亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        The Jacobi Elliptic Function Method for Solving Zakharov Equation

        2014-07-19 11:47:57WANGQing
        關(guān)鍵詞:步伐農(nóng)機(jī)化起點(diǎn)

        WANG Qing

        (Department of Basic Coures,Liaoning University of International Business and Economics,Dalian 116052,China)

        The Jacobi Elliptic Function Method for Solving Zakharov Equation

        WANG Qing

        (Department of Basic Coures,Liaoning University of International Business and Economics,Dalian 116052,China)

        The Zakharov equation to describe the laser plasma interaction process has very important sense,this paper gives the solitary wave solutions for Zakharov equation by using Jacobi elliptic function method.

        Zakharov equation;Jacobi elliptic function method;solitary wave solution

        §1.Introduction

        Zakharov equation is a kind of important nonlinear evolution equation,it has a very rich physical background and connotation,the research from the son body movement or nonlinear waves of high frequency are involved in how to solve the Zakharov equation[1](numerical solution and exact solution),scholars pay close attention to the problem,gives some solving methods(such as[2-3]),this paper uses the Jacobi elliptic function method for solving Zakharov equation,obtained by this equation are obtained.

        §2.Jacobi Elliptic Function Method

        Jacobi elliptic function method for the main steps are as follows.

        The f i rst step,for a given nonlinear evolution equation(Group)

        As the traveling wave transformation

        where λ is the wave speed.By ordinary dif f erential equation(Group)

        The second step,a step of ordinary dif f erential equation(Group)(2.3)as the solution

        where n is a constant,it can get by balancing the highest derivative and non-linearity[2]and A(ξ),B(ξ)is a double projection Riccati equation with non zero solution,

        Based on the above relationship and[2-3],we give the equation(2.5)~(2.6)follows the formal solution.

        When b2k20=b2l2+δ and br<0,equations(2.5)and(2.6)have the following function solutions

        When b2k20=b2l2?δ and br>0,equations(1.5)and(1.6)have the following trigonometric function solutions

        The third step,the formula(2.4)together with equation(2.5)~(2.6)substituted into equation(2.3)and the search for theAi(ξ)Bj(ξ)(i=0,1,···,n;j=0,1)coefficients,and then make the coefficient is 0,get on a variable p0,pi,qi,λ(i=1,···,n)overdetermined algebraic equations.

        The fourth step,using Wu’s method(see[4])and Maple software for solving overdetermined equations,p0,pi,qi,λ(i=1,···,n),several solutions.

        The f i fth step,the fourth step of each solution together with solutions group(2.7)~(2.9) and(2.10)into(2.4)and(2.2)type has the original equation(2.1)to the exact solution.

        §3.Application of Jacobi Elliptic Function Method for Solving Zakharov Equation

        The specif i c form of Zakharov equation as follows

        Considering v is the electric f i eld intensity variations in the amplitude,we can set it into an envelope wave solutions and the ion number density deviation u for general travelling wave solutions.

        Will(3.2)substituted into equation(3.1)to get

        Will(3.3)the f i rst equation direct integral,integral constant is zero,so

        Thus,for a real-valued function φ on c2g?c2sand u established requirements have the same sign.cg<cs(subsonic),u from a negative number,cg>cs(supersonic),u plus.

        Will(3.4)type of substitution(3.3)of the second equation

        Will(3.2)into(3.5),so

        Let

        Then(3.6)type of

        Will(3.7)type generation(3.8)type,there are

        That is

        let

        By[2],

        Constraint condition

        ψ(ξ)satisf i es the f i rst kind of elliptic equation

        When the A(ξ),B(ξ)constraints

        黨的十九大提出了“實(shí)施鄉(xiāng)村振興戰(zhàn)略”,推進(jìn)鄉(xiāng)村振興,實(shí)現(xiàn)農(nóng)業(yè)現(xiàn)代化,必須加快農(nóng)業(yè)機(jī)械化步伐。站在新的歷史起點(diǎn),農(nóng)業(yè)機(jī)械化引領(lǐng)農(nóng)業(yè)生產(chǎn)方式變革的態(tài)勢(shì)更加趨顯,河南農(nóng)機(jī)化發(fā)展又迎來了重大歷史機(jī)遇。

        Equations(3.5)and(3.6)have the following elliptic function solutions

        ψ(ξ)satisf i es the elliptic equation

        Will(3.11)type of substitution(3.19)type and the use of(3.5),(3.6)and(3.12),the A(ξ) and B(ξ)of the power coefficient is zero,so

        With Maple software solutions of the above equations,it can be

        Will(3.20)type of substitution(3.12)and(3.14)type,we get Zakharov equation of a solitary wave solution

        On the dif f erent values of r,b,s,l,ψ(ξ)correspond to dif f erent elliptic function.Will (3.11)type of substitution(3.9)type and use(3.5)~(3.6),(3.15),the A(ξ)and B(ξ)of the power coefficient is zero,so

        With Maple software solutions of the above equations,it can be

        In which

        So

        Will(3.25)type of substitution(3.2)and(3.4)type,we get Zakharov equation and a solitary wave solution

        On the dif f erent values of r,b,s,l,ψ(ξ)correspond to dif f erent elliptic function.

        §4.Summary

        We use the Jacobi elliptic function method to solving Zakharov equation into the equation and obtained Zakharov equation new solitary wave solutions of Zakharov equation and gives the solutions to elliptic equations.Other suitable methods still need further discussion.

        [1]LIU Shi-shi,LIU Shi-da.Nonlinear Equations in Physics[M].Beijing:Peking University Press,2000:157-200.

        [2]LI De-sheng,ZHANG Hong-qing.Elliptic function solutions for nonlinear evolution equation have a simple and its applications[J].Acta Physical Sin,2006,55(4):1565-1570.

        [3]ZHANG Shan-qing,LI Zhi-bin.New applications of Jacobi elliptic function expansion method[J].Acta Physical Sin,2003,52(5):1066-1069.

        [4]YONG Xue-lin,ZHANG Hong-qing.Extended projective Riccati equations method and its application[J]. Acta Physical Sin,2005,54(6):2514-2519.

        [5]WU W T.Polynomial Equation-solving and Its Application,Algorithms and Computation[M].Berlin: Springer-Verlage,1994:55-98.

        tion:05A30

        1002–0462(2014)04–0627–06

        date:2013-11-11

        Supported by the GHZD(13010)

        Biography:WANG Qing(1974-),male,native of Liaoning,Dalian,an associate professor of Liaoning University of International Business and Economics,M.S.D.,engages in the numerical approximation.

        CLC number:O155Document code:A

        猜你喜歡
        步伐農(nóng)機(jī)化起點(diǎn)
        成長(zhǎng)的步伐
        《貴州農(nóng)機(jī)化》征稿啟事
        《貴州農(nóng)機(jī)化》征稿啟事
        輕快漫舞
        弄清楚“起點(diǎn)”前面有多少
        《貴州農(nóng)機(jī)化》2018年征稿啟事
        起點(diǎn)
        我的“新”起點(diǎn)
        Ускорение темпов китайско- казахстанского торгово- экономического сотрудничества
        中亞信息(2015年5期)2015-12-07 06:43:28
        新年的起點(diǎn)
        久久精品视频日本免费| 久久欧美与黑人双交男男| 久久精品波多野结衣中文字幕| 日本视频精品一区二区| 中文资源在线一区二区三区av| 久久亚洲av午夜福利精品一区| 成人欧美一区二区三区a片| 久久国产精品99精品国产987| 中文字幕人妻激情在线视频| 日韩人妻中文无码一区二区| 人与禽交av在线播放| 久久一区二区三区四区| 国产精品第一区亚洲精品| 综合偷自拍亚洲乱中文字幕| 天堂中文在线资源| 国产免费人成视频在线播放播| 视频一区二区三区国产| 亚洲av永久无码精品一福利 | 亚洲精品综合一区二区三| 春色成人在线一区av| 精品人妻av中文字幕乱| 狠狠躁18三区二区一区| 国产成人无码av在线播放dvd| 麻豆久久久国内精品| 亚洲中文字幕九色日本| 中文字幕人妻少妇引诱隔壁| 夜夜春精品视频| 国产精品久久久看三级| 中文字幕亚洲无线码在线一区| 18禁高潮出水呻吟娇喘蜜芽| 国产一区二区a毛片色欲| 国产精品成人av一区二区三区| 亚洲av综合永久无码精品天堂| 人妻少妇偷人精品无码 | 综合无码综合网站| 亚洲发给我的在线视频| 无码av中文一区二区三区桃花岛| 国产精品视频一区二区三区四| 狠狠亚洲超碰狼人久久老人| 人妻熟女翘屁股中文字幕| 国产裸拍裸体视频在线观看|