摘要: 介紹了堿性氣體保護藥芯焊絲的冶金特點、電弧行為及工藝質量,探討了焊絲工藝質量選用原則和控制原理。結果表明,典型堿性焊絲熔渣色澤赭色泛黃、玻璃狀薄渣,渣中SiO2很少,熔滴不增氧,不被細化。該類焊絲的電弧形態(tài)屬于活動、連續(xù)型。焊絲熔滴過渡的基本形態(tài)是非軸向排斥滴狀過渡??梢员WC焊絲熔敷金屬低的含氧、含氫量及較少的有害雜質,保證焊縫組織大量的針狀鐵素體,因而獲得了優(yōu)異的力學性能。焊絲工藝質量指標選擇的“合于使用”原則,強調產品特征或用戶要求。提出了減小焊接飛濺的技術路線,和保證獲得優(yōu)異、穩(wěn)定沖擊吸收能量的焊縫韌性控制原理。
關鍵詞: 工藝質量;氣體保護藥芯焊絲;堿性渣系;選擇與控制
中圖分類號: TG442
0前言
以E500T-5為代表的堿性渣系氣體保護藥芯焊絲的使用性能非常優(yōu)異,無論是抗裂性還是低溫韌性,都遠比E501T-1焊絲好許多。許多重要產品或工程結構的施工技術條件明確標明,必須使用堿性藥芯焊絲。一些單位擔心的是焊絲操作工藝性的不適應,比如習慣了E501T-1焊絲的焊工,用該焊絲總覺得飛濺大、成形難控制,甚至不能操作。這是焊工的經驗不足或技術尚不全面造成的。深入了解并長期體驗堿性焊絲的特性和操作要點后[1],廣大焊工同樣會喜歡上這類焊絲的。雖然采用富氬混合氣體保護時,能改變堿性藥芯焊絲熔滴過渡形態(tài),從而改善焊絲的工藝性。然而,考慮到大多數用戶的需求,本文僅限于探討CO2保護下的焊絲工藝質量問題。
有的市售E500T-5焊絲,燒焊時護鏡下看到的熔渣、熔池形態(tài)與E501T-1差別不大,熔池輪廓不清楚,熔渣緊跟電弧,熔池裸露部分很小;熄弧后,固態(tài)熔渣的色澤形態(tài)與E501T-1焊絲的很接近。這表明該焊絲不屬于堿性渣,至少是熔渣的堿度不夠高。應該說,堿性焊絲不僅在操作手感方面,而且在焊縫凝固后熔渣色澤、厚薄、脫渣性,以及焊縫成形等方面均與E501T-1有明顯的區(qū)別。然而,遺憾的是,有的E500T-5焊絲不具備上述特征。這樣的焊絲當作堿性焊絲用在重要或重大工程結構上,結構的安全性會受到一定影響。為此,本文特意將堿性藥芯焊絲的工藝質量與熔渣的冶金特點、熔滴過渡特性相聯(lián)系,通過兩種渣系堿性焊絲工藝質量對比,探討堿性焊絲工藝質量的選用原則與控制原理。該項研究對推動企業(yè)技術進步、改變經營理念、提升產品競爭力,具有參考意義和實用價值。
1堿性渣系及堿性氣體保護藥芯焊絲的冶金特點
1.1堿性熔渣宏觀特征
堿性渣顧名思義熔渣的堿度高,按照文獻[2]建議的熔渣堿度計算公式,一般BI>1.5為堿性熔渣。從熔渣堿度定義出發(fā),可以設計出多種堿性熔渣焊絲。本文選擇CaF2-CaO-SiO2和MgO-CaF2-SiO2-TiO2兩種堿性熔渣進行試驗。首先從熔渣宏觀特征說起(表1),第一種渣與酸性渣大不相同,一是色澤赭色里透著暗黃,二是渣很薄,與焊縫抓得很緊,不易脫落,必須施加外力或振動,振后易碎,脫不干凈,而且是玻璃狀渣。第二種渣與酸性渣有點接近,渣的色澤褐色里透著暗紅,渣比前者較厚,渣與焊縫抓得不牢,比較容易分離,渣是瓷石狀。其次,從渣的高溫熔化特性看,二者差別不大,面罩下看到的是典型堿性渣熔池形
貌,高溫渣的流動性很好,覆蓋性后者更滿意。最后,
必須強調的是,堿性熔渣的特性決定了該焊絲的操作特性與E501T-1酸性焊絲是不同的,主要焊接參數不同,操作技巧要用心掌握:電弧要壓低一點、焊絲傾角要大點、焊接速度適當放慢點、橫向可以擺開點。只要操作技術掌握得好,飛濺會變得較小,電弧不再那么太飄,感覺自然好多了。
1.2堿性氣體保護藥芯焊絲的冶金特點
121熔滴過渡區(qū)
從焊絲端部熔滴形成、過渡至焊縫熔池這一區(qū)間,可能發(fā)生下列化學冶金反應:
(1)熔滴、芯柱與電弧中CO2及其分解物作用
1.2.2熔池反應區(qū)
在熔池反應區(qū)將繼續(xù)進行熔滴階段的化學反應,只是反應速度和反應劇烈程度與熔滴階段不盡相同,也可能出現與焊條電弧焊熔池反應區(qū)不同的情況。注意到熔滴過渡中伴隨渣柱(或芯柱),以及渣柱直接進入熔池現象,可能導致焊接化學冶金反應不完全和冶金過程的新變化。另一方面,由于熔渣較稀,熔滴過渡過程中,熔渣未必完整包覆熔滴,熔滴的氧化對去氫有一定作用(當然,亦要考慮熔滴尺寸較大,比表面積較小因素),攜帶氫量相對較少,進入熔池氫總量小。還有,熔池輪廓清晰,裸露面較大,熔池中氣泡易于浮出。
2堿性渣氣體保護藥芯焊絲的電弧行為與工藝質量2.1堿性渣系藥芯焊絲的電弧行為
2.1.1電弧形態(tài)
文獻[3]通過與實心焊絲的對比觀察,把藥芯焊絲的電弧形態(tài)分為四種類型:按電弧的連續(xù)性分,可以分為連續(xù)型和斷續(xù)型電?。话措娀〉幕顒有苑?,可以分為活動型和非活動型電弧。實心焊絲CO2氣體保護焊時,盡管熔滴的非軸向排斥過渡形態(tài)使電弧偏離焊絲軸線,而且隨熔滴在焊絲端急速擺動而飄移不定,但電弧首先是在焊絲端頭的整個截面上產生的,同時熔滴在短路過渡瞬間會出現電弧瞬間熄滅現象,因此實心焊絲的電弧形態(tài)屬于活動、斷續(xù)型。而“O”型截面藥芯焊絲(無論酸性或者堿性)CO2氣體保護焊時,熔滴雖然也是非軸向排斥過渡形態(tài),而且隨熔滴在焊絲端急速擺動而發(fā)生電弧遷移,然而電弧首先是產生在焊絲金屬外套管上,況且熔滴的滴狀過渡并未出現電弧瞬間熄滅現象,因此該類藥芯焊絲的電弧形態(tài)應屬于活動、連續(xù)型??傮w上看,藥芯焊絲CO2氣體保護焊時,因為藥芯中加有穩(wěn)弧劑,電弧的挺度和穩(wěn)定性均比實心焊絲的好,焊絲的工藝性理應得到明顯的改善。
2.1.2熔滴過渡特性
2.1.2.1熔滴形成過程
觀察對接口“O”形截面藥芯焊絲熔滴形成過程,可以發(fā)現,進入電弧區(qū)的焊絲端部,在接口處及其附近的鋼帶首先快速熔化,而在接口的徑向處鋼帶則滯后熔化,于是很快形成了偏心熔滴懸于焊絲端部;與此同時處于焊絲端部、熔滴下方的還有滯后鋼帶熔化的所謂渣柱,有時還有滯后熔化的一小段細鋼帶。隨著焊絲不斷送進,熔滴在電弧中急速旋轉、飄移并過渡。可以看出,電弧燃燒時,焊絲端部沿圓周方向不能同步熔化,而是沿接口處熔化速度快,接口徑向處熔化速度慢,結果出現偏心熔化(或馬蹄形熔化)、熔滴沿焊絲周邊懸掛運動和熔滴的非軸向過渡現象。至于處于熔滴下方的渣柱的形成,則是由于藥芯組成物熔點比鋼帶高所致。
2.1.2.2熔滴過渡形態(tài)
在CO2氣體保護下,這類藥芯焊絲熔滴過渡的基本形態(tài)是非軸向排斥滴狀過渡(大角度排斥過渡),其主要的過渡指標是熔滴尺寸、過渡頻率及熔滴過渡的非軸向傾向(熔滴與焊絲軸線夾角)。熔滴過渡形態(tài)的變化,主要依賴于焊接電流變化。在小電流下焊接時,焊絲端部的滴狀熔滴受多種力作用,急速地擺動,并以非軸向方式不停地脫離焊絲實現過渡。隨焊接電流的增大,熔滴尺寸減小,過渡頻率增大,熔滴的非軸向傾向略顯減?。划敽附与娏鞔笥谀撤秶岛?,隨著過渡頻率急劇增大,熔滴沿焊絲渣柱方向過渡。熔滴沿渣柱的過渡行為,對穩(wěn)定電弧、減小焊接飛濺、改善操作工藝性較為有利。在生產現場通常采用較大焊接電流,電弧電壓達相應數值時,這類焊絲發(fā)生短路過渡的機會較小。
2.2堿性渣系氣體保護藥芯焊絲的工藝質量(實測)
3堿性渣系氣體保護藥芯焊絲熔敷金屬的力學性能3.1堿性渣焊絲熔敷金屬拉伸力學性能
焊絲熔敷金屬的拉伸試驗(表3)表明,兩種焊絲的抗拉強度、屈服強度、斷后伸長率等指標都能達到GB/T10054—2001 E500T-5要求,至于兩種焊絲這些指標的差異,顯然是由于化學成分不同所造成。雖然堿性渣氧化性小、焊縫金屬含氧量特別低、含氫量也很低、去除S、P能力強,焊絲拉伸性能指標能被方便調整或控制,但是,與E501T-1焊絲相比,這兩種焊絲在拉伸性能方面的優(yōu)勢并不突出。該焊絲優(yōu)勢主要體現在焊縫韌性,特別是焊縫金屬的低溫沖擊性能非常優(yōu)秀。
堿性藥芯焊絲熔敷金屬韌性的控制包括四個方面(圖2):首先,要控制熔渣的堿度。焊絲熔渣的堿度BI大于1.5時,能保證焊縫金屬低氫和低氧含量,而且是圖2熔敷金屬韌性控制原理方框圖
低硫、磷含量,及低夾雜物含量(晶界凈化)。第二,要控制焊縫化學成分。從兩方面入手:①控制熔敷金屬的屈強比Rel/Rm=0.85~0.95,或延強比A/Rm=0.034~0.055[6];②必要時可以在焊縫中加適量的Ti、B微量元素,其目的是保證熔敷金屬形成85%以上的針狀鐵素體組織。第三,控制焊接熱輸入。進一步強化或助力焊縫中針狀鐵素體組織形成。第四,控制生產線裝備[7]。要保證裝備的先進性,確保送粉的均勻性和焊絲接口的密封性,防止藥粉分層,杜絕焊絲漏粉、焊絲扭曲等不良現象出現,確保沖擊試件無低值數據出現。
6結論
(1)典型堿性焊絲熔渣色澤赭色透黃、渣薄玻璃狀,渣中SiO2很少,在熔滴反應區(qū)滲硅反應被抑制,熔滴不增氧,不被細化?;≈醒趸约叭鄢孛媛懵队欣渥饔?。
(2)該類藥芯焊絲的電弧形態(tài)屬于活動、連續(xù)型。焊絲熔滴過渡的基本形態(tài)是非軸向排斥滴狀過渡(大角度排斥過渡)。實測的兩種堿性焊絲,在焊縫成形、
全位置焊接適應性等工藝性能方面有所差別,但抗氣孔性能都很滿意。
(3)堿性渣藥芯焊絲可以保證熔敷金屬低的含氧、含氫量及較少的有害雜質,保證焊縫組織大量的針狀鐵素體,因而獲得了優(yōu)異的力學性能。第二種焊絲出現韌性低值試件問題,與焊絲制造過程中藥粉的均勻性、流動性等因素有關。
(4)堿性藥芯焊絲工藝質量指標選擇的“合于使用”原則,強調產品特征或用戶要求,注重某些單項工藝質量指標的研發(fā)與改進。
(5)提出了通過兩個形成焊接飛濺關鍵參數控制飛濺的技術路線,以及通過4個方面確保獲得優(yōu)異、穩(wěn)定沖擊性能的焊縫韌性控制原理。
參考文獻
[1]孫咸. 堿性渣系氣保護藥芯焊絲立向上焊接工藝[J].焊接,2003(9):16-19.
[2]陳伯蠡. 焊接冶金原理[M].北京:清華大學出版社,1991.
[3]孫咸.氣體保護藥芯焊絲熔滴過渡形態(tài)的研究[J].MM現代制造(現代焊接工程),2010(2): 57-61.
[4]中國機械工程學會,北京·埃森焊接與切割展覽會組委會.北京·埃森焊接與切割展覽會綜合技術報告[R].北京:2012:146.
[5]吳磊磊. 船舶制造高效焊接—船舶制造中高效焊接對焊材的要求[J].金屬加工(熱加工),2013(22):21.
[6]孫咸. 鈦型渣系氣保護藥芯焊絲熔敷金屬力學性能的控制[J].機械工人(熱加工),2005(8):31-34.
[7]孫咸. 藥芯焊絲生產線裝備特性以及與焊絲品質的相關性[J].焊接,2011(2):14-18
2.1.2.2熔滴過渡形態(tài)
在CO2氣體保護下,這類藥芯焊絲熔滴過渡的基本形態(tài)是非軸向排斥滴狀過渡(大角度排斥過渡),其主要的過渡指標是熔滴尺寸、過渡頻率及熔滴過渡的非軸向傾向(熔滴與焊絲軸線夾角)。熔滴過渡形態(tài)的變化,主要依賴于焊接電流變化。在小電流下焊接時,焊絲端部的滴狀熔滴受多種力作用,急速地擺動,并以非軸向方式不停地脫離焊絲實現過渡。隨焊接電流的增大,熔滴尺寸減小,過渡頻率增大,熔滴的非軸向傾向略顯減??;當焊接電流大于某范圍值后,隨著過渡頻率急劇增大,熔滴沿焊絲渣柱方向過渡。熔滴沿渣柱的過渡行為,對穩(wěn)定電弧、減小焊接飛濺、改善操作工藝性較為有利。在生產現場通常采用較大焊接電流,電弧電壓達相應數值時,這類焊絲發(fā)生短路過渡的機會較小。
2.2堿性渣系氣體保護藥芯焊絲的工藝質量(實測)
3堿性渣系氣體保護藥芯焊絲熔敷金屬的力學性能3.1堿性渣焊絲熔敷金屬拉伸力學性能
焊絲熔敷金屬的拉伸試驗(表3)表明,兩種焊絲的抗拉強度、屈服強度、斷后伸長率等指標都能達到GB/T10054—2001 E500T-5要求,至于兩種焊絲這些指標的差異,顯然是由于化學成分不同所造成。雖然堿性渣氧化性小、焊縫金屬含氧量特別低、含氫量也很低、去除S、P能力強,焊絲拉伸性能指標能被方便調整或控制,但是,與E501T-1焊絲相比,這兩種焊絲在拉伸性能方面的優(yōu)勢并不突出。該焊絲優(yōu)勢主要體現在焊縫韌性,特別是焊縫金屬的低溫沖擊性能非常優(yōu)秀。
堿性藥芯焊絲熔敷金屬韌性的控制包括四個方面(圖2):首先,要控制熔渣的堿度。焊絲熔渣的堿度BI大于1.5時,能保證焊縫金屬低氫和低氧含量,而且是圖2熔敷金屬韌性控制原理方框圖
低硫、磷含量,及低夾雜物含量(晶界凈化)。第二,要控制焊縫化學成分。從兩方面入手:①控制熔敷金屬的屈強比Rel/Rm=0.85~0.95,或延強比A/Rm=0.034~0.055[6];②必要時可以在焊縫中加適量的Ti、B微量元素,其目的是保證熔敷金屬形成85%以上的針狀鐵素體組織。第三,控制焊接熱輸入。進一步強化或助力焊縫中針狀鐵素體組織形成。第四,控制生產線裝備[7]。要保證裝備的先進性,確保送粉的均勻性和焊絲接口的密封性,防止藥粉分層,杜絕焊絲漏粉、焊絲扭曲等不良現象出現,確保沖擊試件無低值數據出現。
6結論
(1)典型堿性焊絲熔渣色澤赭色透黃、渣薄玻璃狀,渣中SiO2很少,在熔滴反應區(qū)滲硅反應被抑制,熔滴不增氧,不被細化?;≈醒趸约叭鄢孛媛懵队欣渥饔?。
(2)該類藥芯焊絲的電弧形態(tài)屬于活動、連續(xù)型。焊絲熔滴過渡的基本形態(tài)是非軸向排斥滴狀過渡(大角度排斥過渡)。實測的兩種堿性焊絲,在焊縫成形、
全位置焊接適應性等工藝性能方面有所差別,但抗氣孔性能都很滿意。
(3)堿性渣藥芯焊絲可以保證熔敷金屬低的含氧、含氫量及較少的有害雜質,保證焊縫組織大量的針狀鐵素體,因而獲得了優(yōu)異的力學性能。第二種焊絲出現韌性低值試件問題,與焊絲制造過程中藥粉的均勻性、流動性等因素有關。
(4)堿性藥芯焊絲工藝質量指標選擇的“合于使用”原則,強調產品特征或用戶要求,注重某些單項工藝質量指標的研發(fā)與改進。
(5)提出了通過兩個形成焊接飛濺關鍵參數控制飛濺的技術路線,以及通過4個方面確保獲得優(yōu)異、穩(wěn)定沖擊性能的焊縫韌性控制原理。
參考文獻
[1]孫咸. 堿性渣系氣保護藥芯焊絲立向上焊接工藝[J].焊接,2003(9):16-19.
[2]陳伯蠡. 焊接冶金原理[M].北京:清華大學出版社,1991.
[3]孫咸.氣體保護藥芯焊絲熔滴過渡形態(tài)的研究[J].MM現代制造(現代焊接工程),2010(2): 57-61.
[4]中國機械工程學會,北京·埃森焊接與切割展覽會組委會.北京·埃森焊接與切割展覽會綜合技術報告[R].北京:2012:146.
[5]吳磊磊. 船舶制造高效焊接—船舶制造中高效焊接對焊材的要求[J].金屬加工(熱加工),2013(22):21.
[6]孫咸. 鈦型渣系氣保護藥芯焊絲熔敷金屬力學性能的控制[J].機械工人(熱加工),2005(8):31-34.
[7]孫咸. 藥芯焊絲生產線裝備特性以及與焊絲品質的相關性[J].焊接,2011(2):14-18
2.1.2.2熔滴過渡形態(tài)
在CO2氣體保護下,這類藥芯焊絲熔滴過渡的基本形態(tài)是非軸向排斥滴狀過渡(大角度排斥過渡),其主要的過渡指標是熔滴尺寸、過渡頻率及熔滴過渡的非軸向傾向(熔滴與焊絲軸線夾角)。熔滴過渡形態(tài)的變化,主要依賴于焊接電流變化。在小電流下焊接時,焊絲端部的滴狀熔滴受多種力作用,急速地擺動,并以非軸向方式不停地脫離焊絲實現過渡。隨焊接電流的增大,熔滴尺寸減小,過渡頻率增大,熔滴的非軸向傾向略顯減??;當焊接電流大于某范圍值后,隨著過渡頻率急劇增大,熔滴沿焊絲渣柱方向過渡。熔滴沿渣柱的過渡行為,對穩(wěn)定電弧、減小焊接飛濺、改善操作工藝性較為有利。在生產現場通常采用較大焊接電流,電弧電壓達相應數值時,這類焊絲發(fā)生短路過渡的機會較小。
2.2堿性渣系氣體保護藥芯焊絲的工藝質量(實測)
3堿性渣系氣體保護藥芯焊絲熔敷金屬的力學性能3.1堿性渣焊絲熔敷金屬拉伸力學性能
焊絲熔敷金屬的拉伸試驗(表3)表明,兩種焊絲的抗拉強度、屈服強度、斷后伸長率等指標都能達到GB/T10054—2001 E500T-5要求,至于兩種焊絲這些指標的差異,顯然是由于化學成分不同所造成。雖然堿性渣氧化性小、焊縫金屬含氧量特別低、含氫量也很低、去除S、P能力強,焊絲拉伸性能指標能被方便調整或控制,但是,與E501T-1焊絲相比,這兩種焊絲在拉伸性能方面的優(yōu)勢并不突出。該焊絲優(yōu)勢主要體現在焊縫韌性,特別是焊縫金屬的低溫沖擊性能非常優(yōu)秀。
堿性藥芯焊絲熔敷金屬韌性的控制包括四個方面(圖2):首先,要控制熔渣的堿度。焊絲熔渣的堿度BI大于1.5時,能保證焊縫金屬低氫和低氧含量,而且是圖2熔敷金屬韌性控制原理方框圖
低硫、磷含量,及低夾雜物含量(晶界凈化)。第二,要控制焊縫化學成分。從兩方面入手:①控制熔敷金屬的屈強比Rel/Rm=0.85~0.95,或延強比A/Rm=0.034~0.055[6];②必要時可以在焊縫中加適量的Ti、B微量元素,其目的是保證熔敷金屬形成85%以上的針狀鐵素體組織。第三,控制焊接熱輸入。進一步強化或助力焊縫中針狀鐵素體組織形成。第四,控制生產線裝備[7]。要保證裝備的先進性,確保送粉的均勻性和焊絲接口的密封性,防止藥粉分層,杜絕焊絲漏粉、焊絲扭曲等不良現象出現,確保沖擊試件無低值數據出現。
6結論
(1)典型堿性焊絲熔渣色澤赭色透黃、渣薄玻璃狀,渣中SiO2很少,在熔滴反應區(qū)滲硅反應被抑制,熔滴不增氧,不被細化?;≈醒趸约叭鄢孛媛懵队欣渥饔谩?/p>
(2)該類藥芯焊絲的電弧形態(tài)屬于活動、連續(xù)型。焊絲熔滴過渡的基本形態(tài)是非軸向排斥滴狀過渡(大角度排斥過渡)。實測的兩種堿性焊絲,在焊縫成形、
全位置焊接適應性等工藝性能方面有所差別,但抗氣孔性能都很滿意。
(3)堿性渣藥芯焊絲可以保證熔敷金屬低的含氧、含氫量及較少的有害雜質,保證焊縫組織大量的針狀鐵素體,因而獲得了優(yōu)異的力學性能。第二種焊絲出現韌性低值試件問題,與焊絲制造過程中藥粉的均勻性、流動性等因素有關。
(4)堿性藥芯焊絲工藝質量指標選擇的“合于使用”原則,強調產品特征或用戶要求,注重某些單項工藝質量指標的研發(fā)與改進。
(5)提出了通過兩個形成焊接飛濺關鍵參數控制飛濺的技術路線,以及通過4個方面確保獲得優(yōu)異、穩(wěn)定沖擊性能的焊縫韌性控制原理。
參考文獻
[1]孫咸. 堿性渣系氣保護藥芯焊絲立向上焊接工藝[J].焊接,2003(9):16-19.
[2]陳伯蠡. 焊接冶金原理[M].北京:清華大學出版社,1991.
[3]孫咸.氣體保護藥芯焊絲熔滴過渡形態(tài)的研究[J].MM現代制造(現代焊接工程),2010(2): 57-61.
[4]中國機械工程學會,北京·埃森焊接與切割展覽會組委會.北京·埃森焊接與切割展覽會綜合技術報告[R].北京:2012:146.
[5]吳磊磊. 船舶制造高效焊接—船舶制造中高效焊接對焊材的要求[J].金屬加工(熱加工),2013(22):21.
[6]孫咸. 鈦型渣系氣保護藥芯焊絲熔敷金屬力學性能的控制[J].機械工人(熱加工),2005(8):31-34.
[7]孫咸. 藥芯焊絲生產線裝備特性以及與焊絲品質的相關性[J].焊接,2011(2):14-18