胡敏
(攀枝花學(xué)院數(shù)學(xué)與計(jì)算機(jī)學(xué)院, 四川攀枝花617000)
限定表面溫度的邊界層流方程的Galerkin有限元數(shù)值解
胡敏
(攀枝花學(xué)院數(shù)學(xué)與計(jì)算機(jī)學(xué)院, 四川攀枝花617000)
利用一個(gè)變換將限定表面溫度的邊界層流方程轉(zhuǎn)化成二階邊值問題,然后利用Galerkin有限元方法將其轉(zhuǎn)化成n元非線性方程組,再利用Newton迭代法求出在給定初始值和最大誤差容忍度的數(shù)值解。
邊界層流方程;二階邊值問題;Galerkin有限元法;Newton迭代法;數(shù)值解
自治的三階非線性微分方程
(1)
邊界條件
(2)
是半無限豎直平板上不可壓縮流體定常自由對流邊界層問題的相似性解[1],其中,a,m∈R且m受限于表面溫度。
方程(1)、(2)的解取決于兩個(gè)參數(shù)a和m。當(dāng)m=0時(shí),方程(1)、(2)就是著名的Blasius方程[2];當(dāng)a=0時(shí),方程(1)、(2)表示流體流經(jīng)的表面是不可滲透的[3-4];當(dāng)a<0時(shí),方程(1)、(2)表示流體流經(jīng)的表面可以注入流體;當(dāng)a>0時(shí),方程(1)、(2)表示流體流經(jīng)的表面可以流出流體[4-5]。
關(guān)于方程(1)、(2)的解的研究[6-13],可以追溯到一個(gè)世紀(jì)以前。利用積分運(yùn)算,Weyl[6]對方程(1)、(2)進(jìn)行了嚴(yán)格的分析,但是沒有得出解析解。通過引入兩種不同的代換,Brighi and Sari[7]和Guo and Tsai[8]將方程(1)、(2)轉(zhuǎn)化成由兩個(gè)一階常微分方程組成的自治系統(tǒng),并且得到解的詳細(xì)信息。Je-Chiang Tsai[9]通過分析討論,得出當(dāng)m∈(-1/3,0),a∈R時(shí),方程(1)、(2)有唯一有界解;并討論了當(dāng)m∈(-1/2,-1/3),a≤0時(shí)解的結(jié)構(gòu)。
本文只討論m∈(-1/3,0),a<0情形。首先利用一個(gè)變換將方程(1)、(2)轉(zhuǎn)化成二階邊值問題,然后利用Galerkin有限元方法求出其數(shù)值解。
對于方程(1)、(2),由于f′(η)在[0,+∞)上單調(diào)遞增[9],則它必存在單調(diào)遞增的反函數(shù)。于是令:
t=f′(η),η∈[0,+∞)
(3)
并記其反函數(shù)為η=g(t),t∈[0,1]。對(3)式兩邊關(guān)于t求導(dǎo)得:
1=f″g′(t),t∈[0,1]
(4)
記
w(t)=f″(η),t∈[0,1]
(5)
對(5)式兩邊關(guān)于t求導(dǎo)得:
f?=w′(t)w(t),t∈[0,1]
(6)
在t=f′(η)=f′(g(t))兩邊同乘g′(t)得:
對其兩邊從t到1積分得:
由于f(g(1))=f(0)=a,則
(7)
把式(3)、(5)、(6)和(7)代入方程(1)得:
將其兩端同除以w(t)得:
(8)
當(dāng)t=1時(shí)有
(9)
對(8)式兩端關(guān)于t求導(dǎo)得
將其兩端同乘以w2(t)得
又因w(0)=f″(+∞)=0,則將方程(1)、(2)轉(zhuǎn)化成二階邊值問題
(10)
2.1 Galerkin有限元方程組
令
(11)
其中
(12)
由變分原理得方程(10)的Galerkin有限元基本公式:
j=1,2,…,N
(13)
(14)
和
(15)
將式(11)、(12)分別代入式(14)、(15)計(jì)算得
j=1,2,…,N-1
(16)
其中
和
(17)
2.2 Newton迭代法求解方程組
令
wT=[w0,w1,…,wN]
(18)
和
HT(w,m)=[H1(w,m),H2(w,m),…,HN(w,m)]
(19)
其中
Hj(w,m)=Ajwj-1+Bjwj+Cjwj+1+
和
求式(16)、(17)的解w就是求解如下n×n非線性方程組
H(w,m)=0
(20)
的解。記H(w,m)的Jacobian矩陣為:
其中
從而矩陣JH(w)是三對角的。
選定步長h=0.001,最大誤差容忍度ε=10-8,取定初值w0=[0,0.1,0.1,…,0.1]T,再取不同的a和m計(jì)算f″(0)(=w(1)=wN)的值,利用Matlab軟件編寫程序計(jì)算數(shù)值結(jié)果(表1)。
表1f ″(0)的值
從表1可以看出,對任意取定的初值w0和誤差容忍度ε,都可以計(jì)算出f″(0)的迭代值,并且為正值。
[1] Schlichting H.Boundary Layer Theory[M].New York:McGraw-Hill,1979.
[2] Belhachmi Z,Brighi B,Taous K.On the concave solutions of the Blasius equation[J].Acta Math.Univ.Comenian.(N.S.),2000,69:199-214.
[3] Cheng P,Minkowycz W J.Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike[J].J.Geophy,Res.,1977,82:2040-2044.
[4] Brighi B.On a similarity boundary layer equation[J].Z.Anal.Anwendungen,2002,21:931-948.
[5] Chaudhary M A,Merkin J H,Pop I.Similarity solutions in free convection boundary-layer flows adjacent to vertical permeable surfaces in porous media with prescribed surface temperature[J].Euro.J.Mech.B Fluids,1995,14:217-237.
[6] Weyl H.On the differential equations of the simplest boundary-layer problems[J].Ann.Math.,1942,43:381-407.
[7] Brighi Br,Sari T.Blowing-up coordinates for a similarity boundary layer equation[J].Discrete Contin.Dyn.Syst.,2005,12:929-948.
[8] Guo J S,Tsai J C.The structure of solutions for a third order differential equation in boundary layer theory[J].Japan J.Indust.Appl.Math.,2005,22:311-351.
[9] Tsai J C.Similarity solutions for boundary layer flows with prescribed surface temperature[J].Appl.Math.Letters,2008,21:67-73.
[10] Mukhopadhyay S.Dual solutions in boundary layer flow of a moving fluid over a moving permeable surface in presence of prescribed surface temperature and thermal radiation[J].Chinese Physics B,2014,23(1):014702(1-5).
[11] Ishak A,Yacob N A,Pop I.Similarity solutions for the mixed convection flow over a vertical plate with thermal radiation[J].International Journal of Minerals Metallurgy and Materials,2010,17(2):149-154.
[12] Mastroberardino A.Accurate solutions for viscoelastic boundary layer flow and heat transfer over stretching sheet[J].Appl.Math.Mech.Engli. Ed.,2014,35(2):133-142.
[13] Ahmad K,Nazar R,Pop I.Boundary layer flow and heat transfer of a micro-polar fluid near the stagnation point on a stretching vertical surface with prescribed skin friction[J].International Journal of Minerals Metallurgy and Materials,2011,18(4):502-508.
Galerkin Finite Element Numerical Solutions of Boundary Layer Flows Equation with Prescribed Surface Temperature
HUMin
(School of Mathematics and Computer Science, Panzhihua University, Panzhihua 617000, China)
By using a transformation, the two order boundary value problem of the boundary layer flows equation with prescribed surface temperature is obtained. And then it is turned inton-dimensional nonlinear equations by utilizing the Galerkin finite element method. After that, the numerical solutions for the nonlinear equations under given value and maximum error tolerance are determined through Newton iterative method.
boundary layer flows equation; two order boundary value problem; Galerkin finite element method; Newton iterative method; numerical solution
2014-06-23
攀枝花學(xué)院計(jì)算機(jī)學(xué)院預(yù)研項(xiàng)目(Y2011-05);攀枝花學(xué)院校級項(xiàng)目(2014YB38)
胡 敏(1981-),女,四川宜賓人,助教,碩士,主要從事微分方程及其應(yīng)用方面的研究,(E-mail)pzhhm@sina.cn
1673-1549(2014)06-0080-04
10.11863/j.suse.2014.06.20
O175.8
A