張文武,甘建伉,張細權(quán),張德祥,羅慶斌*
(1.華南農(nóng)業(yè)大學動物科學學院,廣東 廣州 510642;2.農(nóng)業(yè)部雞遺傳育種與繁殖重點實驗室(廣州),廣東 廣州510642)
hspA9基因5′側(cè)翼區(qū)SNPs對矮腳黃羽肉雞耐熱性的影響
張文武1,2,甘建伉1,2,張細權(quán)1,2,張德祥1,2,羅慶斌1,2*
(1.華南農(nóng)業(yè)大學動物科學學院,廣東 廣州 510642;2.農(nóng)業(yè)部雞遺傳育種與繁殖重點實驗室(廣州),廣東 廣州510642)
對矮腳黃羽肉雞純系hspA9基因5′側(cè)翼區(qū)進行PCR測序和PCR–RFLP檢測,將檢測到的突變位點與矮腳黃羽肉雞純系5個耐熱性狀(T3、皮質(zhì)酮、異嗜性粒細胞與淋巴細胞比率(H/L)、CD3+T細胞和CD4+T細胞)進行關(guān)聯(lián)分析。結(jié)果表明:矮腳黃羽肉雞純系hspA9基因5′側(cè)翼區(qū)有3個單核苷酸多態(tài)性(SNP)位點(C.–85C>A、C.–485G>A和C.–568G>A),根據(jù)C.–85C>A的酶切位點,這個基因可分為AA、AC、CC型;根據(jù)C.–485G>A的酶切位點,這個基因可分為GG、GA、AA型;根據(jù)C.–568G>A的酶切位點,這個基因可分為GG、GA、AA型;熱應(yīng)激狀態(tài)下,C.–485G>A位點與皮質(zhì)酮極顯著相關(guān)(P<0.01),GG基因型個體的皮質(zhì)酮值極顯著高于GA基因型個體;常溫狀態(tài)下,C.–485G>A位點與T3顯著相關(guān)(P<0.05),GA基因型個體的T3值顯著高于AA 基因型個體,C.–568G>A 位點與 T3顯著相關(guān)(P<0.05),GG基因型個體T3值顯著高于GA和AA基因型個體,C.–568G>A位點與CD4+T細胞極顯著相關(guān)(P<0.01),GG基因型個體CD4+T細胞值顯著高于AA基因型個體。C.–485G>A位點和C.–568G>A位點對雞熱耐受性有較大的影響,可望用于雞抗逆性的分子標記輔助選擇。
矮腳黃羽肉雞;hspA9基因;熱應(yīng)激;耐熱性
熱應(yīng)激蛋白(heat shock protein, HSP)是機體受到應(yīng)激源(如高溫等)刺激后合成的一組蛋白質(zhì)[1]。這些熱應(yīng)激蛋白在細胞生長、發(fā)育及分化,基因轉(zhuǎn)錄,蛋白質(zhì)合成、折疊、運輸及分解,維持細胞骨架功能,膜功能等方面具有重要作用,且能保護機體免受外界刺激的損害[2]。HSP70是熱應(yīng)激蛋白家族中的重要成員,作為主要的分子伴侶參與機體耐受性的形成[3]。
hspA9基因?qū)儆趆sp70基因家族。研究表明,hspA9在患皮膚癌[4]和食管鱗癌[5]的動物中表達上調(diào),可能與抗癌有關(guān)。hspA9基因的過表達還能抑制apoptin誘導(dǎo)的HepG2細胞的凋亡[6]。另外,hspA9基因可能與老鼠上顎發(fā)育有關(guān)[7],因其mRNA在老鼠上顎中高表達。而hspA9基因敲除的老鼠,其造血細胞減少,表明hspA9基因還與造血有關(guān)[8]。迄今為止,關(guān)于雞hspA9基因的研究較少。本研究選擇矮腳黃雞純系為試驗材料,對其hspA9基因進行PCR–RFLP檢測,以分析hspA9基因的位點多態(tài)性與熱應(yīng)激指標的相關(guān)性,旨在為利用分子標記輔助選擇來改良家雞的熱適應(yīng)性提供參考依據(jù)。
1.1 供試雞
333只矮腳黃羽肉雞純系(N301系)母雞選自廣東溫氏南方家禽育種有限公司。
1.2 外周血采集
在35 ℃(20周齡)、15 ℃(32周齡)條件下采集母雞的外周血1.5 mL,分裝到1.5 mL抗凝管和1.5 mL非抗凝管中,備用。
1.3 雞基因組DNA的提取
取每只雞的抗凝血30 μL,采用苯酚–氯仿抽提法[9]分別提取基因組DNA。DNA樣品分別溶于300 μL ddH2O中,–20 ℃冰箱保存。
1.4 耐熱性狀相關(guān)指標的測定
將非抗凝血直接離心吸取血清,送中山大學廣州達瑞抗體中心檢測三碘甲狀腺氨酸(triiodothyronine,T3)和皮質(zhì)酮;用瑞氏和吉姆薩復(fù)合染色法[10]對抗凝血的血涂板染色、鏡檢,按Alfred等[11]的白細胞分類方法進行細胞分類,并按Campo和Davila方法[12]進行計數(shù)和計算,之后送解放軍458醫(yī)院免疫細胞實驗室檢測 H/L;將抗凝血直接送解放軍 458醫(yī)院免疫缺陷病研究與特殊實驗中心檢測 CD3+T細胞和CD4+T細胞。
1.5 hspA9基因的PCR–RFLP分析
1) 引物設(shè)計與PCR擴增。根據(jù)GenBank中收錄的雞HspA9基因的cDNA序列,通過Primier5.0設(shè)計擴增hspA95′側(cè)翼區(qū)的引物F1(5′–GCACCACG CTGTTCCATCA–3′)和R1(5′–AGGGCGATTGCAG CGAGCT–3′)。引物由上海生工生物工程技術(shù)服務(wù)有限公司合成。
隨機選取10份DNA進行PCR擴增。用PCR試劑盒(Gen Star公司)配置PCR反應(yīng)體系(20 μL):Mix 10 μL、20 μmol/L上、下游引物各0.2 μL、10 U/μL Taq酶0.15 μL、雞基因組DNA 1.5 μL (35 ℃時提取的血液DNA),ddH2O 7.95 μL。PCR反應(yīng)程序:94 ℃預(yù)變性3 min,32個循環(huán)(94 ℃變性30 s,59.7 ℃退火30 s,72 ℃延伸30 s), 72 ℃ 終延伸5 min, 16 ℃保存。PCR產(chǎn)物用1.2%的瓊脂糖凝膠電泳檢測后送華大公司測序。
2) PCR–RFLP分析。對PCR產(chǎn)物測序結(jié)果進行分析,獲得多態(tài)性位點及特異性限制性內(nèi)切酶識別位點,設(shè)計引物,對提取的666份DNA樣品進行PCR及RFLP檢測。PCR反應(yīng)體系為10 μL:Mix 5 μL、20 μmol/L上、下游引物各0.1 μL、10 U/μL Taq酶 0.1 μL、雞基因組DNA 1 μL,ddH2O 3.7 μL。PCR反應(yīng)程序同上。根據(jù)引物改變退火溫度。對PCR產(chǎn)物進行酶切,酶切體系為10 μL:ddH2O 2.1 μL、內(nèi)切酶(TaKaRa公司) 0.3 μL、Buffer緩沖液 0.6 μL、PCR產(chǎn)物7 μL。37 ℃過夜。用2%的瓊脂糖凝膠電泳檢測酶切產(chǎn)物,根據(jù)電泳條帶判定個體的基因型。
1.6 關(guān)聯(lián)分析
采用 SAS 9.0軟件的廣義線性模型(General Linear Model,GLM)程序進行計算,對矮腳黃羽肉雞的熱耐受指標與hspA9基因多態(tài)位點進行關(guān)聯(lián)分析。所用模型為 yij=μ+gi+eij。其中,yij為性狀表型值,μ為該性狀的總體均值,gi為基因型效應(yīng)值,eij為殘差效應(yīng),i表示線性方程的行,j表示線性方程的列。
2.1 hspA9基因5′側(cè)翼區(qū)的PCR結(jié)果
對PCR產(chǎn)物的測序結(jié)果進行分析,發(fā)現(xiàn)矮腳黃羽肉雞純系的hspA9基因5′側(cè)翼區(qū)有3個SNP位點:C.–85C>A、C.–485G>A和C.–568G>A。C.–85C>A 為5′側(cè)翼區(qū)第85位出現(xiàn)堿基C→A的突變,可用Hae II酶(識別序列為 GGCGCC)進行區(qū)分;C.–485G>A為5′側(cè)翼區(qū)第485位出現(xiàn)堿基G→A的突變,可用Sml I酶(識別序列為CTTGAG)進行區(qū)分;C.–568G>A為5′側(cè)翼區(qū)第568位出現(xiàn)堿基G→A的突變,可用Ban II酶(識別序列為GAGCTC)進行區(qū)分。
2.2 hspA9基因3個SNP的分型
根據(jù)C.–85C>A位點的特征,設(shè)計引物F2(5′–ATGGGGGTGCTCGGAAAAC–3′)和R2(5′–AGGG CGATTGCAGCGAGCT–3′)對雞的DNA進行PCR擴增,退火溫度為59.7 ℃,產(chǎn)物大小為267 bp。用Hae II對PCR產(chǎn)物分別進行酶切,結(jié)果(圖1)證實矮腳黃雞hspA9可以分為CC、AC和AA型:CC 型hspA9片段可被Hae II酶切成2條帶,長度分別為175、92 bp;AC型hspA9片段可被酶切成3條帶,長度分別為267、175、92 bp;AA型hspA9片段不可以被酶切,為1條帶,長度為267 bp。根據(jù)C.–485G>A、C.–568G>A位點的特征,用F1和R1引物對雞的DNA進行PCR擴增,產(chǎn)物分別用Sml I和Ban II進行酶切分型。根據(jù)C.–485G>A位點的酶切結(jié)果(圖2),矮腳黃雞hspA9可以分為GG、GA 和AA型:GG型hspA9片段可被Sml I酶切成2條帶,長度分別為493、229 bp;GA型hspA9片段可被酶切成3條帶,長度分別為722、493、229 bp;AA 型hspA9片段不可以被酶切,為1條帶,長度為722 bp。根據(jù)C.–568G>A位點的酶切結(jié)果(圖3),矮腳黃雞hspA9可以分為GG、GA和AA型:GG 型hspA9片段可被Ban II酶切成2條帶,長度分別為561、161 bp;GA型hspA9片段可被酶切成3條帶,長度分別為722、561、161 bp;AA 型hspA9片段不可以被酶切,為1條帶,長度為722 bp。
圖1 hspA9基因C.–85C>A位點特異酶切結(jié)果Fig.1 Digestion of hspA9 gene by Hae II specific for C.–85C>A site
圖2 hspA9基因C.–485G>A位點特異酶切結(jié)果Fig.2 Digestion of hspA9 gene by Sml I specific for C.–485G>A site
圖3 hspA9基因C.–568G>A位點特異酶切結(jié)果Fig.3 Digestion of hspA9 gene by Ban II specific for C.–568G>A site
2.3 hspA9基因多態(tài)位點與耐熱性狀的相關(guān)性
熱耐受指標與hspA9基因3個多態(tài)位點的關(guān)聯(lián)分析表明,在35 ℃熱應(yīng)激狀態(tài)下,C.–485G>A與皮質(zhì)酮濃度極顯著相關(guān)(P<0.01),GG基因型個體的皮質(zhì)酮濃度極顯著高于 GA基因型個體(P<0.01),但GG與AA,GA與AA基因型之間無顯著差異(P>0.05);C.–85C>A和C.–568G>A和耐熱性狀的關(guān)聯(lián)均不顯著(表1)。
表1 熱應(yīng)激狀態(tài)下3個SNP與耐熱性狀的關(guān)聯(lián)分析Table 1 Association analysis between 3 SNPs and thermal tolerance traits at high temperature
在 15 ℃的常溫狀態(tài)下,矮腳黃羽肉雞 hspA9基因C.–485G>A 與T3的濃度顯著相關(guān)(P<0.05),GA基因型個體的T3的濃度顯著高于AA基因型個體(P<0.05),但GG與AA,GG與GA基因型之間無顯著差異(P>0.05);C.–568G>A 與T3濃度顯著相關(guān)(P<0.05),GG基因型個體的T3濃度顯著高于AA和GA基因型個體(P<0.05),但GA與AA基因型之間無顯著差異(P>0.05);C.–568G>A與CD4+T細胞含量極顯著相關(guān)(P<0.01),GG基因型個體的CD4+T細胞含量極顯著高于AA基因型個體(P <0.01),但GG與GA、GA與AA基因型之間無顯著差異(P>0.05);C.–85C>A位點在常溫狀態(tài)下和耐熱性狀關(guān)聯(lián)不顯著(表2)。
表2 常溫狀態(tài)下3個SNP與耐熱性狀的關(guān)聯(lián)分析Table 2 Association analysis between 3 SNPs and thermal tolerance traits at room temperature
T3是動物體維持基礎(chǔ)代謝的重要激素,是敏感的熱應(yīng)激指標。Koluman等[13]報道羊在熱應(yīng)激時,T3含量的變化差異顯著,暗示T3可以作為熱應(yīng)激指標。楊琳等[14]報道雞的血漿中T3濃度會隨環(huán)境溫度的升高而下降,表明T3能作為雞耐熱性的指標。Maak等[15]研究長時間中等強度熱刺激會使蛋雞血漿的T3濃度顯著下降,也暗示雞血漿中T3能作為熱應(yīng)激指標。本試驗對T3與hspA9基因多態(tài)性位點的關(guān)聯(lián)分析發(fā)現(xiàn),在常溫狀態(tài)下,hspA9基因C.–485G>A為GA基因型的矮腳黃羽肉雞個體耐熱性較好,hspA9基因C.–568G>A為GG基因型的個體耐熱性也較好。
皮質(zhì)酮由禽類腎上腺分泌,是應(yīng)激時刺激垂體–下丘腦–腎上腺軸分泌的最終產(chǎn)物[12]。許多研究[16–17]表明,應(yīng)激會引起皮質(zhì)酮的大量分泌,皮質(zhì)酮能作為準確評價家禽急性應(yīng)激的生理指標。Zulkifli等[18]報道,高溫應(yīng)激使雞血漿中皮質(zhì)酮濃度明顯提高,暗示皮質(zhì)酮可以作為雞耐熱性的指標。本研究對皮質(zhì)酮與hspA9基因多態(tài)性位點的關(guān)聯(lián)分析表明,熱應(yīng)激狀態(tài)下hspA9基因C.–485G>A的GG基因型的矮小型黃羽肉雞個體耐熱性較好。
在抗原識別過程中,CD4+T細胞具有輔助細胞免疫和體液免疫應(yīng)答的作用。研究顯示,熱應(yīng)激可使雞外周血CD4+T細胞顯著減少[19–20]。高溫對雞各免疫器官中CD4+T細胞具有明顯抑制作用,導(dǎo)致機體細胞免疫能力降低[21]。CD4+T細胞含量可以作為耐熱性的免疫指標[22]。本研究對CD4+T細胞與hspA9基因多態(tài)性位點的關(guān)聯(lián)分析表明,常溫狀態(tài)下,C.–568G>A的GG基因型的矮腳黃羽肉雞個體耐熱性較好。
綜上所述,雞 hspA9基因的 C.–485G>A和C.–568G>A兩個SNP位點對雞耐熱性有影響,是潛在的雞耐熱性分子標記。
[1] Gray C C,Amrani M,Yacoub M H.Heat stress proteins and myocardial protection:Experimental model or potential clinical tool[J].The International Journal of Biochemistry and Cell Biology,1999,31(5):559–573.
[2] Kaldis A,Atkinson B G,Heikkila J J.Molecular chaperone function of the Rana catesbeiana small heat shock protein,hsp30[J].Comparative Biochemistry and Physiology,2004,139(2):175–182.
[3] Hartl F U.Molecular chaperones in cellular protein folding[J].Nature,1996,381(6583):571–580.
[4] Schlieben P,Meyer A,Weise C,et al.Differences in the proteome of high–grade versus low-grade canine cutaneous mast cell tumours[J].Veterinary Journal,2012,194(2):210–214.
[5] Pawar H,Kashyap M K,Sahaspabuddhe N A,et al. Quantitative tissue proteomics of esophageal squamous cell carcinoma for novel biomarker discovery[J].Cancer Biology and Therapy,2011,12(6):510–522.
[6] Peng C,Yang P,Cui Y,et al.HspA9 overexpression inhibits apoptin–induced apoptosis in the HepG2 cell line[J].Oncology Reports,2013,29(6):2431–2437.
[7] Zhu Y,Ren C,Wan X,et al.Gene expression of Hsp70,Hsp90 and Hsp110 families in normal palate and cleft palate during mouse embryogenesis[J].Toxicology and Industrial Health,2012,10(8):1177–1180.
[8] Chen T H,Kambal A,Krysiak K,et al.Knockdown of HspA9,a del(5q31.2) gene,results in a decrease in hematopoietic progenitors in mice[J].Blood,2011,117(5):1530–1539.
[9] 奧斯伯 F,布倫特 R,金斯敦 R E,等.精編分子生物學實驗指南[M].顏子穎,王海林,譯.北京:科學出版社,1998.
[10] 董書魁,賈天寵.改良的 MGG染色液[J].北京軍區(qū)醫(yī)藥,1996,8(1):77.
[11] Alfred M L,Casimir J.Atlas of Avian Hematology[M]. Washington:United States Department of Agriculture, 1961.
[12] Campo J L,Davila S G.Estimation of heritability for heterophil:Lymphocyte ratio in chickens by restricted maximum likelihood effects of age,sex,and crossing[J]. Poultry Science,2002,81(10):1448–1453.
[13] Koluman N,Daskiran I.Effects of ventilation of the sheep house on heat stress,growth and thyroid hormones of lambs[J].Tropical Animal Health and Production,2011,43(6):1123–1127.
[14] 楊琳,杜榮,張子儀.環(huán)境溫度對雞飼糧代謝能測值及血漿中甲狀腺激素濃度的影響[J].畜牧獸醫(yī)學報,1993,24(6):494–499.
[15] Makk S,Melesse A,Schmidt R,et al.Effect of long–term heat exposure on peripheral concentrations of heat shock protein 70 (Hsp70) and hormones in laying hens with different genotypes[J].British Poultry Science,2003,44(1):133–138.
[16] Post J,Rebel J M,Ter Huurne A A.Physiological effects of elevated plasma corticosterone concentrations in broiler chickens:An alternative means by which to assess the physiological effects of stress[J].Poultry Science,2003,82(8):1313–1318.
[17] Star L,Nieuwland M G,Kemp B,et al.Effect of single or combined climatic and hygienic stress on natural and specific hum oral immune competence in four layer lines[J].Poultry Science,2007,86(9):1894–1903.
[18] Zulkifli I,Al–Aqil A,Omar A R,et al.Crating and heat stress influence blood parameters and heat shock protein 70 expression in broiler chickens showing short or long tonic immobility reactions[J].Poultry Science,2009,88(3):471–476.
[19] Trout J M,Mashaly M M.The effects of adrenocorticotropic hormone and heat stress on the distribution of lymphocyte populations in immature male chickens[J]. Poultry Science,1994,73(11):1694–1698.
[20] Hammami M M,Bouchama A,Shail E,et al. Lymphocyte subsets and adhesion molecules expression in heatstroke and heat stress[J].Journal of Applied Physiology,1998,84(5):1615–1621.
[21] 李新國,王自力,朱曉宇,等.高溫下清涼沖劑對雞免疫器官中CD4+、CD8+T細胞數(shù)量的影響[J].中獸醫(yī)醫(yī)藥雜志,2006,6(6):5–7.
[22] Chen Z Y,Gan J K,Xiao X,et al.The association of SNPs in Hsp90β gene 5′ flanking region with thermo tolerance traits and tissue mRNA expression in two chicken breeds[J].Molecular Biology Reports,2013,40(9):5295–5306.
責任編輯:羅 維
英文編輯:羅 維
Effect of SNPs of hspA9 gene 5′ flanking region with thermal tolerance traits in yellow feather dwarf broiler
ZHANG Wen-wu1,2, GAN Jian-kang1,2, ZHANG Xi-quan1,2, ZHANG De-xiang1,2, LUO Qing-bin1,2*
(1.College of Animal Science, South China Agricultural University, Guangzhou 510642, China; 2.Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture(Guangzhou), Guangzhou 510642, China)
To observe the role of hspA9 of domestic chicken in tolerance of heat stress, hspA9 gene 5 'flanking region of yellow feather dwarf broiler pure line was amplified by PCR and sequenced, and then analyzed by PCR–RFLP. The relationships between the mutation sites detected in hspA9 gene and the five heat resistant traits (triiodothyronine (T3), corticosterone, heterophil/lymphocyte ratio (H/L), CD3+and CD4+T cell) were analyzed. The results indicated that three SNP sites (C.–85C>A, C.–485G>A and C.–568G>A) were found. According to the C.–85C>A specific enzyme sites, hspA9 gene is divided into AA, AC and CC genotypes; according to the C.–485G>A specific enzyme sites, this gene is divided into GG, GA and AA genotypes; according to the C.–568G>A specific enzyme sites, this gene is divided into GG, GA and AA genotypes. Under high temperature, C.–485G>A site was highly significantly associated with corticosterone (P<0.01), corticosterone value in individual of GG genotype was highly significantly higher than that of AA genotype. At room temperature, C.–485G>A site was significantly associated with T3 (P<0.05), the content of T3 in individual of GA genotype was significantly higher than that of AA genotype; C.–568G>A site was significantly associated with T3 (P <0.05), the content of T3 in individual of GG genotype was significantly higher than that of AA T3 genotype; C.–568G>A site was significantly associated with CD4+T cell (P<0.01), the percentage of CD4+T cell in individual of GG genotype was significantly higher than that of AA genotype. Both C.+258A>G and C.+276C>G sites play animportant role in thermal stress resistance, indicating their potential in marker–assisted selection of chicken.
yellow feather dwarf broiler; hspA9 gene; thermal stress; thermal stress resistance
S831.2;Q75
A
1007?1032(2014)02?0183?05
10.13331/j.cnki.jhau.2014.02.015
投稿網(wǎng)址:http://www.hunau.net/qks
2013–05–12
國家自然科學基金項目(30972093)
張文武(1985—),男,湖南邵陽人,碩士,主要從事動物分子遺傳與育種的研究,125714992@qq.com;*通信作者,qbluo @scau.edu.cn