周 鑫李清泉*孫秀博魏 敏
1)(南京信息工程大學(xué)大氣科學(xué)學(xué)院,南京210044)
2)(國(guó)家氣候中心 中國(guó)氣象局氣候研究開放實(shí)驗(yàn)室,北京100081)
3)(國(guó)家氣象信息中心,北京100081)
BCC_CSM1.1模式對(duì)我國(guó)氣溫的模擬和預(yù)估
周 鑫1)2)李清泉1)2)*孫秀博2)魏 敏3)
1)(南京信息工程大學(xué)大氣科學(xué)學(xué)院,南京210044)
2)(國(guó)家氣候中心 中國(guó)氣象局氣候研究開放實(shí)驗(yàn)室,北京100081)
3)(國(guó)家氣象信息中心,北京100081)
利用我國(guó)541個(gè)測(cè)站1960—2010年氣溫資料以及國(guó)家氣候中心參加第5次耦合模式比較計(jì)劃(CMIP5)的氣候系統(tǒng)模式BCC_CSM1.1的歷史試驗(yàn)和年代際試驗(yàn)結(jié)果,評(píng)估了該模式對(duì)我國(guó)近50年氣溫變化特征的模擬能力,對(duì)模式的年代際試驗(yàn)結(jié)果進(jìn)行了誤差訂正,并給出未來10~20年我國(guó)氣溫變化的預(yù)估。結(jié)果表明:歷史試驗(yàn)和年代際試驗(yàn)均模擬出了與觀測(cè)較為一致的增暖趨勢(shì),但均沒有觀測(cè)資料的增暖幅度大。其中,歷史試驗(yàn)比年代際試驗(yàn)更接近于觀測(cè)。年代際尺度上,模式對(duì)我國(guó)東部的模擬要好于西部;年際尺度上,模式的高預(yù)報(bào)技巧區(qū)在我國(guó)西北地區(qū)西南部和東部、西南地區(qū)北部。歷史試驗(yàn)和年代際試驗(yàn)對(duì)我國(guó)氣溫空間場(chǎng)整體分布模擬較好,誤差訂正后的年代際試驗(yàn)結(jié)果對(duì)空間氣溫場(chǎng)的模擬有更好把握。相對(duì)于觀測(cè)資料得到的1960—2010年0.27℃/10a的增溫速率,模式預(yù)估我國(guó)2011—2030年平均氣溫變化速率達(dá)到0.48℃/10a,上升趨勢(shì)更加明顯。
CMIP5;BCC_CSM1.1;氣溫;誤差訂正;預(yù)估
目前,對(duì)全球氣候變化進(jìn)行預(yù)估主要依賴于全球氣候模式的發(fā)展,隨著氣象學(xué)家們對(duì)氣候模式的不斷改進(jìn),其模擬結(jié)果也被證實(shí)越來越可信[1-2]。年際和年代際變率在20世紀(jì)的研究中已經(jīng)被證實(shí)是氣候系統(tǒng)中同時(shí)存在的兩種不同時(shí)間尺度的氣候變率[34]。未來10~30年的氣候變化,即年代際時(shí)間尺度上的氣候變化及這種變化對(duì)全球環(huán)境、社會(huì)、經(jīng)濟(jì)發(fā)展帶來的影響,逐漸成為人們關(guān)注的問題[5-7]。
受全球變暖影響,氣候變化的年代際尺度信號(hào)越來越顯著。年代際尺度氣候變化是IPCC AR5的重要內(nèi)容之一。在IPCC第5次評(píng)估報(bào)告(AR5)之前,關(guān)于氣候變化的研究重點(diǎn)主要是關(guān)于氣候系統(tǒng)對(duì)外強(qiáng)迫變化的敏感性。如IPCC第4次評(píng)估報(bào)告(AR4)對(duì)比了不同溫室氣體和氣溶膠排放情景下,2100年全球表面氣溫的變化幅度。但研究表明,在未來30年,全球氣溫變化并不十分依賴于不同的排放情景[8]。第5次耦合模式比較計(jì)劃(CMIP5)新加入了多組10~30年的年代際尺度回報(bào)和預(yù)測(cè)試驗(yàn)[9]。在年代際甚至更長(zhǎng)的時(shí)間尺度上,不僅要考慮外強(qiáng)迫(太陽活動(dòng)、火山噴發(fā)、人類活動(dòng)引起的溫室氣體排放等)和氣候系統(tǒng)內(nèi)部變率的影響,還需要更多關(guān)注模式的初始狀態(tài)。在這一時(shí)間尺度上,模式初始條件比邊界條件的影響可能更為重要[10]。Branstator等[11]對(duì)6個(gè)耦合氣候模式在同樣外強(qiáng)迫條件下進(jìn)行積分,以研究模式初始狀態(tài)對(duì)可預(yù)測(cè)性的影響。其研究表明,模式初始狀態(tài)在北大西洋和北太平洋海域的影響大約可以維持10年,但這一限制在不同的模式間變化較大,特別是在北大西洋海域,每個(gè)模式的最高相關(guān)區(qū)域均有所不同。水平傳播對(duì)初值信號(hào)的演變影響較大,這是導(dǎo)致不同模式存在可預(yù)測(cè)性差異的一個(gè)關(guān)鍵因素。Keenlyside等[12]的研究結(jié)果表明,同化海表溫度(SST)的初始化方案的年代際預(yù)測(cè)試驗(yàn)成功模擬出了北大西洋經(jīng)向翻轉(zhuǎn)環(huán)流(AMOC)的年代際振蕩,從而提高了北大西洋海溫、歐洲和北美地表氣溫的年代際變化預(yù)報(bào)技巧;同時(shí)也表明,加入海溫初始信息的年代際試驗(yàn)比傳統(tǒng)氣候模式的增暖幅度更接近于觀測(cè)值。Mochizuki等[13]對(duì)耦合模式MIPOC同化海洋上層溫度、鹽度的年代際試驗(yàn)提高了對(duì)太平洋年代際振蕩(PDO)的預(yù)報(bào)技巧。吳波等[14]基于FGOALS_gl模式采用IAU方案同化海洋客觀分析資料的三維溫度和鹽度場(chǎng)的年代際試驗(yàn)結(jié)果表明,海洋初始化過程能夠有效提高耦合模式對(duì)年代際變率較大區(qū)域的預(yù)測(cè)技巧。Metha等[15]研究表明,同化三維溫度和鹽度場(chǎng)的初始化方案為部分區(qū)域的年代際氣候預(yù)測(cè)提供了一定的預(yù)報(bào)技巧,特別是在北大西洋和北太平洋區(qū)域。這些初始化方案在陸地上預(yù)報(bào)技巧提高并不明顯,熱帶外地區(qū)預(yù)測(cè)能力好于熱帶地區(qū)。
Zhou等[16]用IPCC第4次評(píng)估報(bào)告(AR4)的19個(gè)模式評(píng)估了中國(guó)區(qū)域地面氣溫,研究表明,大多模式能模擬出我國(guó)地面氣溫的平均態(tài),但對(duì)我國(guó)20世紀(jì)中期之后的增暖趨勢(shì)及近20年來的加速增暖模擬較弱。劉敏等[17]利用13個(gè)IPCC AR4模式對(duì)中國(guó)區(qū)域近40年的氣候模擬評(píng)估表明,13個(gè)耦合模式和多模式集合對(duì)中國(guó)1961—2000年的地面氣溫年變化及空間分布反映效果都比較好,但對(duì)中國(guó)區(qū)域地面氣溫模擬值整體系統(tǒng)偏低,東部模擬效果好于中西部。使用區(qū)域模式對(duì)中國(guó)區(qū)域當(dāng)前以及未來氣候的模擬及預(yù)估方面,也開展了較多研究[1821]。姜大膀等[22]研究了 SRES A2情境下我國(guó)21世紀(jì)前30年的氣溫變化表明,我國(guó)冬季和夏季氣溫、最高氣溫、最低氣溫分別升高0.3~2.3℃,0.1~2.0℃,0.5~2.7℃,由南向北升溫逐漸加強(qiáng),且增幅隨時(shí)間加大。李博等[23]利用CMIP3提供的20世紀(jì)氣候模擬試驗(yàn)(20C3M)和A1B情景預(yù)估試驗(yàn)結(jié)果,分析和討論了全球變暖情景下21世紀(jì)中期中國(guó)氣候的可能變化。結(jié)果表明,冬、夏季全國(guó)氣溫將升高,升溫幅度為1.2~2.8℃;隨緯度升高,增暖幅度相應(yīng)增大。Li等[24-25]利用CMIP3的24個(gè)耦合模式20C3M試驗(yàn)和1pctto2x試驗(yàn)結(jié)果對(duì)我國(guó)7—8月氣候進(jìn)行模擬分析,結(jié)果表明,大多數(shù)模式模擬的氣溫偏低,其中西部偏低5℃以上,東部偏低2℃以內(nèi);氣溫場(chǎng)相關(guān)系數(shù)為0.6~0.9,比降水模擬結(jié)果好。
本文使用1960—2010年我國(guó)541個(gè)測(cè)站的氣溫資料以及國(guó)家氣候中心參與CMIP5全球耦合模式比較計(jì)劃的BCC_CSM1.1模式的年代際試驗(yàn)和歷史試驗(yàn)數(shù)據(jù),檢驗(yàn)了模式對(duì)我國(guó)氣溫年際、年代際變化的模擬能力。對(duì)加入觀測(cè)海溫初始信息的年代際試驗(yàn)與僅考慮外強(qiáng)迫的歷史試驗(yàn)進(jìn)行對(duì)比分析,探討年代際試驗(yàn)是否能提高我國(guó)區(qū)域氣溫年代際尺度預(yù)報(bào)技巧。另外,對(duì)年代際試驗(yàn)結(jié)果進(jìn)行誤差訂正,檢驗(yàn)其可靠性,并利用誤差訂正后的試驗(yàn)結(jié)果對(duì)我國(guó)未來氣溫變化進(jìn)行了預(yù)估。
1.1 模式、試驗(yàn)方案及資料
本文使用的模式資料為國(guó)家氣候中心參加CMIP5比較計(jì)劃的耦合模式BCC_CSM1.1的歷史試驗(yàn)和年代際試驗(yàn)結(jié)果。BCC_CSM1.1模式是一個(gè)大氣-海洋-陸面-海冰耦合的全球氣候耦合模式,其中大氣模式為BCC_AGCM2.1,垂直分為26層,水平分辨率為2.8°×2.8°;海洋模式 MOM4_L40水平分辨率為(1/3)°~1°緯度×1°經(jīng)度,垂直分為40層;陸面模式為BCC_AVIM1.0,是大氣植被互相作用的模式;海冰模式SIS水平分辨率也為1°×1°,垂直方向包含1層積雪和2層海冰。
模式試驗(yàn)方案及模式資料的詳細(xì)介紹可參見文獻(xiàn)[26]。其中,歷史試驗(yàn)相當(dāng)于IPCC AR4中的20世紀(jì)模擬試驗(yàn)(20C3M),是在工業(yè)革命前控制試驗(yàn)的基礎(chǔ)上選取初始場(chǎng),從1850年1月積分到2012年12月。采用隨時(shí)間變化的臭氧、溫室氣體、太陽常數(shù)、火山活動(dòng)和氣溶膠的外強(qiáng)迫場(chǎng)。其中,1850年1月—2005年12月的強(qiáng)迫場(chǎng)為觀測(cè)值,2006年1月—2012年12月采用RCP8.5的強(qiáng)迫場(chǎng),歷史試驗(yàn)有3個(gè)不同初值的樣本。年代際預(yù)測(cè)試驗(yàn)是將模式的初始狀態(tài)用觀測(cè)海洋資料進(jìn)行初始化,在外強(qiáng)迫下進(jìn)行10~30年的模擬預(yù)測(cè)。在年代際試驗(yàn)中,BCC_CSM1.1模式所用的觀測(cè)海洋資料是美國(guó)SODA全球月平均海洋溫度再分析資料,初始化方案采用的是將模式模擬的海溫向SODA逼近的方法,恢復(fù)時(shí)間為1d。年代際預(yù)測(cè)試驗(yàn)在2005年之前采用的強(qiáng)迫場(chǎng)與歷史試驗(yàn)一致,2005年之后采用RCP4.5的強(qiáng)迫場(chǎng),模式輸入的強(qiáng)迫因子包括溫室氣體、氣溶膠、臭氧、太陽常數(shù)和碳排放,均由CMIP5統(tǒng)一提供。溫室氣體包括二氧化碳、一氧化二氮、甲烷、氟化物,氣溶膠包括硫酸鹽、火山氣溶膠、海鹽、沙塵、黑碳和有機(jī)碳。
本文使用了BCC_CSM1.1模式每隔5年1組、連續(xù)積分30年的10組年代際試驗(yàn)結(jié)果,即1961年1月—1990年12月、1966年1月—1995年12月、……2006年1月—2035年12月的試驗(yàn)結(jié)果,每組試驗(yàn)有4個(gè)不同初值的樣本。本文所使用的歷史試驗(yàn)和年代際試驗(yàn)結(jié)果均為多個(gè)不同初值樣本求平均后得到。使用的觀測(cè)數(shù)據(jù)為國(guó)家氣象信息中心提供的1960—2010年剔除缺測(cè)后的我國(guó)541個(gè)測(cè)站的氣溫資料。將模式結(jié)果插值到與觀測(cè)對(duì)應(yīng)的541個(gè)測(cè)站經(jīng)緯度上進(jìn)行對(duì)比分析。
1.2 方 法
由于氣候模式本身存在系統(tǒng)偏差,進(jìn)行預(yù)測(cè)時(shí)不可避免地向模式氣候態(tài)偏移。因此,需要對(duì)模式預(yù)測(cè)的結(jié)果進(jìn)行合理的誤差訂正,從而得到更為可信的預(yù)測(cè)結(jié)果。本文采用了CMIP5推薦的年代際氣候預(yù)測(cè)試驗(yàn)誤差訂正方法[27]。
首先將10組年代際預(yù)測(cè)試驗(yàn)第1年預(yù)測(cè)的結(jié)果與各自對(duì)應(yīng)年份的觀測(cè)資料求偏差,得到的偏差平均值記為A1,用平均偏差A(yù)1訂正這10組試驗(yàn)第1年的模擬結(jié)果,即得到模式每組試驗(yàn)第1年的訂正值。同樣的方法即可得到每組試驗(yàn)第2年、第3年、……一直到最后一年的誤差訂正結(jié)果。
此外,模擬評(píng)估使用了相關(guān)分析、均方根誤差等方法。文中氣溫距平是相對(duì)于研究時(shí)段的多年氣候平均值計(jì)算的。
2.1 10年平均氣溫時(shí)間序列
為檢驗(yàn)?zāi)J綄?duì)10年時(shí)間尺度上平均氣溫?cái)?shù)值及變化趨勢(shì)的模擬能力以及年代際試驗(yàn)經(jīng)過誤差訂正后的結(jié)果,計(jì)算我國(guó)541個(gè)測(cè)站觀測(cè)值,BCC_CSM1.1模式的歷史試驗(yàn),誤差訂正前、訂正后的年代際試驗(yàn)結(jié)果得到的我國(guó)10年平均氣溫隨時(shí)間變化序列(圖1a)。曲線上每個(gè)點(diǎn)代表鄰近10年平均氣溫值(例如曲線1965年的值代表1961—1970年的平均氣溫)。年代際試驗(yàn)(歷史試驗(yàn))中每個(gè)點(diǎn)的上下范圍代表每組試驗(yàn)不同初值樣本的最大、最小值。r為模擬與觀測(cè)的相關(guān)系數(shù)。由圖1可以看到,歷史試驗(yàn)和未經(jīng)誤差訂正的年代際試驗(yàn)?zāi)M的我國(guó)氣溫均低于觀測(cè)值,其中年代際試驗(yàn)低于觀測(cè)約2.7℃,歷史試驗(yàn)低于觀測(cè)約2.5℃。而經(jīng)過誤差訂正后的年代際試驗(yàn)與觀測(cè)值非常接近,偏差在0.5℃以內(nèi),在20世紀(jì)80年代末到90年代初之前高于觀測(cè)0.5℃,之后低于觀測(cè)0.5℃。
圖1 我國(guó)10年平均氣溫(a)及其距平(b)時(shí)間序列Fig.1 The 10-year mean of China temperature(a)and their anomalies(b)
由圖1b可以看到,訂正前、訂正后的年代際試驗(yàn)10年平均氣溫距平序列上基本一致(訂正前、訂正后的兩條曲線基本重合)。結(jié)合圖1a可知,本文所采用的誤差訂正方法修正了模式的系統(tǒng)偏差,使訂正后的模擬值與觀測(cè)值更為接近,但對(duì)模式內(nèi)部變率的偏差改進(jìn)不明顯。年代際試驗(yàn)和歷史試驗(yàn)均模擬出了與觀測(cè)資料較為一致的增暖趨勢(shì),但沒有觀測(cè)的增暖幅度(0.30℃/10a)大。年代際試驗(yàn)與觀測(cè)的相關(guān)系數(shù)為0.88,增暖幅度為0.19℃/10a,歷史試驗(yàn)?zāi)M的增暖幅度高于年代際試驗(yàn),但與觀測(cè)更接近,其相關(guān)系數(shù)為0.95,增暖幅度為0.27℃/10a。CCSM4,CNRM-CM5,F(xiàn)GOALS-s2等18個(gè)CMIP5模式的歷史試驗(yàn)結(jié)果[28]顯示,當(dāng)前全球氣候模式都能很好地模擬出我國(guó)氣溫的升高趨勢(shì),模式集合平均的中國(guó)區(qū)域1961—2005年間增暖幅度為0.20℃/10a,BCC_CSM1.1模式的模擬結(jié)果與集合平均結(jié)果接近,為0.21℃/10a。
Keenlyside等[12]基于 ECHAM5/MPI-OM 模式同化了海表溫度,其年代際試驗(yàn)由于成功模擬出了AMOC的年代際振蕩,提高了北美和歐洲地表氣溫年代際變化的預(yù)報(bào)技巧。但對(duì)1955—2005年全球10年平均氣溫變化模擬上,歷史試驗(yàn)結(jié)果(r=0.96)好于年代際試驗(yàn)結(jié)果(r=0.91),年代際試驗(yàn)對(duì)氣溫變化模擬技巧的提高僅體現(xiàn)在部分區(qū)域。Kim等[29]評(píng)估了 HadCM3,CanCM4,CFSv2等7個(gè)CMIP5模式的年代際試驗(yàn),發(fā)現(xiàn)年代際試驗(yàn)在長(zhǎng)時(shí)間尺度上的高預(yù)報(bào)技巧主要出現(xiàn)在北大西洋和西太平洋,但對(duì)陸地氣溫的預(yù)報(bào)技巧有限。本文對(duì)我國(guó)10年平均氣溫變化模擬結(jié)果的評(píng)估也表明,包含了觀測(cè)海溫初始信息的年代際試驗(yàn)相比于未經(jīng)初始化的歷史試驗(yàn),模擬技巧未能在中國(guó)區(qū)域體現(xiàn)出明顯的提高。
2.2 10年平均氣溫的模擬與觀測(cè)氣溫的統(tǒng)計(jì)
為了檢驗(yàn)?zāi)J綄?duì)我國(guó)氣溫年代際變化趨勢(shì)的模擬,給出了歷史試驗(yàn)和訂正前、訂正后的年代際試驗(yàn)10年平均氣溫與相應(yīng)年份站點(diǎn)觀測(cè)數(shù)據(jù)相關(guān)系數(shù)的空間分布。這里9組試驗(yàn)是指從1961—1970年起到2001—2010年止每隔5年1組的試驗(yàn)??梢钥吹剑甏H試驗(yàn)(圖2a)對(duì)我國(guó)10年平均氣溫的高預(yù)報(bào)技巧區(qū)在西藏、西北地區(qū)西部和中部(0.001顯著性水平),內(nèi)蒙古、華北、黃淮、江淮、江南、華南地區(qū)的相關(guān)也達(dá)到了0.01的顯著性水平,東北地區(qū)大部分達(dá)到0.05顯著性水平,但在西南地區(qū)東部、新疆的阿克蘇、青海的西寧地區(qū)附近存在負(fù)相關(guān)或不顯著的正相關(guān)。誤差訂正結(jié)果(圖2b)表明,誤差訂正對(duì)我國(guó)氣溫年代尺度變化趨勢(shì)模擬上沒有明顯改進(jìn),未能提高模式在西南地區(qū)東部、阿克蘇以及西寧地區(qū)附近的預(yù)報(bào)技巧。歷史試驗(yàn)結(jié)果(圖2c)表明,其在我國(guó)東部絕大部分地區(qū)的年代尺度溫度變化趨勢(shì)的模擬要好于年代際試驗(yàn),但在西南地區(qū)東部、阿克蘇以及西寧地區(qū)附近也存在負(fù)相關(guān)和不顯著的正相關(guān)。
圖2 年代際試驗(yàn)訂正前(a)、訂正后(b)及歷史試驗(yàn)(c)的10年平均氣溫與相應(yīng)觀測(cè)氣溫的相關(guān)系數(shù)Fig.2 Correlation coefficients between 10-year means of 9experiments and corresponding observations(a)decadal experiment,(b)bias-revised decadal experiment,(c)historical experiment
圖3給出了9組年代際試驗(yàn)10年平均氣溫與觀測(cè)的均方根誤差。其中圖3a,3b,3c為氣溫場(chǎng)得到的均方根誤差結(jié)果,圖3d,3e,3f為氣溫距平場(chǎng)得到的均方根誤差結(jié)果。
年代際試驗(yàn)(圖3a)和歷史試驗(yàn)(圖3c)模擬結(jié)果與觀測(cè)氣溫的均方根誤差分布較為類似。從整體上來看,模式對(duì)我國(guó)東部的模擬要好于西部,誤差最小的區(qū)域(2℃以內(nèi))在我國(guó)內(nèi)蒙古地區(qū)東北部、東北地區(qū)東南部以及東南沿海一帶,而誤差最大的區(qū)域出現(xiàn)在西藏和新疆交界處以及西南地區(qū)(大于8℃)。Xu等[28]研究結(jié)果也表明,大多數(shù)模式對(duì)我國(guó)氣溫模擬偏差較大的地區(qū)在西部,而降水偏差較大的區(qū)域出現(xiàn)在華南。
由圖2可知,模式對(duì)我國(guó)西部地區(qū)10年平均氣溫的模擬雖然在數(shù)值上偏差較大,但在變化趨勢(shì)上與觀測(cè)較為一致(達(dá)到0.001顯著性水平)。訂正后的結(jié)果(圖3b)表明,氣溫均方根誤差在我國(guó)絕大部分地區(qū)降低明顯,基本都在1℃以內(nèi),特別是在華南地區(qū)的西部和中部,誤差在0.2℃以下,這是在后邊的工作中依據(jù)年代際試驗(yàn)誤差訂正結(jié)果來進(jìn)行預(yù)測(cè)的基礎(chǔ)。
圖3 年代際試驗(yàn)的10年平均氣溫及氣溫距平與相應(yīng)的觀測(cè)氣溫及氣溫距平的均方根誤差(a)訂正前的年代際試驗(yàn)氣溫結(jié)果,(b)訂正后的年代際試驗(yàn)氣溫結(jié)果,(c)歷史試驗(yàn)氣溫結(jié)果,(d)訂正前的年代際試驗(yàn)氣溫距平結(jié)果,(e)訂正后的年代際試驗(yàn)氣溫距平結(jié)果,(f)歷史試驗(yàn)氣溫距平結(jié)果Fig.3 Root mean square error 10-year mean of temperature and its anomalies from 9-group experiments and corresponding observations(a)temperature from decadal experiment,(b)temperature from bias-revised decadal experiment,(c)temperature from historical experiment,(d)temperature anomalies from decadal experiment,(e)temperature anomalies from bias-revised decadal experiment,(f)temperature anomalies from historical experiment
由圖3d,3e,3f可以看到,去除模擬和觀測(cè)氣溫各自的氣候平均態(tài)后,誤差訂正前的年代際試驗(yàn)結(jié)果(圖3d)和訂正后的結(jié)果(圖3e)空間分布基本一致,誤差最小的區(qū)域在華南中部和西部,誤差較大的區(qū)域在黑龍江、內(nèi)蒙古地區(qū)北部和西北中部。歷史試驗(yàn)結(jié)果(圖3f)在我國(guó)東北地區(qū)、內(nèi)蒙古以及華南東部地區(qū)誤差小于年代際試驗(yàn)??傮w來說,歷史試驗(yàn)和年代際試驗(yàn)雖存在一定誤差,但在我國(guó)大部分地區(qū),特別是華南地區(qū)模式表現(xiàn)出較高的預(yù)報(bào)技巧。
圖4給出了誤差訂正前后從1961—1990年開始每隔5年1組到1981—2010年總共5組年代際試驗(yàn)30年相關(guān)系數(shù)的空間分布。圖4a為1961—1990年試驗(yàn),結(jié)果顯示,4個(gè)不同初值樣本平均得到的模式結(jié)果在江南、華南、西南、西藏地區(qū)西南部、西北地區(qū)東部和北部和觀測(cè)均呈正相關(guān),但未達(dá)到0.05的顯著性水平;而經(jīng)過模式誤差訂正后的結(jié)果(圖4b)顯示,除黃淮和江淮地區(qū)交界處和福州附近區(qū)域外,其余我國(guó)大部分區(qū)域都是正相關(guān),其中在東北地區(qū)、內(nèi)蒙古地區(qū)東北部、西藏地區(qū)東部、西北地區(qū)中部、西南地區(qū)北部正相關(guān)通過0.05的顯著性水平。1966—1995年試驗(yàn)結(jié)果(圖4c)顯示,在西北地區(qū)、江南、江淮、江漢、黃淮地區(qū)南部呈不顯著的正相關(guān),其余地區(qū)為負(fù)相關(guān);誤差訂正后的結(jié)果(圖4d)顯示,在我國(guó)大部分地區(qū)呈正相關(guān),其中東北地區(qū)大部、內(nèi)蒙古地區(qū)的西部和中部、西藏東部、西北地區(qū)中部和東部、西南地區(qū)北部相關(guān)性最好。1971—2000年試驗(yàn)結(jié)果(圖4e)顯示,在西藏地區(qū)、西北地區(qū)、西南地區(qū)北部呈正相關(guān),其中在甘肅南部及西川東北部顯著正相關(guān)(達(dá)到0.05顯著性水平);誤差訂正后(圖4f),我國(guó)大部分地區(qū)呈正相關(guān),其中東北地區(qū)南部、華北北部、西藏地區(qū)和西北地區(qū)大部呈顯著正相關(guān)。1976—2005年試驗(yàn)結(jié)果(圖4g)顯示,我國(guó)除東北地區(qū)、內(nèi)蒙古地區(qū)、西北地區(qū)西北部、貴州地區(qū)、海南外,其余地區(qū)正相關(guān)不顯著;誤差訂正后的結(jié)果(圖4h)顯示,我國(guó)除東北地區(qū)北部、西北地區(qū)西北部、湖南和貴州交界處外,其余地區(qū)呈顯著正相關(guān)(達(dá)到0.01顯著性水平)。1981—2010年試驗(yàn)結(jié)果(圖4i)顯示,我國(guó)除東北地區(qū)、內(nèi)蒙古地區(qū)東北部、海南外,其余均呈正相關(guān),其中在西北地區(qū)西南部,西藏和西南地區(qū)交界處,陜西、河北一帶呈顯著正相關(guān)(達(dá)到0.05顯著性水平);誤差訂正后的結(jié)果(圖4j)顯示,我國(guó)除東北地區(qū)東北部和內(nèi)蒙古地區(qū)東北部外,其余大部分地區(qū)呈顯著正相關(guān)(達(dá)到0.01顯著性水平)。
圖4 5組訂正前、訂正后的年代際試驗(yàn)結(jié)果與對(duì)應(yīng)年份觀測(cè)資料相關(guān)系數(shù)的空間分布(a)1961—1990年年代際試驗(yàn)結(jié)果,(b)1961—1990年年代際試驗(yàn)誤差訂正后的結(jié)果,(c)1966—1995年年代際試驗(yàn)結(jié)果,(d)1966—1995年年代際試驗(yàn)誤差訂正后的結(jié)果,(e)1971—2000年年代際試驗(yàn)結(jié)果,(f)1971—2000年年代際試驗(yàn)誤差訂正后的結(jié)果,(g)1976—2005年年代際試驗(yàn)結(jié)果,(h)1976—2005年年代際試驗(yàn)誤差訂正后的結(jié)果,(i)1981—2010年年代際試驗(yàn)結(jié)果,(j)1981—2010年年代際試驗(yàn)誤差訂正后的結(jié)果Fig.4 Correlation coefficients between 5-group decadal experiments and corresponding observations(a)1961—1990group decadal experiment,(b)bias-revised 1961—1990group decadal experiment,(c)1966—1995group decadal experiment,(d)bias-revised 1966—1995group decadal experiment,(e)1971—2000group decadal experiment,(f)bias-revised 1971—2000group decadal experiment,(g)1976—2005group decadal experiment,(h)bias-revised 1976—2005group decadal experiment,(i)1981—2010group decadal experiment,(j)bias-revised 1981—2010group decadal experiment
續(xù)圖4
從這5組試驗(yàn)來看,在西北地區(qū)的西南部、西北地區(qū)東部、西南地區(qū)北部均呈正相關(guān),而模式對(duì)我國(guó)逐年氣溫演變的模擬在東北地區(qū)、內(nèi)蒙古地區(qū)大部、海南均呈負(fù)相關(guān)。統(tǒng)計(jì)分析結(jié)果表明,誤差訂正對(duì)我國(guó)氣溫的年際變化的模擬效果有了較大改進(jìn)。由表1可見,誤差訂正后,模式與觀測(cè)的正相關(guān)格點(diǎn)增加了20%~60%,達(dá)到0.05顯著性水平的顯著相關(guān)格點(diǎn)增加30%~80%。由圖4也可知,在西藏地區(qū)東部、西北地區(qū)中部、西南地區(qū)北部,5組試驗(yàn)訂正后的結(jié)果都達(dá)到了0.05顯著性水平。
Branstator等[11]曾經(jīng)指出年代際預(yù)測(cè)試驗(yàn)中初始狀態(tài)對(duì)預(yù)測(cè)效果的影響不同的模式差異較大。為了檢驗(yàn)BCC_CSM1.1模式年代際預(yù)測(cè)試驗(yàn)連續(xù)積分30年氣溫預(yù)測(cè)總的相關(guān)技巧與前10年預(yù)報(bào)技巧的關(guān)系,分別將這5組年代際預(yù)測(cè)試驗(yàn)連續(xù)積分30年的結(jié)果分為3個(gè)10年時(shí)段進(jìn)行分析。結(jié)果表明,該模式30年預(yù)測(cè)的總體相關(guān)技巧并不僅僅來源于前10年的貢獻(xiàn),例如,在1981—2010組試驗(yàn)中,在我國(guó)西北地區(qū)北部和華北地區(qū),第2個(gè)10年的氣溫逐年相關(guān)較第1個(gè)10年更為顯著;5組試驗(yàn)中,只有1961—1990年組試驗(yàn)的前10年正相關(guān)區(qū)域比后2個(gè)10年的正相關(guān)區(qū)域大。5組試驗(yàn)呈現(xiàn)出較大的差異也說明模式模擬結(jié)果與模式初始狀態(tài)存在較大關(guān)系。
表1 年代際試驗(yàn)訂正前、訂正后與相應(yīng)觀測(cè)正相關(guān)及顯著正相關(guān)站點(diǎn)數(shù)比較Table 1 Positive correlation and significantly correlation of stations number contrast between 5-group decadal experiments and their bias-revised results
空間相似系數(shù)是描述兩個(gè)空間場(chǎng)相似程度的物理量,其計(jì)算方法是將兩個(gè)空間場(chǎng)的格點(diǎn)按同一時(shí)次排成兩個(gè)序列,從而計(jì)算它們的相關(guān)系數(shù)[30]。為了檢驗(yàn)?zāi)J綄?duì)我國(guó)氣溫空間場(chǎng)的模擬能力,計(jì)算了1960—2010年的歷史試驗(yàn)結(jié)果和5組年代際試驗(yàn)結(jié)果與相應(yīng)觀測(cè)資料逐年的氣溫場(chǎng)空間相關(guān)(圖5和表2)。分析表明,歷史試驗(yàn)和5組年代際試驗(yàn)與觀測(cè)的空間相關(guān)系數(shù)都在0.9以上,模式較好地模擬了我國(guó)氣溫平均態(tài)在空間場(chǎng)上的整體分布。其中年代際試驗(yàn)結(jié)果(30年平均相關(guān)系數(shù)為0.913)與歷史試驗(yàn)結(jié)果(30年平均相關(guān)系數(shù)為0.912)基本相當(dāng)。BCC_CSM1.1模式的對(duì)空間特征的表現(xiàn)(1961—2005年平均相關(guān)系數(shù)為0.900)略低于多模式集合平均的結(jié)果(1961—2005年平均相關(guān)系數(shù)為0.959)[28]。經(jīng)過誤差訂正后的年代際試驗(yàn)結(jié)果與觀測(cè)的空間相關(guān)有明顯提高,相關(guān)系數(shù)均大于0.99。這說明模式結(jié)果經(jīng)過誤差訂正后對(duì)空間氣溫場(chǎng)的模擬有更好的把握。對(duì)每年的氣溫距平場(chǎng)計(jì)算空間相關(guān)系數(shù),發(fā)現(xiàn)年代際試驗(yàn)?zāi)M的氣溫距平場(chǎng)與觀測(cè)值的空間相關(guān)系數(shù)在-0.5~0.7之間變化,誤差訂正后氣溫距平與觀測(cè)的空間相關(guān)系數(shù)較訂正前的相關(guān)系數(shù)提高0.1左右;歷史試驗(yàn)?zāi)M的氣溫距平場(chǎng)與觀測(cè)的空間相關(guān)系數(shù)在-0.5~0.4之間變化。這說明氣溫場(chǎng)的高相關(guān)反映了模擬與觀測(cè)在氣候平均態(tài)上的高度相似,模式?jīng)]能很好地模擬出我國(guó)氣溫變化的空間分布特征,年代際試驗(yàn)?zāi)M略好于歷史試驗(yàn)。
盡管歷史試驗(yàn)、年代際試驗(yàn)訂正前后模擬的氣溫與觀測(cè)比較相似,相關(guān)系數(shù)均在0.9以上,但它們的均方根誤差有顯著不同。如表2所示,歷史試驗(yàn)和訂正前的年代際試驗(yàn)均方根誤差分別為4.24~4.26℃和4.24~4.32℃,歷史試驗(yàn)結(jié)果略好于年代際試驗(yàn)。經(jīng)過誤差訂正后的年代際試驗(yàn),均方根誤差大幅下降,5組試驗(yàn)最大誤差為1961—1990年的0.31℃,最小誤差為1981—2010年的0.05℃。說明誤差訂正不僅能提高模式對(duì)空間場(chǎng)相似程度的模擬,也對(duì)氣溫偏差有明顯改進(jìn)。
表2 歷史試驗(yàn)和誤差訂正前、訂正后5組年代際試驗(yàn)與觀測(cè)資料30年平均空間場(chǎng)的相關(guān)系數(shù)和均方根誤差Table 2 The correlation and root mean square error of historical experiment and 5decadal experiments(un-revised and bias-revised)with their corresponding observations for 30-year means
圖5 訂正前、訂正后的5組年代際試驗(yàn)和歷史試驗(yàn)?zāi)M氣溫與觀測(cè)氣溫的空間相關(guān)系數(shù)隨時(shí)間變化Fig.5 The time series of correlation of 5-group decadal experiments and historical experiment to their corresponding
上述研究結(jié)果表明,對(duì)模式結(jié)果進(jìn)行誤差訂正不僅可以提高模式對(duì)年際尺度氣溫變化趨勢(shì)的模擬,其結(jié)果在數(shù)值上與觀測(cè)也非常接近,這為開展氣溫預(yù)估提供了基礎(chǔ)。
圖6給出了我國(guó)近50年平均氣溫變化時(shí)間序列,以及誤差訂正前后模式預(yù)估的2001—2030年的氣溫時(shí)間序列。1961—2010年,我國(guó)年平均氣溫上升趨勢(shì)明顯,變化速率達(dá)到0.27℃/10a。我國(guó)年平均氣溫經(jīng)歷了從20世紀(jì)80年代后期由負(fù)異常到正異常的轉(zhuǎn)變,從20世紀(jì)80年代中期開始平均氣溫持續(xù)上升,之前只是在小范圍內(nèi)波動(dòng)。
圖6中誤差訂正前、訂正后的年代際試驗(yàn)預(yù)測(cè)的我國(guó)2001—2030年平均氣溫變化的時(shí)間序列可以看到,相對(duì)于1960—2010年0.27℃/10a的增溫速率,誤差訂正后的年代際試驗(yàn)預(yù)測(cè)的2001—2030年我國(guó)年平均氣溫上升趨勢(shì)更加明顯,變化速率達(dá)到0.41℃/10a。其中預(yù)測(cè)的2001—2010年平均氣溫為11.66℃,比相應(yīng)觀測(cè)的平均氣溫(11.91℃)偏低0.25℃。預(yù)測(cè)的2011—2020年、2021—2030年平均氣溫分別為12.01℃和12.48℃。值得注意的是,模式預(yù)測(cè)的我國(guó)年平均氣溫在2001—2010年增速較緩(0.38℃/10a),從2011年增暖速度開始加快(0.48℃/10a),波動(dòng)幅度也更大。這一變化特征與Keenlyside等[12]關(guān)于全球平均氣溫在未來10~20年變化特征的研究結(jié)果也較為類似。
圖6 1960—2010年觀測(cè)和誤差訂正前、訂正后模式預(yù)估的2001—2030年我國(guó)年平均氣溫時(shí)間序列Fig.6 Annual mean temperature of 1960—2010 observations and 2001—2030model forecast and model bias-revised forecast results
本文利用1960—2010年我國(guó)541個(gè)測(cè)站氣溫觀測(cè)資料以及參加CMIP5耦合模式比較計(jì)劃的國(guó)家氣候中心BCC_CSM1.1模式年代際試驗(yàn)和歷史試驗(yàn)結(jié)果,評(píng)估了模式對(duì)我國(guó)年際、年代際尺度氣溫變化的模擬能力。同時(shí),對(duì)年代際試驗(yàn)結(jié)果進(jìn)行誤差訂正,分析其可靠性,并利用誤差訂正后的試驗(yàn)結(jié)果對(duì)我國(guó)未來氣溫變化進(jìn)行預(yù)估,得到以下結(jié)論:
1)年代際時(shí)間尺度上,歷史試驗(yàn)和年代際試驗(yàn)均模擬出了與觀測(cè)較為一致的增暖趨勢(shì),兩種試驗(yàn)結(jié)果得到的我國(guó)10年平均氣溫均低于觀測(cè)值。在年際時(shí)間尺度上,模式的高預(yù)報(bào)技巧區(qū)在我國(guó)西北地區(qū)西南部、東部,西南地區(qū)北部,而在東北、內(nèi)蒙古和海南等地效果最差。兩種時(shí)間尺度上,歷史試驗(yàn)均比年代際試驗(yàn)更接近于觀測(cè)。
2)空間分布上,模式對(duì)我國(guó)東部的模擬要好于西部,誤差最小的區(qū)域(2℃以內(nèi))在我國(guó)內(nèi)蒙古地區(qū)東北部、東北地區(qū)東南部以及東南沿海一帶,而誤差最大的區(qū)域出現(xiàn)在西藏和新疆交界處以及西南地區(qū)(大于8℃)。
3)誤差訂正對(duì)我國(guó)10年平均氣溫變化趨勢(shì)模擬沒有明顯改進(jìn),但在逐年氣溫變化趨勢(shì)上有較大改進(jìn),且大幅度減小了模式的系統(tǒng)誤差(訂正后偏差在0.5℃以內(nèi))。
4)相對(duì)于1960—2010年觀測(cè)資料0.27℃/10a的增溫速率,誤差訂正后的模式結(jié)果預(yù)測(cè)我國(guó)2001—2030年平均氣溫上升趨勢(shì)更加明顯,變化速率達(dá)到0.41℃/10a。其中,模式預(yù)測(cè)的我國(guó)年平均氣溫在2000—2010年增速較緩,波動(dòng)幅度較?。?011年開始增暖速度加快,波動(dòng)幅度也較前10年增大。
本文所使用的年代際試驗(yàn)結(jié)果的初值方案是將BCC_CSM1.1模式模擬海溫恢復(fù)到美國(guó)SODA再分析溫度場(chǎng)上,相對(duì)于IPCC傳統(tǒng)的歷史試驗(yàn),這種初值方案在我國(guó)年平均氣溫的模擬上沒有帶來太大的改進(jìn)。van Oldenborgh等[31]研究也表明,年代際試驗(yàn)對(duì)平均氣溫的模擬相比歷史試驗(yàn)無明顯改善,預(yù)報(bào)技巧主要體現(xiàn)在起報(bào)第1年。加入初始海溫觀測(cè)信息可能提高區(qū)域氣候預(yù)報(bào)技巧,但同時(shí)也會(huì)帶來初始誤差。由于模式對(duì)初值的敏感性,需要進(jìn)行多初值、多樣本的集合預(yù)報(bào),包括多初始時(shí)刻的集合預(yù)報(bào)、多物理過程的擾動(dòng)集合預(yù)報(bào)以及隨機(jī)擾動(dòng)集合預(yù)報(bào)等[32]。本文所使用的歷史試驗(yàn)和年代際試驗(yàn)結(jié)果均為多個(gè)樣本集合平均后的結(jié)果,降低了單個(gè)樣本由于初值誤差所導(dǎo)致的預(yù)測(cè)結(jié)果的不確定性和隨機(jī)性。
由于不同的強(qiáng)迫場(chǎng)和因子會(huì)在一定程度上影響預(yù)測(cè)結(jié)果,因此在未來預(yù)測(cè)中選擇更為合適的強(qiáng)迫因子,對(duì)改進(jìn)氣候預(yù)測(cè)能力也會(huì)有較大幫助。年代際預(yù)測(cè)既是熱點(diǎn),也是難點(diǎn)。年代際時(shí)間尺度氣候變率產(chǎn)生的原因、年代際氣候可預(yù)報(bào)性以及更合理的模式初始化方案、模式結(jié)果訂正方案等均有待于進(jìn)一步研究。
[1] Lambert S J,Boer G J.Climate Dynamics:CMIP1evaluation and intercomparison of coupled climate models.Springer-Verlag,2001,17:83-106.
[2] 丑紀(jì)范,任宏利.數(shù)值天氣預(yù)報(bào)——另類途徑的必要性和可行性.應(yīng)用氣象學(xué)報(bào),2006,17(2):240-244.
[3] Zhang Y,Wallace J M,Battisti D S.ENSO-like interdecadal variability:1900—1931.J Climate,1997,10:1004-1020.
[4] Mantua N J,Hare S R,Zhang Y.A Pacific interdecadal climate oscillation with impacts on salmon production.Bull A-mer Meteor Soc,1997,78:1069-1079.
[5] Meehl G A,Goddard L,Murphy J,et al.Decadal prediction:Can it be skillful?Bull Amer Meteor Soc,2009,90:1467-1485.
[6] Hurrell J,Meehl G A,Bader D,et al.A unified modeling approach to climate system prediction.Bull Amer Meteor Soc,2009,90:1819-1832.
[7] 魏鳳英.我國(guó)短期氣候預(yù)測(cè)的物理基礎(chǔ)及其預(yù)測(cè)思路.應(yīng)用氣象學(xué)報(bào),2011,22(1):1-11.
[8] Meehl G A,Stocker T F,Collins W D,et al.Climate change 2007:The Physical Science Basis∥Solomon S,Qin D,Manning M,et al.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge:Cambridge University Press,2007:747-845.
[9] Taylor K E,Stouffer R J,Meehl G A.An Overview of CMIP5 and the experiment design.Bull Amer Meteor Soc,2012,93,doi:10.1175/BAMS-D-11-00094.1.
[10] Latif M,Collins M,Pohlmann H,et al.A review of predictability studies of Atlantic sector climate on decadal scales.J Climate,2006,19:5971-5987.
[11] Branstator G,Teng H Y,Gerald A M.Systematic estimates of initial-value decadal predictability for six AOGCMs.J Climate,2012,25:1827-1846.
[12] Keenlyside N S,Latif M,Jungclaus J,et al.Advancing decadal-scale climate prediction in the North Atlantic sector.Nature,2008,453:84-88.
[13] Mochizuki T,Ishii M,Kimoto M,et al.Pacific Decadal Oscillation Hindcasts Relevant to Near-term Climate Prediction.Proc Natl Acad Sci USA,2010,107:1833-1837.
[14] 吳波,周天軍.IAP/LASG氣候系統(tǒng)模式FGOALS_gl預(yù)測(cè)的海表面溫度年代際尺度的演變.科學(xué)通報(bào),2012,57(13):1168-1175.
[15] Mehta V,Meehl G,Goddard L,et al.Decadal climate predictabitily and prediction.Bull Amer Meteor Soc,2011,92(5):637-640.
[16] Zhou Tianjun,Yu Rucong.Twentieth century surface air temperature over China and the globe simulated by coupled climate models.J Climate,2006,19(22):5843-5858.
[17] 劉敏,江志紅.13個(gè)IPCC AR4模式對(duì)中國(guó)區(qū)域近40a氣候模擬能力的評(píng)估.南京氣象學(xué)院學(xué)報(bào),2009,32(2):256-268.
[18] 羅勇,趙宗慈.NCAR RegCM2對(duì)東亞區(qū)域氣候的模擬試驗(yàn).應(yīng)用氣象學(xué)報(bào),1997,8(增刊):124-133.
[19] 施曉暉,徐祥德.東亞冬季風(fēng)年代際變化可能成因的模擬研究.應(yīng)用氣象學(xué)報(bào),2007,18(6):776-782.
[20] 張勇,曹麗娟,許吟隆,等.未來我國(guó)極端溫度事件變化情景分析.應(yīng)用氣象學(xué)報(bào),2008,19(6):655-660.
[21] 石英,高學(xué)杰,吳佳,等.華北地區(qū)未來氣候變化的高分辨率數(shù)值模擬.應(yīng)用氣象學(xué)報(bào),2010,21(5):580-589.
[22] 姜大膀,王會(huì)軍,郎咸梅.SRE SA2情景下中國(guó)氣候未來變化的多模式集合預(yù)測(cè)結(jié)果.地球物理學(xué)報(bào),2004,47(5):776-784.
[23] 李博,周天軍.基于IPCC A1B情景的中國(guó)未來氣候變化預(yù)估:多模式集合結(jié)果及其不確定性.氣候變化研究進(jìn)展,2010,6(4):270-276.
[24] Li Hongmei,F(xiàn)eng Lei,Zhou Tianjun.Multi-model projection of July-August climate extreme changes over China under CO2doubling.PartⅠ:Precipitation.Adv Atmos Sci,2011,28(2):433-447.
[25] Li Hongmei,F(xiàn)eng Lei,Zhou Tianjun.Multi-model projection of July-August climate extreme changes over China under CO2doubling.PartⅡ:Temperature.Adv Atmos Sci,2011,28(2):448-463.
[26] 辛?xí)愿?,吳統(tǒng)文,張潔.BCC氣候系統(tǒng)模式開展的CMIP5試驗(yàn)介紹.氣候變化研究進(jìn)展,2012,8(5):378-382.
[27] ICPO.Data and Bias Correction for Decadal Climate Predictions.CLIVAR Publication Series No.150,2012.
[28] Xu Ying,Xu Chonghai.Preliminary assessment of simulations of climate changes over China by CMIP5multi-models.Atmospheric and Oceanic Science Letters,2012,5(6):489-494.
[29] Kim H,Webster P J,Curry J A.Evaluation of short-term climate change prediction in multi-model CMIP5decadal hindcasts.Geophys Res Lett,2012,39,L10701,doi:10.1029/2012GL051644.
[30] 余錦華,唐盛,吳立廣,等.IPCC AR4模式對(duì)熱帶氣旋熱力控制因子的模擬評(píng)估.海洋學(xué)報(bào),2011,33(6):39-54.
[31] van Oldenborgh G J,Doblas-Reyes F J,Bert W,et al.Decadal prediction skill in a multi-model ensemble.Clim Dyn,2012(38):1263-1280.
[32] Zhao Zongci.Issues on Current Research of Climate Change.IU-GG 2003Conference,2003.
Simulation and Projection of Temperature in China with BCC_CSM1.1Model
Zhou Xin1)2)Li Qingquan1)2)Sun Xiubo2)Wei Min3)
1)(College of Atmospheric Science,Nanjing University of Information Science & Technology,Nanjing210044)
2)(Laboratory for Climate Studies,National Climate Center,CMA,Beijing100081)
3)(National Meteorological Information Center,Beijing100081)
Inter-annual and inter-decadal variability are two kinds of different timescale variability existing at the same time in climate system found in previous studies.Affected by the global warming,the inter-decadal signal of climate change becomes more and more significant.The next 10to 30years of climate change,namely inter-decadal time scales climate change and their impacts on the global environment,society and economic development,draw more and more attention.Climate change features of inter-decadal scale become one of the most important content of the IPCC AR5.The 10to 30years’timescale of inter-decadal forecast experiment which is listed as one of the main experiment content has joined the 5th Coupled Model Inter-comparison Project(CMIP5).More in-depth research will be carried out on predictability of inter-decadal timescale.
The air temperature data of 541stations in China from 1960to 2010as well as the CMIP5historical and decadal experiment results of Beijing Climate Center Climate System Model(BCC_CSM1.1)are utilized to evaluate the simulation ability of the model.The model results are interpolated to the corresponding latitude and longitude of 541stations use bilinear interpolation method.Whether the pattern of regional prediction ability could improve by the decadal experiment of BCC_CSM1.1which initialed the SST (sea surface temperature)is discussed.Bias corrections to the decadal experiment results are done and the preliminary projection of the changes of the air temperature of China for the next 10—20years is presented.Results show that both historical and decadal experiments can capture the warming trend in accordance with the observations,but the warming tendency of the experiments are less significant than those of observations.Results of historical experiments are slightly better than those of decadal experiments of the model.On the inter-decadal timescales,simulations in the eastern part of China are better than those in the western part of China.On the inter-annual timescales,the high prediction skills are located in the southwestern and eastern parts of northwest region,and southwest of China.Distributions of temperature in China are well simulated in both of historical and decadal experiments,such as the spatial correlation coefficients of 0.9or above.After bias correction,results of decadal experiments are much better.By the corrected result of decadal experiments,the result of temperature spatial distribution simulation is better.The model projects that the rising rate of the mean temperature of China will be 0.48℃/10aduring 2011—2030,which is more significant than the warming rate of 0.27℃/10aduring 1960—2010on the basis of observations.And the forecast results of the model show that the air temperature of China during 2001—2010grows more slowly and fluctuate less compared with the period of 2011—2030.
CMIP5;BCC_CSM1.1;air temperature;bias correction;projection
周鑫,李清泉,孫秀博,等.BCC_CSM1.1模式對(duì)我國(guó)氣溫的模擬和預(yù)估.應(yīng)用氣象學(xué)報(bào),2014,25(1):95-106.
2013-03-21收到,2013-10-29收到再改稿。
國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃項(xiàng)目(2012CB955203),國(guó)家高技術(shù)研究發(fā)展計(jì)劃(2010AA012404,2010AA012403),公益性行業(yè)(氣象)科研專項(xiàng)(GYHY201106022),國(guó)家自然科學(xué)基金項(xiàng)目(41175065)
*通信作者,email:liqq@cma.gov.cn