華建成+梁猛+鞏稼民
摘 要: 基于Optisystem和Matlab軟件構(gòu)建相干解調(diào)光正交頻分復(fù)用(CO?OFDM)系統(tǒng)仿真平臺(tái)。從O?OFDM的調(diào)制出發(fā),在Optisystem中用幅度相位鍵控(APSK)調(diào)制代替現(xiàn)在主流使用的方形正交振幅調(diào)制(QAM)。分析APSK調(diào)制在光通信中的優(yōu)越性,并將得到的仿真星座圖、誤碼率、線寬與QAM調(diào)制下的結(jié)果相互對(duì)比, 從而區(qū)分APSK調(diào)制比QAM調(diào)制優(yōu)越性并總結(jié)規(guī)律。
關(guān)鍵字: 光正交頻分復(fù)用; 幅度相移鍵控; 正交幅度調(diào)制; 光通信
中圖分類號(hào): TN919?34 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào): 1004?373X(2014)14?0011?03
Research and analysis on 16APSK?OOFDM system
HUAN Jian?cheng1, LIANG Meng2, GONG Jia?min2
(1. School of Communication and Information Engineering, Xian University of Posts and Telecommunications, Xian 710121, China;
2. School of Electronic Engineering, Xian University of Posts and Telecommunications, Xian 710121, China)
Abstract: A system simulation platform of CO?OFDM (coherent detection optical orthogonal frequency division multiplexing) was established on the basis of the softwares Optisystem and Matlab. Starting from the O?OFDM (optical orthogonal frequency division multiplexing) modulation, APSK (amplitude and phase shift keying) modulation was adopted in the software Optisystem to replace the square QAM (quadrature amplitude modulation) modulation that is prevalently used in the software Optisystem and Matlab. The the advantages of APSK in optical communication is analyzed. The constellation graph, BER and linewidth getting from the simulating results are compared with the results from QAM, so as to determine the superiority of APSK modulation which is better then QAM modulation. The relative law is summarized.
Keywords: O?OFDM; APSK; QAM; optic communication
0 引 言
近幾年興起的光傳輸技術(shù),由于光通信的傳輸速率、傳輸距離及容量的不斷增加,使得光纖中的非線性效應(yīng)、色散等成為影響光通信質(zhì)量的重要因素。為了減少各種不良效應(yīng)的影響,很多技術(shù)被引入到光通信中。其中光正交頻分復(fù)用(Optical Orthogonal Frequency Division Multiplexing,O?OFDM)是。將OFDM引入到光通信中,大大增加了光通信的頻帶利用率。而改良調(diào)制格式也是有效解決以上問題、提升系統(tǒng)性能的關(guān)鍵方法之一[1]。正交幅度調(diào)制(Quatrature Amplitude Modulation,QAM)是一種幅度和相位聯(lián)合的調(diào)制,具有很強(qiáng)的噪聲容限。因此在光OFDM系統(tǒng)中應(yīng)用最廣的就是square?QAM調(diào)制;而在電通信中得到應(yīng)用廣泛應(yīng)用的星形QAM調(diào)制(star?QAM/APSK)在光通信中卻鮮有問津。鑒于其在電領(lǐng)域中的優(yōu)良特性,若將其應(yīng)用到光領(lǐng)域當(dāng)有會(huì)有怎樣的效果。在APSK調(diào)制引入到光通信領(lǐng)域的情況下,本文將研究一下其在圈比、線寬等方面的性能的穩(wěn)定性和誤碼率的高低。
1 CO?OFDM的基本原理
O?OFDM信號(hào)調(diào)制根據(jù)調(diào)制方式的不同可發(fā)分為兩種,分別是直接檢測(cè)光正交頻分復(fù)用(DDO?OFDM)和相干光正交頻分復(fù)用(Coherent Detection Optical Orthogonal Frequency Division Multiplexing,CO?OFDM)。DDO?OFDM系統(tǒng)實(shí)現(xiàn)簡單費(fèi)、用低廉等優(yōu)點(diǎn),但是相比于CO?OFDM系統(tǒng)其接收機(jī)的靈敏度、頻譜效率和對(duì)偏振色散的魯棒性性能要遜色好多。本文研究用到的是CO?OFDM,所以這里便以相干檢測(cè)為例說明O?OFDM工作原理。一般的CO?OFDM系統(tǒng)如圖1所示,分別為五個(gè)功能模塊:射頻發(fā)送端;電?光調(diào)制模塊;光傳輸鏈路;光?電檢測(cè)模塊;射頻接收端。
圖1 CO?OFDM系統(tǒng)的原理框圖
介紹如下:
(1) 射頻發(fā)送端:二進(jìn)制序列的串/并變換,數(shù)字基帶調(diào)制,IFFT運(yùn)算實(shí)現(xiàn)OFDM調(diào)制,加入循環(huán)前綴,添加訓(xùn)練序列和濾波、D/A采樣轉(zhuǎn)換等。
(2) 電?光調(diào)制模塊:將射頻發(fā)送端發(fā)送的射頻信號(hào)經(jīng)馬赫增德爾調(diào)制器(MZM)進(jìn)行電/光調(diào)制,得到光OFDM信號(hào)。
(3) 光傳輸鏈路:主要由光放大器、光濾波器和光纖組成,傳輸光OFDM信號(hào)。
(4) 光?電檢測(cè)模塊:主要是對(duì)接收到的光信號(hào)進(jìn)行零差相干檢測(cè),還原出射頻OFDM信號(hào)。
(5) 射頻接收端:主要對(duì)I/Q兩路射頻信號(hào)進(jìn)行放大、去除循環(huán)前綴、OFDM解調(diào)、FFT運(yùn)算、去映射及并/串變換,最終輸出發(fā)送端發(fā)送的原始二進(jìn)制數(shù)據(jù)流。在整個(gè)系統(tǒng)中由于光纖的色度色散、偏振模色散、非線性效應(yīng)以及激光器的非理想單色性,都會(huì)使OFDM子載波的相位、幅度造成偏移,使星座圖發(fā)散,造成系統(tǒng)誤碼的產(chǎn)生[2]。
2 QAM調(diào)制
正交振幅調(diào)制(QAM)是當(dāng)前O?OFDM系統(tǒng)中經(jīng)常使用的調(diào)制技術(shù),尤其是多進(jìn)制QAM具有很高的頻帶利用率。最具有代表性的是16進(jìn)制的,記為16QAM。光通信中現(xiàn)在最常用的是標(biāo)準(zhǔn)矩形16QAM調(diào)制方式。
正交振幅調(diào)制信號(hào)的一般表示式為:
[φMQAMt=Angt-nTsAncosω0t+φn]
式中:[gt-nTs]是單個(gè)基帶信號(hào),寬度是Ts;An為基帶信號(hào)幅度。
[φMQAMt=Angt-nTsAncosφncosω0t-t-nTsAnsinφnsinω0t]
若令Xn=Ancos φn,Yn=Ansin φn,則:
φMQAM(t)=X(t)cos ω0t-Y(t)sin ω0t
QAM中的振幅Xn和Yn可以表示為:
[Xn=cnA, Yn=dnA]
式中:A是振幅固定值;cn,dn為侍輸入數(shù)據(jù)。已調(diào)QAM 信號(hào)在信號(hào)空間中的坐標(biāo)點(diǎn)由cn,dn決定。
從星座圖可以清楚地看出星座點(diǎn)分布,對(duì)于16QAM 來說,有多種形式的分布方式。常見的有兩種:一種是方形QAM調(diào)制(見圖2(a))、另一種是星形(APSK)調(diào)制(見圖2(b))。圖中的黑點(diǎn)表示每個(gè)碼元的位置,每個(gè)碼元是由2個(gè)正交矢量合成的。這兩種QAM調(diào)制的星座點(diǎn)的排列有著很大的區(qū)別,這就導(dǎo)致兩種調(diào)制方式的振幅、相位有所不 同。星型16QAM的振幅只有2個(gè),而方型16QAM的振幅就有3個(gè);星型16QAM有8種相位,而方型16QAM有12種相位。研究表明星型QAM調(diào)制解調(diào)要比方形QAM調(diào)制解調(diào)要更容易還原,誤碼率要小[3]。
圖2 矩形16QAM和16APSK星座圖的對(duì)比
3 系統(tǒng)誤碼率分析
3.1 系統(tǒng)誤碼率
用Optisystem軟件分別搭建16APSK調(diào)制和16QAM調(diào)制的光OFDM系統(tǒng),兩種系統(tǒng)的參數(shù)設(shè)置一樣。傳輸速度10 Gb/s、線寬0.15 MHz、光纖衰減為0.2 dB/km、光纖放大器增益為10.4 dB。得到系統(tǒng)傳輸誤碼率隨傳輸距離的變化規(guī)律,如圖3所示。此次研究的結(jié)果是在沒有系統(tǒng)優(yōu)化的條件下得到的。
圖3 兩種不同調(diào)制方式下的誤碼率
由圖3不難看出在APSK調(diào)制下的光OFDM系統(tǒng)的誤碼率要遠(yuǎn)低于方形QAM調(diào)制下的光OFDM系統(tǒng)誤碼率。與前文的預(yù)測(cè)吻合。光傳輸能夠使用APSK調(diào)制代替方形QAM調(diào)制,那么系統(tǒng)的性能及傳輸距離將大幅度提高。
3.2 光源線寬的影響
光源線寬可以說是光通信中一個(gè)非常重要的影響因素。方形QAM星座點(diǎn)的相位分布不均,一些星座點(diǎn)之間相位距離過小,對(duì)相位噪聲敏感;而星形QAM恰好彌補(bǔ)了這一不足。因而星形QAM對(duì)線寬有更強(qiáng)的容忍度[2]。本次研究通過改變激光器的線寬,得到系統(tǒng)誤碼率的變化規(guī)律,如圖4所示。除了線寬有從大到小的變化外,本次實(shí)驗(yàn)條
件和圖3是一樣的。
圖4 距離為250 km時(shí)隨著線寬的增大系統(tǒng)誤碼率的變化
從圖4來看,方形QAM的誤碼率隨著線寬的增大而呈現(xiàn)明顯的上升趨勢(shì)。而星形QAM調(diào)制下的通信系統(tǒng)其誤碼率遠(yuǎn)低于方形QAM調(diào)制下的通信系統(tǒng)的誤碼率且基本沒有波動(dòng),隨著線寬的增大保持著水平線。從此實(shí)驗(yàn)不難看出星形調(diào)制方式對(duì)線寬的容忍度很強(qiáng),在很大程度上放寬了光源對(duì)線寬的苛刻要求。從而從光源上可以降低系統(tǒng)的成本。
3.3 16APSK圈比對(duì)系統(tǒng)的影響
圖2(b)的16APSK星座圖是由兩個(gè)圓環(huán)組成的,其中較大環(huán)的半徑稱為外徑(R2),另外一個(gè)稱為內(nèi)徑(R1)外徑內(nèi)徑之比為Q(圈比)。圈比受高斯白噪聲、相位噪聲等的影響[12],并隨著信噪比的增大,優(yōu)化外內(nèi)徑比的取值也將從小到大[10]。本次仿真將給出在信噪比一定的情況下外內(nèi)徑的具體取值。除了內(nèi)外徑依次以0.1為臺(tái)階有變化之外,此次實(shí)驗(yàn)條件和3.1的條件一樣。實(shí)驗(yàn)中傳輸距離為550 km,每隔50 km測(cè)試一次誤碼率。
從圖5不難看出,隨著傳輸距離的增加誤碼率也增加。只是由于圈比不同,誤碼率的增加幅度也不一樣。對(duì)光傳輸影響較大的色散、非線性等在短距離內(nèi)作用不明顯,故圖5在傳輸距離小于300 km以內(nèi),誤碼率幾乎為零故看不出圈比對(duì)系統(tǒng)誤碼率的影響。當(dāng)距離大于300 km時(shí),系統(tǒng)誤碼率隨著距離的增大而增大,此時(shí)圈比的影響就充分的體現(xiàn)出來。所以從圖5中可以看出在圈比Q為2.7∶1,2.8∶1,2.9∶1時(shí)誤碼率最低。
圖5 圈比對(duì)兩種不同調(diào)制方式的影響
4 結(jié) 論
本文從三個(gè)方面討論了16APSK調(diào)制和16QAM調(diào)制的性能,并從誤碼上進(jìn)行比較。從而得出APSK調(diào)制方式在光領(lǐng)域的性能要遠(yuǎn)優(yōu)于方形QAM調(diào)制。在電領(lǐng)域中廣泛應(yīng)用的APSK調(diào)制引入到光領(lǐng)域中與方形QAM調(diào)相比還是有很多可取之處:在沒有做任何優(yōu)化情況下,光信號(hào)傳輸650 km APSK調(diào)制的光通信系統(tǒng)能比方形QAM調(diào)制的低一個(gè)數(shù)量級(jí),可見APSK調(diào)制自身的優(yōu)越性;本身對(duì)光源線寬并不敏感,可發(fā)使光源線寬擴(kuò)大。降低了光源制作的復(fù)雜程度,也降低了光通信的成本。APSK調(diào)制將是末來光通信調(diào)制方式的最佳選擇。
參考文獻(xiàn)
[1] WINZER P J, ESSIAMBRE R. Advanced optical modulation formats [J]. Proceedings of the IEEE, 2006, 94(5): 952?985.
[2] SEIMETZ M. Laser linewidth limitations for opical systems with high?order modulation employing feed forward digital carrier phase estimation [C]// OFC 2008 Conference on Optical Fiber communication/National Fiber Optic Engineers. [S.l.]: IEEE, 2008: 1?4.
[3] MORITA I, JANSEN S L. High speed transmission technologies for 100 Gbit/s class Ethernet [C]// ECOC 33rd European Conference and Ethxibition. [S.l.]: ECOC, 2007: 1?4.
[4] WUTH T, CHBAT M W, KAMALOV V F. Multi?rate (100G/40G/10G) transport over deployed optical networks [C]// OFC/NFOEC Conference. [S.l.]: OFC, 2008: 1?9.
[5] BINH L. Dual?ring 16?Star QAM direct and coherent detection in 100Gb/s optically amplified fiber transmission: simulation [J]. Opt Quant Electron, 2008, 40(10): 1?6.
[6] ARTHR. J L, LIANGDU J A. Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems [C]// OFC/OFEC Conference. [S.l.]: OFC, 2006: 1?3.
[7] TAKAHASHI Hidenori. Coherent OFDM transmission with high spectral sufficiency [C]// ECOC 35th European Conference. [S.l.]: ECOC, 2009: 1?4.
[8] CHEN Si?min, MA Yi?ran, SHIEH William. 110?Gb/s multi?band real?time coherent optical OFDM reception after 600?km transmission over SSMF fiber [C]// OFC/NPOE conference. [S.l.]: OFC, 2010: 1?3.
[9] LAN Ming?ying, YU Song, LI Wei. A LMMSE channel estimator for coherent optical OFDM system [C]// Communications and Photonics Conference and Exhibition. [S.l.]: CPCE, 2009: 1?2.
[10] SHIEH W.光通信中的OFDM[M].白成林,馮敏,羅青龍,譯.北京:電子工業(yè)出版社,2011.
[11] 顧畹儀,李國瑞.光纖通信系統(tǒng)[M].北京:北京郵電大學(xué)出版社,2006.
[12] 劉繼紅,李佳泯,梁猛.16?QAM相干光纖通信系統(tǒng)星座圖的優(yōu)化與選擇[J].半導(dǎo)體光電,2011,33(1):110?112.
參考文獻(xiàn)
[1] WINZER P J, ESSIAMBRE R. Advanced optical modulation formats [J]. Proceedings of the IEEE, 2006, 94(5): 952?985.
[2] SEIMETZ M. Laser linewidth limitations for opical systems with high?order modulation employing feed forward digital carrier phase estimation [C]// OFC 2008 Conference on Optical Fiber communication/National Fiber Optic Engineers. [S.l.]: IEEE, 2008: 1?4.
[3] MORITA I, JANSEN S L. High speed transmission technologies for 100 Gbit/s class Ethernet [C]// ECOC 33rd European Conference and Ethxibition. [S.l.]: ECOC, 2007: 1?4.
[4] WUTH T, CHBAT M W, KAMALOV V F. Multi?rate (100G/40G/10G) transport over deployed optical networks [C]// OFC/NFOEC Conference. [S.l.]: OFC, 2008: 1?9.
[5] BINH L. Dual?ring 16?Star QAM direct and coherent detection in 100Gb/s optically amplified fiber transmission: simulation [J]. Opt Quant Electron, 2008, 40(10): 1?6.
[6] ARTHR. J L, LIANGDU J A. Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems [C]// OFC/OFEC Conference. [S.l.]: OFC, 2006: 1?3.
[7] TAKAHASHI Hidenori. Coherent OFDM transmission with high spectral sufficiency [C]// ECOC 35th European Conference. [S.l.]: ECOC, 2009: 1?4.
[8] CHEN Si?min, MA Yi?ran, SHIEH William. 110?Gb/s multi?band real?time coherent optical OFDM reception after 600?km transmission over SSMF fiber [C]// OFC/NPOE conference. [S.l.]: OFC, 2010: 1?3.
[9] LAN Ming?ying, YU Song, LI Wei. A LMMSE channel estimator for coherent optical OFDM system [C]// Communications and Photonics Conference and Exhibition. [S.l.]: CPCE, 2009: 1?2.
[10] SHIEH W.光通信中的OFDM[M].白成林,馮敏,羅青龍,譯.北京:電子工業(yè)出版社,2011.
[11] 顧畹儀,李國瑞.光纖通信系統(tǒng)[M].北京:北京郵電大學(xué)出版社,2006.
[12] 劉繼紅,李佳泯,梁猛.16?QAM相干光纖通信系統(tǒng)星座圖的優(yōu)化與選擇[J].半導(dǎo)體光電,2011,33(1):110?112.
參考文獻(xiàn)
[1] WINZER P J, ESSIAMBRE R. Advanced optical modulation formats [J]. Proceedings of the IEEE, 2006, 94(5): 952?985.
[2] SEIMETZ M. Laser linewidth limitations for opical systems with high?order modulation employing feed forward digital carrier phase estimation [C]// OFC 2008 Conference on Optical Fiber communication/National Fiber Optic Engineers. [S.l.]: IEEE, 2008: 1?4.
[3] MORITA I, JANSEN S L. High speed transmission technologies for 100 Gbit/s class Ethernet [C]// ECOC 33rd European Conference and Ethxibition. [S.l.]: ECOC, 2007: 1?4.
[4] WUTH T, CHBAT M W, KAMALOV V F. Multi?rate (100G/40G/10G) transport over deployed optical networks [C]// OFC/NFOEC Conference. [S.l.]: OFC, 2008: 1?9.
[5] BINH L. Dual?ring 16?Star QAM direct and coherent detection in 100Gb/s optically amplified fiber transmission: simulation [J]. Opt Quant Electron, 2008, 40(10): 1?6.
[6] ARTHR. J L, LIANGDU J A. Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems [C]// OFC/OFEC Conference. [S.l.]: OFC, 2006: 1?3.
[7] TAKAHASHI Hidenori. Coherent OFDM transmission with high spectral sufficiency [C]// ECOC 35th European Conference. [S.l.]: ECOC, 2009: 1?4.
[8] CHEN Si?min, MA Yi?ran, SHIEH William. 110?Gb/s multi?band real?time coherent optical OFDM reception after 600?km transmission over SSMF fiber [C]// OFC/NPOE conference. [S.l.]: OFC, 2010: 1?3.
[9] LAN Ming?ying, YU Song, LI Wei. A LMMSE channel estimator for coherent optical OFDM system [C]// Communications and Photonics Conference and Exhibition. [S.l.]: CPCE, 2009: 1?2.
[10] SHIEH W.光通信中的OFDM[M].白成林,馮敏,羅青龍,譯.北京:電子工業(yè)出版社,2011.
[11] 顧畹儀,李國瑞.光纖通信系統(tǒng)[M].北京:北京郵電大學(xué)出版社,2006.
[12] 劉繼紅,李佳泯,梁猛.16?QAM相干光纖通信系統(tǒng)星座圖的優(yōu)化與選擇[J].半導(dǎo)體光電,2011,33(1):110?112.