亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        A Local Characterization of Lie Homomorphisms of Nest Algebras

        2014-07-24 15:29:23YANGMiaoxiaZHANGJianhua

        YANG Miao-xia,ZHANG Jian-hua

        (1.Xianyang Vocational Technical College,Xianyang 712000,China;2.College of Mathematics and Information Science,Shaanxi Normal University,Xi’an 710062,China)

        A Local Characterization of Lie Homomorphisms of Nest Algebras

        YANG Miao-xia1,ZHANG Jian-hua2

        (1.Xianyang Vocational Technical College,Xianyang 712000,China;2.College of Mathematics and Information Science,Shaanxi Normal University,Xi’an 710062,China)

        In this paper,linear maps preserving Lie products at zero points on nest algebras are studied.It is proved that every linear map preserving Lie products at zero points on any finite nest algebra is a Lie homomorphism.As an application,the form of a linear bijection preserving Lie products at zero points between two finite nest algebras is obtained.

        nest algebra;Lie product;Lie homomorphism

        §1. Introduction

        Let A,B be algebras and?:A→B be a linear map.If?([A,B])=[?(A),?(B)]holds for all A,B∈A,then?is called a Lie homomorphism of A,where[A,B]=AB?B A is the Lie product of A and B.If?([A,B])=[?(A),?(B)]holds for all A,B∈A with AB=0,then? is called a map preserving Lie products at zero points.It is clear that every Lie homomorphism is a map preserving Lie products at zero points.

        Recently,many researcher have considered various maps on rings or algebras which determined by zero points.For example,derivable maps at zero points[12],Jordan derivable maps at zero points[35],Lie derivable maps at zero points[68]and maps preserving Jordan products at zero points[9].In this paper,we willconsider maps on nest algebras preserving Lie products at zero points.

        Let H be a complex separable Hilbert space and B(H)denote the algebra of all bounded linear operators on H.A nest N is a totally ordered family of orthogonalprojections in B(H) which is closed in the strong operator topology,and which includes 0 and I.The nest algebra associated to a nest N,denoted byτ(N),is the set

        If N is a finite nest,thenτ(N)is called a finite nest algebra.Let D(N)be the diagonalofτ(N), and R(N)denote the norm closed algebra generated by{P T(I?P):T∈B(H),P∈N}.It is easy to verify thatτ(N)=D(N)+R(N)if N is a finite nest.

        §2.Main Results

        In this note,we willprove the following theorem.

        Theorem 2.1 Letτ(N)be a finite nest algebra and B be any complex associative algebra and?:τ(N)→B be a linear map.If?([A,B])=[?(A),?(B)]holds for all A,B∈τ(N)with AB=0,then?is a Lie homomorphism.

        To prove Theorem 2.1,we need some lemmas.We assume that?:τ(N)→B is a linear maps satisfying?([A,B])=[?(A),?(B)]for all A,B∈τ(N)with AB=0.

        Lemma 2.1 ?([E,F])=[?(E),?(F)]?[?(I),?(E F)]for every idempotent E,F∈τ(N).

        Proof From E(F?E F)=0,we have?([E,F?E F])=[?(E),?(F?E F)].That is,

        From(E?I)E F=0,we have?([E?I,E F])=[?(E?I),?(E F)].Thus,

        By(1)and(2),then for every idempotent E,F∈τ(N),

        The proof is completed.

        Lemma 2.2 ?([E,F])=[?(E),?(F)]?[?(E F),?(I)]for every idempotent E,F∈τ(N).

        Proof From(E?E F)F=0,we have?([E?E F,F])=[?(E?E F),?(F)].That is,

        It follows from E F(F?I)=0 that?([E F,F?I])=[?(E F),?(F?I)].Thus,

        By(3)and(4),then?([E,F])=[?(E),?(F)]?[?(E F),?(I)]for every idempotent E,F∈τ(N).The proof is completed.

        Lemma 2.3 ?([E,F])=[?(E),?(F)]for every idempotent E,F∈τ(N).

        Proof By Lemmas 2.1 and 2.2,then for every idempotent E,F∈τ(N),

        and

        It follows that

        and so[?(I),?(E F)]=0.Hence?([E,F])=[?(E),?(F)]for every idempotent E,F∈τ(N). The proof is completed.

        Proof of Theorem 2.1 Let N={0=P0<P1<···<Pn=I}be a finite nest and Ek=Pk?Pk?1(k=1,2,···,n).ThenEkand so every operator of D(N)is a finite linear combination ofidempotents in D(N).Hence by Lemma 2.3,we have for every D1,D2∈D(N),

        For each P,Q∈N and T,S∈B(H),write E=P+P T P⊥,F=Q+QS Q⊥.Then E,F are idempotents ofτ(N).It follows from Lemma 2.3 that

        This implies that for every R1,R2∈R(N),

        Similarly,we can show that

        for every D∈D(N)and R∈R(N).

        For each A,B∈τ(N),sinceτ(N)=D(N)+R(N),there exist D1,D2∈D(N)and R1,R2∈R(N)such that A=D1+R1,B=D2+R2.Then by(5),(6)and(7)

        Hence?is a Lie homomorphism.The proof is completed.

        From Theorem 2.1 and the result of[10],we have the following corollary.

        Corollary 2.1 Let N and M be two finite nest and?:τ(N)→ τ(M)be a linear bijective map.If?([A,B])=[?(A),?(B)]holds for all A,B∈τ(N)with AB=0,then there exist an invertible operator T∈B(H)and a linear functional f:τ(N)→?such that either ?(A)=T AT?1+f(A)I for all A∈τ(N),or?(A)=?T J A?J T?1+f(A)I for all A∈τ(N), where J is an involution.

        [1]AN Run-ling,HOU Jin-chuan.Characterizations of derivations on triangular rings:Additive maps derivable at idempotents[J].Linear Algebra Appl,2009,431:1070–1080.

        [2]AN Run-ling,HOU Jin-chuan.Characterizations of Jordan derivations on rings with idempotents Additive maps Jordan derivable at zero[J].Chinese Journal of Contemporary Mathematics,2010,31(A):463–474.

        [3]BREˇsAR M.Characterizing homomorphisms,multipliers and derivations in rings with idempotents[J].Proc Roy Soc Edinburgh Sect,2007,137:9–21.

        [4]JIAO Mei-yan,HOU Jin-chuan.Additive maps derivable at zero points on nest algebras[J].Linear Algebra Appl,2010,432:2984–2994.

        [5]ZHAO Jin-ping,ZHU Jun.Jordan higher all-derivable points in triangular algebras[J].Linear Algebra Appl, 2012,436:3072–3086.

        [6]LU Fang-yan,JING Wu.Characterizations of Lie derivations of B(X)[J].Linear Algebra Appl,2010,432: 89–99.

        [7]JI Pei-sheng,QI Wei-qing.Characterizations of Lie derivations of triangular algebras[J].Linear Algebra Appl,2011,435:1137–1146.

        [8]QI Xiao-fei,CUI Jian-lian,HOU Jin-chuan.Characterizing additiveξ-Lie derivations of prime algebras by ξ-Lie zero products[J].Linear Algebra Appl,2011,434:669–682.

        [9]ZHANG Xiao-hui,ZHANG Jian-hua.Characterizations of Jordan isomorphism of nest algebras[J].Acta Math Sinica(Chinese Series),2013,56:553–560.

        [10]MARCOUX L W,SSOUROUR A R.Lie isomorphisms ofnest algebras[J].J Funct Anal,1999,164:163–180.

        tion:46L35

        1002–0462(2014)01–0125–04

        Chin.Quart.J.of Math. 2014,29(1):125—128

        date:2013-07-15

        Supported by the Specialized Research Foundation for the Doctoral Program of Universities and Colleges of China(20110202110002)

        Biographies:YANGMiao-xia(1964-),female,native of Xianyang,Shaanxi,a lecturer of Xianyang Vocational Technical College,M.S.D.,engages in functional analysis;ZHANG Jian-hua(1965-),male,native of Yongcheng, Henan,a professor of Shaanxi Normal University,Ph.D.,engages in operator algebra.

        CLC number:O177.1 Document code:A

        蜜桃av精品一区二区三区| 欧美成人a视频免费专区| 在线亚洲国产一区二区三区| 伊人久久综合狼伊人久久 | 日韩精品熟妇一区二区三区| 免费网站内射红桃视频| 国产真实乱对白精彩久久老熟妇女| japanesehd中国产在线看| 91成人午夜性a一级毛片| 在线亚洲精品国产成人二区| 91国产熟女自拍视频| 丰满少妇人妻久久精品| 国产精品国产三级国产专播| 中国老熟妇自拍hd发布| A午夜精品福利在线| 第十色丰满无码| 久久精品国产自产对白一区| 尤物在线观看一区蜜桃| 中国农村熟妇性视频| 国产91对白在线观看| 久久久国产精品五月天伊人 | 欧美xxxxx高潮喷水| 亚洲国产日韩精品一区二区三区 | 日韩中文字幕久久久经典网| 国产一区资源在线播放| 色爱av综合网站| 黑人巨大白妞出浆| 国产精品国产自线拍免费| 亚洲精品综合久久国产二区 | 亚洲图文一区二区三区四区 | 亚洲色欲色欲www在线观看| 制服丝袜天堂国产日韩| 国产亚洲一区二区三区夜夜骚| 亚洲av无一区二区三区综合| 疯狂做受xxxx国产| 久久久精品人妻一区二区三区四| YW亚洲AV无码乱码在线观看| 不卡一区二区三区国产| 男人的天堂av网站| 肉体裸交丰满丰满少妇在线观看 | 特黄三级一区二区三区|