亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        A Local Characterization of Lie Homomorphisms of Nest Algebras

        2014-07-24 15:29:23YANGMiaoxiaZHANGJianhua

        YANG Miao-xia,ZHANG Jian-hua

        (1.Xianyang Vocational Technical College,Xianyang 712000,China;2.College of Mathematics and Information Science,Shaanxi Normal University,Xi’an 710062,China)

        A Local Characterization of Lie Homomorphisms of Nest Algebras

        YANG Miao-xia1,ZHANG Jian-hua2

        (1.Xianyang Vocational Technical College,Xianyang 712000,China;2.College of Mathematics and Information Science,Shaanxi Normal University,Xi’an 710062,China)

        In this paper,linear maps preserving Lie products at zero points on nest algebras are studied.It is proved that every linear map preserving Lie products at zero points on any finite nest algebra is a Lie homomorphism.As an application,the form of a linear bijection preserving Lie products at zero points between two finite nest algebras is obtained.

        nest algebra;Lie product;Lie homomorphism

        §1. Introduction

        Let A,B be algebras and?:A→B be a linear map.If?([A,B])=[?(A),?(B)]holds for all A,B∈A,then?is called a Lie homomorphism of A,where[A,B]=AB?B A is the Lie product of A and B.If?([A,B])=[?(A),?(B)]holds for all A,B∈A with AB=0,then? is called a map preserving Lie products at zero points.It is clear that every Lie homomorphism is a map preserving Lie products at zero points.

        Recently,many researcher have considered various maps on rings or algebras which determined by zero points.For example,derivable maps at zero points[12],Jordan derivable maps at zero points[35],Lie derivable maps at zero points[68]and maps preserving Jordan products at zero points[9].In this paper,we willconsider maps on nest algebras preserving Lie products at zero points.

        Let H be a complex separable Hilbert space and B(H)denote the algebra of all bounded linear operators on H.A nest N is a totally ordered family of orthogonalprojections in B(H) which is closed in the strong operator topology,and which includes 0 and I.The nest algebra associated to a nest N,denoted byτ(N),is the set

        If N is a finite nest,thenτ(N)is called a finite nest algebra.Let D(N)be the diagonalofτ(N), and R(N)denote the norm closed algebra generated by{P T(I?P):T∈B(H),P∈N}.It is easy to verify thatτ(N)=D(N)+R(N)if N is a finite nest.

        §2.Main Results

        In this note,we willprove the following theorem.

        Theorem 2.1 Letτ(N)be a finite nest algebra and B be any complex associative algebra and?:τ(N)→B be a linear map.If?([A,B])=[?(A),?(B)]holds for all A,B∈τ(N)with AB=0,then?is a Lie homomorphism.

        To prove Theorem 2.1,we need some lemmas.We assume that?:τ(N)→B is a linear maps satisfying?([A,B])=[?(A),?(B)]for all A,B∈τ(N)with AB=0.

        Lemma 2.1 ?([E,F])=[?(E),?(F)]?[?(I),?(E F)]for every idempotent E,F∈τ(N).

        Proof From E(F?E F)=0,we have?([E,F?E F])=[?(E),?(F?E F)].That is,

        From(E?I)E F=0,we have?([E?I,E F])=[?(E?I),?(E F)].Thus,

        By(1)and(2),then for every idempotent E,F∈τ(N),

        The proof is completed.

        Lemma 2.2 ?([E,F])=[?(E),?(F)]?[?(E F),?(I)]for every idempotent E,F∈τ(N).

        Proof From(E?E F)F=0,we have?([E?E F,F])=[?(E?E F),?(F)].That is,

        It follows from E F(F?I)=0 that?([E F,F?I])=[?(E F),?(F?I)].Thus,

        By(3)and(4),then?([E,F])=[?(E),?(F)]?[?(E F),?(I)]for every idempotent E,F∈τ(N).The proof is completed.

        Lemma 2.3 ?([E,F])=[?(E),?(F)]for every idempotent E,F∈τ(N).

        Proof By Lemmas 2.1 and 2.2,then for every idempotent E,F∈τ(N),

        and

        It follows that

        and so[?(I),?(E F)]=0.Hence?([E,F])=[?(E),?(F)]for every idempotent E,F∈τ(N). The proof is completed.

        Proof of Theorem 2.1 Let N={0=P0<P1<···<Pn=I}be a finite nest and Ek=Pk?Pk?1(k=1,2,···,n).ThenEkand so every operator of D(N)is a finite linear combination ofidempotents in D(N).Hence by Lemma 2.3,we have for every D1,D2∈D(N),

        For each P,Q∈N and T,S∈B(H),write E=P+P T P⊥,F=Q+QS Q⊥.Then E,F are idempotents ofτ(N).It follows from Lemma 2.3 that

        This implies that for every R1,R2∈R(N),

        Similarly,we can show that

        for every D∈D(N)and R∈R(N).

        For each A,B∈τ(N),sinceτ(N)=D(N)+R(N),there exist D1,D2∈D(N)and R1,R2∈R(N)such that A=D1+R1,B=D2+R2.Then by(5),(6)and(7)

        Hence?is a Lie homomorphism.The proof is completed.

        From Theorem 2.1 and the result of[10],we have the following corollary.

        Corollary 2.1 Let N and M be two finite nest and?:τ(N)→ τ(M)be a linear bijective map.If?([A,B])=[?(A),?(B)]holds for all A,B∈τ(N)with AB=0,then there exist an invertible operator T∈B(H)and a linear functional f:τ(N)→?such that either ?(A)=T AT?1+f(A)I for all A∈τ(N),or?(A)=?T J A?J T?1+f(A)I for all A∈τ(N), where J is an involution.

        [1]AN Run-ling,HOU Jin-chuan.Characterizations of derivations on triangular rings:Additive maps derivable at idempotents[J].Linear Algebra Appl,2009,431:1070–1080.

        [2]AN Run-ling,HOU Jin-chuan.Characterizations of Jordan derivations on rings with idempotents Additive maps Jordan derivable at zero[J].Chinese Journal of Contemporary Mathematics,2010,31(A):463–474.

        [3]BREˇsAR M.Characterizing homomorphisms,multipliers and derivations in rings with idempotents[J].Proc Roy Soc Edinburgh Sect,2007,137:9–21.

        [4]JIAO Mei-yan,HOU Jin-chuan.Additive maps derivable at zero points on nest algebras[J].Linear Algebra Appl,2010,432:2984–2994.

        [5]ZHAO Jin-ping,ZHU Jun.Jordan higher all-derivable points in triangular algebras[J].Linear Algebra Appl, 2012,436:3072–3086.

        [6]LU Fang-yan,JING Wu.Characterizations of Lie derivations of B(X)[J].Linear Algebra Appl,2010,432: 89–99.

        [7]JI Pei-sheng,QI Wei-qing.Characterizations of Lie derivations of triangular algebras[J].Linear Algebra Appl,2011,435:1137–1146.

        [8]QI Xiao-fei,CUI Jian-lian,HOU Jin-chuan.Characterizing additiveξ-Lie derivations of prime algebras by ξ-Lie zero products[J].Linear Algebra Appl,2011,434:669–682.

        [9]ZHANG Xiao-hui,ZHANG Jian-hua.Characterizations of Jordan isomorphism of nest algebras[J].Acta Math Sinica(Chinese Series),2013,56:553–560.

        [10]MARCOUX L W,SSOUROUR A R.Lie isomorphisms ofnest algebras[J].J Funct Anal,1999,164:163–180.

        tion:46L35

        1002–0462(2014)01–0125–04

        Chin.Quart.J.of Math. 2014,29(1):125—128

        date:2013-07-15

        Supported by the Specialized Research Foundation for the Doctoral Program of Universities and Colleges of China(20110202110002)

        Biographies:YANGMiao-xia(1964-),female,native of Xianyang,Shaanxi,a lecturer of Xianyang Vocational Technical College,M.S.D.,engages in functional analysis;ZHANG Jian-hua(1965-),male,native of Yongcheng, Henan,a professor of Shaanxi Normal University,Ph.D.,engages in operator algebra.

        CLC number:O177.1 Document code:A

        超91精品手机国产在线| 国产综合精品久久99之一| 亚洲综合精品在线观看中文字幕 | 亚洲日产精品一二三四区| 男女男在线精品网站免费观看| 亚洲AV手机专区久久精品| 亚洲av无一区二区三区综合| 2018天天躁夜夜躁狠狠躁| 好吊色欧美一区二区三区四区 | 免费一区二区三区女优视频| 国产电影一区二区三区| 亚洲中文无码永久免| 九九久久精品大片| 日韩av一区二区蜜桃| 99无码熟妇丰满人妻啪啪| 夜爽8888视频在线观看| АⅤ天堂中文在线网| 激情五月开心五月啪啪| 亚洲人成影院在线无码按摩店| 欧美大香线蕉线伊人久久| 人妻系列影片无码专区| 香港三级日本三韩级人妇久久| 国产欧美一区二区三区在线看| 品色堂永远的免费论坛| 果冻国产一区二区三区| 亚洲av毛片在线网站| 中文字幕aⅴ人妻一区二区| 香蕉成人啪国产精品视频综合网| 一区二区日本影院在线观看| 免费亚洲一区二区三区av| 毛片亚洲av无码精品国产午夜| 自拍 另类 综合 欧美小说| 视频一区二区免费在线观看| 久久精品中文字幕无码绿巨人| 国产福利姬喷水福利在线观看| 91免费国产高清在线| 亚洲激情综合中文字幕| 亚洲精品国产av天美传媒| 97色偷偷色噜噜狠狠爱网站97 | 国产精品三区四区亚洲av| 成年无码av片在线|