmlB1>du(auA1+buA2+cuhold,then system (2) is uniformly strong persistence.

        ProofIt follows from (3) that for anyε>0,there existsT1>0 such that

        (4)

        Substitute (4) into the first equation of system (2),then we have

        By lemma 2,we get

        (5)

        Then for anyε>0,there existsT2>T1>0 such that

        x(t)≤A1+εt≥T2.

        (6)

        Similarly,from (3) and the second equation of system (2),we obtain that for anyε>0,there existsT3>T2>0 such that

        In view of lemma 2,we derive

        (7)

        Then for anyε>0,there existsT4>T3>0 such that

        y(t)≤A2+εt≥T4.

        (8)

        According to (6),(8) and the first equation of system (2),we obtain that for anyε>0,there existsT5>T4>0 such that

        Using lemma 2 again,we have

        (9)

        Thus for anyε>0,there existsT6>T5>0 such thatx(t)≥B1-ε.

        According (6),(8) and the second equation of system (2),we obtain that for anyε>0,there existsT7>T6>0 such that

        Using lemma 2 again,we have

        Thus the proof of theorem 1 is complete.

        [1] GYLLENBERG M,YAN P,WANG Y.Limit Cycles for Competitor-Competitor-Mutualist Lotka-Volterra Systems[J].Physica D,2006,221(2):135-145.

        [2] SONG Xinyu,LI Yongfei.Dynamic Behaviors of the Periodic Predator-Prey Model with Modified Leslie-Gower Holling-Type II Schemes and Impulsive Effect[J].Nonlinear Anal.:Real World Appl.,2008,9(1):64-79.

        [3] AGGELIS G,VAYENAS D V,TSAGOU V,et al.Prey-Predator Dynamics with Predator Switching Regulated by a Catabolic Repression Control Mode[J].Ecological Modelling,2005,183(4):451-462.

        [4] AGIZA H N,ELABBASY E M,EL-METWALLY H,ELSADANY A A.Chaotic Dynamics of a Discrete Prey-Predator Model with Holling Type II[J].Nonlinear Anal.:Real World Appl.,2009,10(1):116-129.

        [5] SEN M,BANERJEE M,MOROZOV A.Bifurcation Analysis of a Ratio-Dependent Prey-Predator Model with the Allee Effect[J].Ecological Complexity,2012,doi.org/10.1016/j.ecocom.2012.01.002

        [6] ZHANG Zhengqiu,LUO Jianbo.Multiple Periodic Solutions of a Delayed Predator-Prey System with Stage Structure for the Predator[J].Nonlinear Anal.:Real World Appl.,2010,11(5):4 109-4 120.

        [7] ZHANG Zhengqiu,HOU Zhenting.Existence of Four Positive Periodic Solutions for a Ratio-Dependent Predator-Prey System with Multiple Exploited (or Harvesting) Terms[J].Nonlinear Anal.:Real World Appl.,2010,11(3):1 560-1 571.

        [8] KO W,RYU K.Coexistence States of a Nonlinear Lotka-Volterra Type Predator-Prey Model with Cross-Diffusion[J].Nonlinear Anal.:Theory,Methods & Applications,2009,71(12):1 109-1 115.

        [9] FAZLY M,HESAARAKI M.Periodic Solutions for a Discrete Time Predator-Prey System with Monotone Functional Responses[J].Comptes Rendus de l’Académie des Sciences-Series I,2007,345(4):199-202.

        [10] CHEN Fengde.On a Nonlinear Nonautonomous Predator-Prey Model with Diffusion and Distributed Delay[J].J. Comput. Appl. Math.,2005,180(1):33-49.

        [11] LIU Zijian,ZHONG Shouming,LIU Xiaoyuan.Permanence and Periodic Solutions for an Impulsive Reaction-Diffusion Food-Chain System with Holling Type III Functional Response[J].J. Franklin Inst.,2011,348(2):277-299.

        [12] NINDJIN A F,AZIZ-ALAOUI M A,CADIVEL M.Analysis of a Predator-Prey Model with Modified Leslie-Gower and Holling-Type II Schemes with Time Delay[J].Nonlinear Anal.:Real World Appl.,2006,7(5):1 104-1 118.

        [13] SCHEFFER M.Fish and Nutrients Interplay Determines Algal Biomass:A Minimal Model[J].Oikos,1991,62:271-282.

        [14] LI Yongkun,ZHAO Kaihong,YE Yuan.Multiple Positive Periodic Solutions of Species Delay Competition Systems with Harvesting Terms[J].Nonlinear Anal.:Real World Appl.,2011,12(2):1 013-1 022.

        [15] XU Rui,CHEN Lansun,HAO Feilong.Periodic Solution of a Discrete Time Lotka-Volterra Type Food-Chain Model with Delays[J].Appl. Math. Comput.,2005,171(1):91-103.

        [16] KAR T K,MISRA S,MUKHOPADHYAY B.A Bioeconomic Model of a Ratio-Dependent Predator-Prey System and Optimal Harvesting[J].J. Appl. Math. Comput.,2006,22(1/2):387-401.

        [17] BHATTACHARYYA R,MUKHOPADHYAY B.On an Eco-Epidemiological Model with Prey Harvesting and Predator Switching:Local and Global Perspectives[J].Nonlinear Analysis:Real World Applications,2010,11(5):3 824-3 833.

        [18] CHAKRABORTY K,CHAKRABORTY M,KAR T K.Bifurcation and Control of a Bioeconomic Model of a Prey-Predator System with a Time Delay[J].Nonlinear Anal.:Hybrid Sys.,2011,5(4):613-625.

        [19] ZHANG Weipeng,ZHU Deming,BI Ping.Multiple Periodic Positive Solutions of a Delayed Discrete Predator-Prey System with Type IV Functional Responses[J].Appl. Math. Lett.,2007,20(10):1 031-1 038.

        [20] HAQUE M.A Detailed Study of the Beddington-Deangelis Predator-Prey Model[J].Math. Bios.,2011,234(1):1-16.

        [21] YANG,Yu,CHEN Wencheng.Uniformly Strong Persistence of a Nonlinear Asymptotically Periodic Multispecies Competition Predator-Prey System with General Functional Response[J].Appl. Math. Comput.,2006,183(1):423-426.

        (責(zé)任編輯 向陽(yáng)潔)

        具有Beddington-DeAngelis功能反應(yīng)的捕食模型

        徐昌進(jìn)1,姚凌云2

        (1.貴州財(cái)經(jīng)大學(xué)貴州省經(jīng)濟(jì)系統(tǒng)仿真重點(diǎn)實(shí)驗(yàn)室,貴州 貴陽(yáng) 550004;2.貴州財(cái)經(jīng)大學(xué)圖書(shū)館,貴州 貴陽(yáng) 550004)

        研究了一類具有Beddington-DeAngelis 功能反應(yīng)的漸近周期捕食模型,得到了該系統(tǒng)一致強(qiáng)持久的充分條件.

        O175.13

        A

        1007-2985(2014)01-0008-04

        date:2013-05-04

        National Natural Science Foundation of China (11261010,11201138);Soft Science and Technology Program of Guizhou Province (2011LKC2030);Natural Science and Technology Foundation of Guizhou Province (J[2012]2100);Governor Foundation of Guizhou Province ([2012]53)

        Biography: XU Changjin (1970-),male,was born in Huaihua City,Hunan Provinve,professor,Ph.D.;research areas are theory and its applications of delay differential equations.

        鍵詞:捕食模型;一致持久;漸近周期;Beddington-DeAngelis 功能反應(yīng)

        猜你喜歡
        充分條件財(cái)經(jīng)大學(xué)凌云
        保留一點(diǎn)兒焦慮感
        做人與處世(2022年2期)2022-05-26 22:34:53
        集合、充分條件與必要條件、量詞
        有限μM,D-正交指數(shù)函數(shù)系的一個(gè)充分條件
        Q萌霸氣凌云秀
        尋找最美校園 吉林財(cái)經(jīng)大學(xué)
        文苑(2018年19期)2018-11-09 01:30:14
        Research on financing strategy for Small and Medium Enterprises
        唯有凌云多壯“質(zhì)”
        軍工文化(2017年12期)2017-07-17 06:08:02
        瘋狂的凌云
        汽車觀察(2016年3期)2016-02-28 13:16:22
        改善商品包裝的若干思考
        塑料包裝(2014年4期)2014-09-16 03:41:29
        p-超可解群的若干充分條件
        成 人 免费 在线电影| 国产91在线精品观看| 亚洲乱码中文字幕视频| 97人妻人人做人碰人人爽| 国产女女做受ⅹxx高潮| 免费国产黄片视频在线观看| 少妇一区二区三区精选| 青青草原综合久久大伊人精品| 欧美极品jizzhd欧美| 天堂中文资源在线地址| 青青草手机成人自拍视频| 亚洲精品午夜久久久九九| 国产精品无码久久久久久| 美女在线国产| 国内自拍偷拍一区二区| 亚洲tv精品一区二区三区| 国产97在线 | 亚洲| 亚洲色欲Aⅴ无码一区二区| 亚洲av国产精品色a变脸| 日本在线观看一区二区三| 国产成人综合久久亚洲精品| 国产偷2018在线观看午夜| 日韩精品一区二区在线视| 欧美精品欧美人与动人物牲交 | 91久久青青草原线免费| av中文字幕在线资源网| 久久久极品少妇刺激呻吟网站| 少妇无码av无码专区| 国产在线视频国产永久视频| 免费蜜桃视频在线观看| 国产精品成熟老女人| a在线观看免费网站大全| 日本精品久久性大片日本| 一区二区黄色在线观看| 亚洲性爱视频| 亚洲成人av一区二区三区| 亚洲日本高清一区二区| 亚洲精品v欧洲精品v日韩精品| 欧美专区在线| 蜜桃激情视频一区二区| 无码中文字幕日韩专区|