亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        The Jacobi Elliptic Function Method for Solving Zakharov Equation

        2014-07-19 11:47:57WANGQing
        關(guān)鍵詞:步伐農(nóng)機(jī)化起點(diǎn)

        WANG Qing

        (Department of Basic Coures,Liaoning University of International Business and Economics,Dalian 116052,China)

        The Jacobi Elliptic Function Method for Solving Zakharov Equation

        WANG Qing

        (Department of Basic Coures,Liaoning University of International Business and Economics,Dalian 116052,China)

        The Zakharov equation to describe the laser plasma interaction process has very important sense,this paper gives the solitary wave solutions for Zakharov equation by using Jacobi elliptic function method.

        Zakharov equation;Jacobi elliptic function method;solitary wave solution

        §1.Introduction

        Zakharov equation is a kind of important nonlinear evolution equation,it has a very rich physical background and connotation,the research from the son body movement or nonlinear waves of high frequency are involved in how to solve the Zakharov equation[1](numerical solution and exact solution),scholars pay close attention to the problem,gives some solving methods(such as[2-3]),this paper uses the Jacobi elliptic function method for solving Zakharov equation,obtained by this equation are obtained.

        §2.Jacobi Elliptic Function Method

        Jacobi elliptic function method for the main steps are as follows.

        The f i rst step,for a given nonlinear evolution equation(Group)

        As the traveling wave transformation

        where λ is the wave speed.By ordinary dif f erential equation(Group)

        The second step,a step of ordinary dif f erential equation(Group)(2.3)as the solution

        where n is a constant,it can get by balancing the highest derivative and non-linearity[2]and A(ξ),B(ξ)is a double projection Riccati equation with non zero solution,

        Based on the above relationship and[2-3],we give the equation(2.5)~(2.6)follows the formal solution.

        When b2k20=b2l2+δ and br<0,equations(2.5)and(2.6)have the following function solutions

        When b2k20=b2l2?δ and br>0,equations(1.5)and(1.6)have the following trigonometric function solutions

        The third step,the formula(2.4)together with equation(2.5)~(2.6)substituted into equation(2.3)and the search for theAi(ξ)Bj(ξ)(i=0,1,···,n;j=0,1)coefficients,and then make the coefficient is 0,get on a variable p0,pi,qi,λ(i=1,···,n)overdetermined algebraic equations.

        The fourth step,using Wu’s method(see[4])and Maple software for solving overdetermined equations,p0,pi,qi,λ(i=1,···,n),several solutions.

        The f i fth step,the fourth step of each solution together with solutions group(2.7)~(2.9) and(2.10)into(2.4)and(2.2)type has the original equation(2.1)to the exact solution.

        §3.Application of Jacobi Elliptic Function Method for Solving Zakharov Equation

        The specif i c form of Zakharov equation as follows

        Considering v is the electric f i eld intensity variations in the amplitude,we can set it into an envelope wave solutions and the ion number density deviation u for general travelling wave solutions.

        Will(3.2)substituted into equation(3.1)to get

        Will(3.3)the f i rst equation direct integral,integral constant is zero,so

        Thus,for a real-valued function φ on c2g?c2sand u established requirements have the same sign.cg<cs(subsonic),u from a negative number,cg>cs(supersonic),u plus.

        Will(3.4)type of substitution(3.3)of the second equation

        Will(3.2)into(3.5),so

        Let

        Then(3.6)type of

        Will(3.7)type generation(3.8)type,there are

        That is

        let

        By[2],

        Constraint condition

        ψ(ξ)satisf i es the f i rst kind of elliptic equation

        When the A(ξ),B(ξ)constraints

        黨的十九大提出了“實(shí)施鄉(xiāng)村振興戰(zhàn)略”,推進(jìn)鄉(xiāng)村振興,實(shí)現(xiàn)農(nóng)業(yè)現(xiàn)代化,必須加快農(nóng)業(yè)機(jī)械化步伐。站在新的歷史起點(diǎn),農(nóng)業(yè)機(jī)械化引領(lǐng)農(nóng)業(yè)生產(chǎn)方式變革的態(tài)勢(shì)更加趨顯,河南農(nóng)機(jī)化發(fā)展又迎來了重大歷史機(jī)遇。

        Equations(3.5)and(3.6)have the following elliptic function solutions

        ψ(ξ)satisf i es the elliptic equation

        Will(3.11)type of substitution(3.19)type and the use of(3.5),(3.6)and(3.12),the A(ξ) and B(ξ)of the power coefficient is zero,so

        With Maple software solutions of the above equations,it can be

        Will(3.20)type of substitution(3.12)and(3.14)type,we get Zakharov equation of a solitary wave solution

        On the dif f erent values of r,b,s,l,ψ(ξ)correspond to dif f erent elliptic function.Will (3.11)type of substitution(3.9)type and use(3.5)~(3.6),(3.15),the A(ξ)and B(ξ)of the power coefficient is zero,so

        With Maple software solutions of the above equations,it can be

        In which

        So

        Will(3.25)type of substitution(3.2)and(3.4)type,we get Zakharov equation and a solitary wave solution

        On the dif f erent values of r,b,s,l,ψ(ξ)correspond to dif f erent elliptic function.

        §4.Summary

        We use the Jacobi elliptic function method to solving Zakharov equation into the equation and obtained Zakharov equation new solitary wave solutions of Zakharov equation and gives the solutions to elliptic equations.Other suitable methods still need further discussion.

        [1]LIU Shi-shi,LIU Shi-da.Nonlinear Equations in Physics[M].Beijing:Peking University Press,2000:157-200.

        [2]LI De-sheng,ZHANG Hong-qing.Elliptic function solutions for nonlinear evolution equation have a simple and its applications[J].Acta Physical Sin,2006,55(4):1565-1570.

        [3]ZHANG Shan-qing,LI Zhi-bin.New applications of Jacobi elliptic function expansion method[J].Acta Physical Sin,2003,52(5):1066-1069.

        [4]YONG Xue-lin,ZHANG Hong-qing.Extended projective Riccati equations method and its application[J]. Acta Physical Sin,2005,54(6):2514-2519.

        [5]WU W T.Polynomial Equation-solving and Its Application,Algorithms and Computation[M].Berlin: Springer-Verlage,1994:55-98.

        tion:05A30

        1002–0462(2014)04–0627–06

        date:2013-11-11

        Supported by the GHZD(13010)

        Biography:WANG Qing(1974-),male,native of Liaoning,Dalian,an associate professor of Liaoning University of International Business and Economics,M.S.D.,engages in the numerical approximation.

        CLC number:O155Document code:A

        猜你喜歡
        步伐農(nóng)機(jī)化起點(diǎn)
        成長(zhǎng)的步伐
        《貴州農(nóng)機(jī)化》征稿啟事
        《貴州農(nóng)機(jī)化》征稿啟事
        輕快漫舞
        弄清楚“起點(diǎn)”前面有多少
        《貴州農(nóng)機(jī)化》2018年征稿啟事
        起點(diǎn)
        我的“新”起點(diǎn)
        Ускорение темпов китайско- казахстанского торгово- экономического сотрудничества
        中亞信息(2015年5期)2015-12-07 06:43:28
        新年的起點(diǎn)
        成在线人视频免费视频| 久久久久99精品成人片直播| 成人欧美一区二区三区的电影| 欧美日韩色| 蜜桃在线一区二区三区 | 澳门蜜桃av成人av| 中文字幕乱码一区av久久不卡| 免费一区二区三区久久| 淫欲一区二区中文字幕| 日本精品免费看99久久| 影音先锋中文字幕无码资源站| 亚洲欧美国产日韩天堂在线视| 熟女少妇av免费观看| 婷婷色精品一区二区激情| 中文字幕人妻第一区| 亚洲av之男人的天堂| 久久熟女乱一区二区三区四区| 亚洲一区二区三区2021| 丁字裤少妇露黑毛| 日韩免费小视频| 午夜亚洲精品一区二区| 精品香蕉一区二区三区| 免费a级毛片出奶水| 精品三级久久久久久久| 国产精品久久久黄色片| 高清偷自拍亚洲精品三区| 欧美日韩在线免费看| 手机在线免费看av网站| 国产一区二区三区av天堂| 亚洲av永久无码精品一区二区| 国产av一区二区三区区别| 亚洲熟妇在线视频观看| 一区二区三区视频偷拍| 国产特级毛片aaaaaa高潮流水| 理论片午午伦夜理片影院| 亚洲成AV人久久| 国产精品黑丝美腿美臀| 人妻聚色窝窝人体www一区| 亚洲熟妇在线视频观看| 免费观看一区二区三区视频| 97se亚洲国产综合自在线观看 |